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A Long-term Model of the Glucose-Insulin

Dynamics of type 1 Diabetes

Nicolas Magdelaine1, Lucy Chaillous2, Isabelle Guilhem3, Jean-Yves Poirier3, Michel Krempf2, Claude H.

Moog1, Fellow, IEEE and Eric Le Carpentier1

Abstract—A new glucose-insulin model is introduced which
fits with the clinical data from in- and outpatients for two days.
Its stability property is consistent with the glycemia behavior
for type 1 diabetes. This is in contrast to traditional glucose-
insulin models. Prior models fit with clinical data for a few hours
only or display some non-natural equilibria. The parameters
of this new model are identifiable from standard clinical data
as continuous glucose monitoring (CGM), insulin injection and
carbohydrate estimate. Moreover, it is shown that the parameters
from the model allow the computation of the standard tools used
in functional insulin therapy as the basal rate of insulin and the
insulin sensitivity factor. This is a major outcome as they are
required in therapeutic education of type 1 diabetic patients.

Index Terms—clinical data, functional insulin therapy,
glycemia, modeling, type 1 diabetes

I. INTRODUCTION

TYPE 1 diabetes mellitus (T1DM) is an auto-immune

disease leading to the destruction of the pancreatic β-

cells. Thus, the endogenous insulin secretion disappears and

the natural mechanisms of glycemic regulation is dysfunc-

tional. type 1 diabetes was a rapidly fatal disease until the

discovery of insulin in 1921 by Banting and Best [1]. Besides,

uncontrolled blood glucose (BG) leads to severe burden as

blindness or kidney failure. One of the best current treatment

is functional insulin therapy (FIT). FIT consists of a number

of daily insulin injections depending on measurements of

glycemia and carbohydrate food intake (CHO), with the pur-

pose of maintaining normoglycemia (range: 70 - 120 mg/dl).

FIT provides four tools, e.g. basal rate, insulin sensitivity

factor (ISF), to help patients compute insulin doses [2], [3].

Despite these tools, most of the patients have difficulties

in computing the correct amount of insulin to be injected

due to incorrect estimates of carbohydrate food intake. The
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incidence of physical activity or stress is also known to lead to

a variability of the patient’s insulin needs. Therefore, patients

with type 1 diabetes often face disorders such as hypo- (BG

< 70 mg/dl) and hyperglycemia (BG > 180 mg/dl) due to too

large or too small insulin dose.

The fully automated artificial pancreas could significantly

reduce the hypoglycemia and hyperglycemia events, and thus

the risk of complications for T1DM patients. A model of

insulin and glucose dynamics is required to design a model-

based controller. Many glucose-insulin models have been

developed [4], [5], [6], [7], tracing back to [8], with various

complexity [9]. Unfortunately, as is shown in this paper, these

models feature apparent equilibria in fasting periods so that,

for each blood glucose value, a different insulin infusion rate

is needed to maintain constant blood glucose level. Real life

displays exactly the opposite situation as there is one single

insulin infusion rate, known as the basal rate, which does not

depend on the value of the glycemia, and which ensures the

equilibrium of any value of the glycemia in fasting periods.

The consequence is that :

• most of these models enable a short-term BG prediction

from 30 minutes to 5 hours ([10], [11], [12], [7]) or can

fit with clinical data for 20 hours at most [13].

• they are unable to describe the tools for the FIT.

The aim of this article is to introduce a new model which fits

with clinical data for over two days, although it remains ele-

mentary. Its main features rely on realistic stability properties

and a long-term fit. This model is supported by identification

results from clinical data. In addition, the computation of such

FIT tools as the insulin basal rate and the insulin sensitivity

factor is a byproduct from this mathematical model.

The outline of the paper is as follows. In Section II, existing

glucose-insulin models are recalled and the existence of a

non desired equilibrium is argued. The latter may hinder a

long term fit with clinical data. This section also explains

how the previous models are unable to compute FIT tools.

The new model and the identification technique are presented

in Section III. Section IV is initially devoted to analysis of

the new model’s stability properties, after which the tools of

FIT are computed based on its parameters. Finally the results

of parameter identification are presented. The identification is

performed for clinical data with observation duration of a few

days. Perspectives and a scientific discussion are initiated in

the concluding section V.
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II. PRELIMINARIES

A. The state of art of modeling

In 1961, Bolie introduced the first glucose-insulin model

and computed the ”coefficients of normal blood regulation”

[14] i.e. for healthy subjects.

The Minimal Model, developed by Bergman in 1981, en-

abled the estimation of the insulin sensitivity index [8] for

healthy subjects and type 2 diabetic patients. This nonlinear

model became very popular [15] and some modified versions

are still used in applications for the artificial pancreas [16].

To overcome some drawbacks of the Minimal Model [4]

De Gaetano introduced the Dynamical Model which is a non-

linear differential delay model. This model was shown to fit

with glucose tolerance test data from healthy individuals [4].

In 2008, the ”Uva/Padova T1DM Metabolic Simulator”

was accepted by the Food and Drug Administration for the

preclinical testing of control strategies in artificial pancreas

studies. This simulator is based on glucose tracer data of

healthy and type 2 diabetes. The parameter distributions were

altered to create profiles of 300 type 1 diabetes virtual patients

[17]. The parameters of this model can not be estimated from

standard clinical data (CGM, injection, amount of CHO) [17].

The Hovorka maximal model is based on an intravenous

glucose tolerance test of 6 healthy lean male subjects [5].

Nevertheless, this model was shown to describe the 20 hours

collected data in 12 young subjects with type 1 diabetes [13].

However, non-standard clinical measure of insulin concentra-

tion every 30 minutes and advanced analysis methods [13] are

needed to fit the parameters of the model.

In 2011 a linear model, with digestion dynamics, 5 states

and 4 parameters, was developed to describe the blood glucose

post-prandial breakfast excursions of a group of 10 type 1

diabetes patients [7] .

B. Functional insulin therapy

Improvements in glycemic control have been realized using

”basal-bolus” injection schemes. The basal and bolus amounts

are adjusted for hospitalized patients with a standardized

protocol [2]. For outpatients, FIT provides four tools in order

to help the patient to estimate his insulin needs [3].

• Basal rate is the constant insulin infusion rate that

maintains glycemia at a constant value during fasting.

• ISF is the glycemic drop per unit of extra insulin when

the basal infusion rate is correctly set.

• Raise is the resulting increase in BG of digestion of 15

g CHO when the basal rate is correctly set.

• U/P is the ratio of U units of insulin and P portions

of CHO. U denotes the required units to recover the BG

value prior to the digestion of P portions of CHO when

the basal rate is correctly set. In this study one portion

contains 20 g of CHO.

C. Some drawbacks from existing models

What follows may be stated for several models. To be more

concise, we will focus on the Dynamical Model [4] which is

written as:

İ(t) = −b2.I(t) +
b6
∆t

∫ t

t−∆t

G(τ)dτ + u(t)/Vi (1)

Ġ(t) = −b1.G(t)− b4.I(t).G(t) + b7 + J(t) (2)

The glycemia is denoted G(t) and I(t) is the plasma insulin

concentration (insulinemia). J(t) is an intravenous glucose

perfusion rate and u(t) is an insulin infusion rate. Vi is the

insulin distribution volume. The constant increase in plasma

glucose concentration due to constant baseline liver glucose

release is denoted b7 [4]. For most of the newer model, the

endogenous glucose production (EGP) is dependent on glucose

[18] and goes to zero when plasma glucose is high.

It has been proven in [4] that the Dynamical Model (1),

(2) is stable and has an equilibrium point for type 2 diabetic

patients as well as for healthy individuals.

For type 1 diabetics, the pancreas does not secrete any

insulin which leads to b6 = 0. Considering fasting periods

(J(t) = 0), and using b7 as a simple description of EGP, the

equations (1), (2) reduce to:

İ(t) = −b2.I(t) + u(t)/Vi (3)

Ġ(t) = −b1.G(t)− b4.I(t).G(t) + b7 (4)

The equilibrium point of (3), (4) is computed in fasting period.

Setting the right hand side of (3) to 0, it is found that the pair

(Ueq, Ieq) is an equilibrium of (3) for any constant insulin

infusion rate Ueq.
(

Ueq ; Ieq =
Ueq

b2Vi

)

(5)

Consequently, the stable equilibrium Geq for G(t) is found as

Geq =
b7

b1 + b4.
Ueq

b2.Vi

(6)

Any constant insulin infusion rate may yield an apparent

equilibrium. This conclusion remains valid whether the EGP

b7 is constant or dependent on insulinemia or glycemia. This

result stands in contradiction with clinical practice.

From (3), (4) and (6) the FIT tools necessarily fulfill the

following equations:

1) The basal rate Ub is computed by solving (6) in Ueq

Ub = Ueq =
b2Vi

b4
.

(

b7
Geq

− b1

)

(7)

This value depends on the glycemia Geq. It stands in

contradiction with functional insulin therapy [2], [3]. In

the clinical practice a single value of the constant insulin

infusion rate, known as the basal rate, independent

from glycemia, maintains glycemia at any constant value

during fasting periods.

2) U/P : the basal rate is assumed to be set to Ub. After

a meal containing CHO without extra insulin injection,

glycemia G(t) would first rise during digestion and then

decrease towards its equilibrium Geq which depends on

Ub (6). Consequently, an extra insulin injection seems

not be required for a meal containing CHO and U/P
fulfills:

U/P = 0 (8)
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This stands again in contradiction with FIT : an extra

insulin injection (bolus) is required [2], [3] for every

meal containing carbohydrates. The apparent equilib-

rium (Ueq; Ieq; Geq) is asymptotically stable whereas

it should be critically stable for T1DM patients.

Thus (3), (4) can not be used to compute the insulin basal rate

nor U/P.

The model (3), (4) has shown to be efficient to represent

the short term behavior of the glycemia dynamics but its long

term validity is affected by its asymptotic properties described

above.

III. METHODS

To enable long-term validity and fit with clinical data, a

new model with realistic equilibrium points is introduced in

this section . It is an elementary type 1 glucose-insulin and

digestion model with 5 states and 6 independent parameters.

A. Glucose dynamics

The glucose dynamics consists in a single equation, where

Ġ(t) equals to the production of glucose minus the consump-

tion of glucose.

The increase of glucose includes the liver endogenous

glucose production kl and the digestion of CHO D(t). The

endogenous glucose production kl is assumed to be constant

for simplicity, but a more accurate model may be derived.

The glucose absorption rate includes the consumption by the

brain kb without need of insulin, the storage by the liver and

the consumption by the muscles under the action of insulin.

The insulin-dependent term of glucose consumption is not

dependent of plasma glucose concentration. A study including

18 T1DM patients [19] shows that insulin action is propor-

tional to the injection when it is between 0.075 U/kg and 0.3

U/kg. This assumption in type 1 diabetes is also supported

by hyperglycemic clamp studies: hyperinsulinc clamp was

performed on 16 T1DM patients in isoglycemic (6.5 mmol/L

i.e. 120 mg/dl) and hyperglycemic (12 mmol/L i.e. 220 mg/dl)

conditions in [20]. Glucose disposal rate and metabolic clear-

ance of glucose were similar and not statistically different

between the two blood glucose levels. These data support

the assumption that the insulin-dependent term of glucose

consumption does not depend on the plasma glucose concen-

tration. Thus, the insulin dependent glucose decrease rate is

written as −ksi.I(t). Other glucose elimination phenomena,

dependent of glucose concentration, are neglected.

At this stage, the glycemia dynamics is written as:

Ġ(t) = −ksi.I(t) + kl − kb +D(t) (9)

B. Insulin dynamics

The relationship between the insulin infusion rate u(t)
and the insulinemia I(t) is derived from the pharmacokinetic

characteristics of insulin [19]. As in [7], the insulin dynamics

is given by a second order model with a single time constant

Tu. Using U(s) and I(s), the Laplace transforms of u(t) and

I(t), the transfert function is written as:

I(s) =
ku/Vi

(1 + Tu.s)2
U(s) (10)

Tu is the time constant and ku/Vi the static gain where Vi

denotes the insulin distribution volume.

C. Digestion dynamics

A similar second order system is used to model the re-

lationship between CHO in meal r(t) and D(t). Its time

constant is Tr and it uses the blood volume VB. A state space

representation of the digestion dynamics is:

[

Ḋ(t)

D̈(t)

]

=

[

0 1
−

1
T 2

r
−

2
Tr

]

.

[

D(t)

Ḋ(t)

]

+

[

0
kr

VB.T
2
r

]

r(t) (11)

Tr and the static gain kr/VB are tuned to reflect the glycemic

index depending on the meal composition [21].

D. A state space representation of the complete model

With the state X(t) =
[

G(t) I(t) İ(t) D(t) Ḋ(t)
]T

,

the inputs u(t) and r(t), and the output y = G(t), a state

representation of the model (9), (10) and (11) reads as:

Ẋ(t) = A.X(t) +
[

Bu Br

]

.

[

u(t)
r(t)

]

+ E

Ẋ(t) =













0 −ksi 0 1 0
0 0 1 0 0
0 −

1
T 2

u
−

2
Tu

0 0

0 0 0 0 1
0 0 0 −

1
T 2

r
−

2
Tr













.X(t)

+













0 0
0 0
ku

Vi.T
2
u

0

0 0

0 kr

VB.T
2
r













[

u(t)
r(t)

]

+













kl − kb

0
0
0
0













(12)

y = C.X(t) =
[

1 0 0 0 0
]

.X(t)

To end this section we will discuss the parameters which

have to be identified. If the body weight M [kg] is known,

three parameters (VB, Vi and kb) can be computed using the

following assumptions from [22], [23] and [6]:

• the insulin distribution volume is Vi [dl]= 2.5M
• the blood volume is VB [dl]= 0.65M .

• the brain consumes 5 g/h for adults independently of the

body weight even after 12 hours fasting :

kb[mg/dl/min] = 5000/60/VB = 128/M (13)

The model has six parameters (ksi [mg/U/min], Tu [min], ku

[min], Tr [min], kr [min] and kl [mg/dl/min]) to be identified.

The insulin sensitivity ksi is one major parameter which has

to be identified for each patient as it reflects the well-known

variability of the metabolic effect of insulin. The insulin

sensitivity ksi is assumed to be a constant parameter. Thus

the intra-patient variability effect of insulin is not taken into

account in this new elementary model.
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E. Clinical data and Estimation of parameters

Standard clinical data (CGM, injection, CHO) from Nantes

University Hospital and Rennes University Hospital have been

used to support these modeling results. Data from five type 1

diabetic patients using insulin pumps and CGM (5 minutes

sampling rate) were analyzed.

Four patients were hospitalized : the amount of CHO was

measured by dietitians. They have no physical activity. The

records start with a fasting period.

One patient was an outpatient : the amount of CHO was

estimated by the patient himself and there might have been

some physical activity as walking.

The parameters Vi, VB and kb were derived from the

body weight M . We run off-line the least square method

on the n samples of the output error. The optimal value

θ∗ =
[

ksi Tu ku Tr kr kl

]

is the vector of parameters

that minimizes the criterion Jn:

Jn(θ) =
1

n

n
∑

k=1

(GCGM [k]− ŷ(θ)[k])
2
=

1

n

n
∑

k=1

ǫ2(θ)[k]

θ∗ = Argmin
θ

(Jn)

The recursive optimization method of Quasi-Newton is

initialized with a rough estimate of vector θ0 found using

standard values of the FIT (Basal = 0.35 U/h/kg ; ISF = 50

mg/dl/U ; Raise = 50 mg/dl/15gCHO) and average values taken

from [19].

We made the assumption that insulinemia is at equilibrium

and that stomach is empty at the beginning of identification

(I(0) = Ieq = ku

Vi
Ueq, D(0) = 0).

IV. RESULTS

In this section, it is proven that the new model (12) features

realistic asymptotic properties. It is also shown that the tools of

functional insulin therapy can be derived from the parameters

of the model (12). This is a major outcome as these tools are

required in therapeutic education of type 1 diabetic patients

and because alternative models do not provide them. Finally

the identification results are presented for five patients.

A. Equilibrium

The equilibrium point on a fasting period (D(t) = 0) with a

constant insulin infusion rate u(t) = Ueq is computed solving

Ġ(t) = 0 in (9):
(

G = Geq ; Ieq = kl−kb

ksi

)

(14)

Consequently, with (10) the only value of u(t) that provides

an equilibrium is:

Ueq =
kl − kb

ksi

.
Vi

ku

(15)

This result is consistent with FIT, validating the basal rate

on fasting period [2], [3].

Property 1 : the equilibrium (14), (15) is unstable.

Proof: See Appendix A

This result is consistent with the observed glycemic devia-

tion when basal rate is not set correctly [2], [3].

B. The tools for functional insulin therapy

1) Basal rate: It is the constant insulin infusion rate Ub that

maintains glycemia at a constant value during fasting period.

Property 2 : Ub [U/min] =
kl − kb

ksi

.
Vi

ku

Proof: Follows from equation (15)

2) ISF: Assume that the basal rate Ub is injected. The

ISF is the glycemic drop per unit of extra insulin, injected at

t = t+1 , on an empty stomach (D(t) = 0).

Property 3 : ISF [mg/dl/U] = ksi.
ku

Vi

Proof: See Appendix A

3) Raise: Assume that the basal rate Ub is injected, the

raise is the resulting increase in BG of digestion of 15 g of

CHO, ingested at t = t+1 .

Property 4 : Raise [mg/dl/15gCHO] = 15.103
kr

VB

Proof: See Appendix A

4) U/P: Assume that the basal rate Ub is injected, U/P

is the ratio of U units of insulin and P portions of CHO.

U denotes the units, injected at t = t+1 , required to recover

the BG value prior to the digestion of P portions of CHO,

ingested at t = t+1 . In this study one portion contains 20 g of

CHO.

Property 5 : U/P [U/20gCHO] = 20.103
Vi

ksi.ku

kr

VB

Proof: See Appendix A

The parameters from the model (12) allow the computation

of the tools of functional insulin therapy. Using clinical data,

the value of these tools will be computed for each patient after

the identification process.

C. Identifiability

Straightforward but lengthy computations prove that (12)

is identifiable from the standard clinical data (CGM,insulin

injection, amount of CHO) for any u(t) and r(t) such that

u̇, ü, u(3), ṙ, r̈ and r(3) are non zero. However, for standard

patterns of insulin infusion rate (u(t) = Ub) these singularities

do exist.

D. Identification results

Identification results using clinical data are presented in

Table I, including parameters and FIT tools, and through

Figures 1 to 5. Although the optimization algorithm remains

very simple, it provides a long-term fit with clinical data. The

standard deviation is about 20 mg/dl for each patient. The

worst value of standard deviation is for the outpatient LR and

might be due to some incorrect CHO estimation or exercise.

Table I shows the inter-patient variability effect of insulin:
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the parameter ksi and the ISF are highly variable from one 
patient to another. The dispersion in the insulin dynamics 
parameters Tu and ku/Vi, reflects t he i nter-variability o f the 
pharmacokinetic profile of insulin.

Although the identification algorithm is unconstrained:

• the range of values of Tu (59< Tu <122 min) is consistent

with the range of the time overshoot (34 < Tu < 112 min)

given in [19].

• the range of values of kl (1.72 < kl < 3.33 mg/dl /min i.e.

from 1.1 to 2.2 mg/kg/min) is consistent with the range

of the hepatic glucose production in fasting periods given

in [22] (i.e. from 1.5 to 2.5 mg/kg/min).

• The dispersion (from 10 to 83 mg/dl/U) of the value of

ISF is consistent with classical values given in [24] (from

15 to 90 mg/dl/U).

For patient IF3 the fasting period (23 first hours) is inter-

rupted by many CHO intakes due to recurrent hypoglycemia.

These are due to too high basal rate as confirmed by the

progressive decrease according to the clinical protocol (from

2.0 U/h to 1.0 U/h). This result is consistent with the basal rate

value computed from IF3’s parameters (1.3 U/h - see table I).

The computed basal rate can not reflect the basal rate

pattern as for patient LR, IF9 and BE.

The computed values of the tools for functional insulin ther-

apy are all consistent with the real insulin needs determined

by the clinical protocol. It is worth noting that those values are

also consistent when they are computed from the identification

results on a 20 hours record.

V. CONCLUSION

It was shown, in this paper, how historical models of

dynamic BG display apparent equilibria which are not desired.

The implication of these equilibria is a basal insulin depending

on BG level. Such equilibria do not exist for real life T1DM

patients. It is foreseen that using such models will impact the

long-term efficiency of prediction and control of the disease.

To have realistic equilibrium properties, a new model of

glucose-insulin dynamics has been introduced which is linear

and consists of 5 states and 6 independent parameters. In this

model, any value of BG is critically stable and there exists

one single basal insulin rate independent on BG.

Its parameters, identified from standard clinical data, pro-

vide the computation of the tools of the FIT. The latter are

all consistent with the real insulin needs determined by the

clinical protocol.

Despite simple linear differential equations and a simple

identification algorithm, the type 1 diabetes model of glucose-

insulin dynamics was shown to describe clinical data for two

days.

The identification algorithm gives a vector of constant

parameters and provides constant values of the FIT tools. Thus,

Tr and kr as well as kl are constant parameters and do not

reflect variability anticipated in the glycemic index of various

meals and the hepatic glucose production respectively. Thus,

the computed basal rate (depending on kl) will not display

a basal rate pattern as used by some patients. Insulin intra-

patient variability (e.g. in case of physical activity or stress)

is also not reflected using the constant parameter ksi. Thus,

an on-line identification for these parameters could display a

basal rate pattern and a better fit. These issues remain open

for further research.

An effective assessment on how the model impacts the per-

formance of glycemia regulation using model based algorithms

is subject to further investigation as well.
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TABLE I
RESULTS OF IDENTIFICATION

Parameters FIT Tools length Error

Patient Glucose dynamics Insulin dynamics Digestion dynamics Basal [U/h] ; U/P [U/20gCHO] [hours]

ksi kl Tu ; ku/Vi Tr ; kr/VB ISF [mg/dl/U] mean [%]

[mg/U/min] [mg/dl/min] [min] ; [min/dl] [min] ; [min/dl] Raise [mg/dl/15gCHO] SD [mg/dl]

IF2
197 1.94 122 min ; 55 10−3 183 min ; 2.4 10−3

Basal 0.8 U/h ; U/P = 4
50

1.0 %

hospitalized ISF = 11 ; Raise +34 18 mg/dl

IF3
274 1.72 88 min ; 64 10−3 49 min ; 2.0 10−3

Basal 1.3 U/h ; U/P = 2.4
48

5.0 %

hospitalized ISF = 17 ; Raise +31 20 mg/dl

LR
460 3.33 70 min ; 177 10−3 34 min ; 4.9 10−3

Basal 0.7 U/h ; U/P = 1.2
45

11.6 %

outpatient ISF = 83 ; Raise +73 39 mg/dl

IF9
380 2.32 74 min ; 118 10−3 73 min ; 7.0 10−3

Basal 0.6 U/h ; U/P = 3.1
38

2.5 %

hospitalized ISF = 45 ; Raise +100 24 mg/dl

BE
186 1.91 59 min ; 54 10−3 38 min ; 2.7 10−3

Basal 1.0 U/h ; U/P = 5.6
30

3.7 %

hospitalized ISF = 10 ; Raise +42 22 mg/dl
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Fig. 1. Patient IF2: M = 72 kg

APPENDIX A

PROOF OF THE MODEL PROPERTIES

Property 1 : the equilibrium (14), (15) is unstable.

Proof: The range of the hepatic glucose production in

fasting periods, from 1.5 to 2.5 mg/kg/min, is given in [22]

and [23]. With the average value 2 mg/kg/min

kl = 2.M/VB = 3 mg/dl/min (16)

For M >40 kg and with (13) and (16) we have kl − kb > 0.

Assume that u(t) equals a constant Uhigh larger than Ueq in

(15) . Then from (10) the corresponding insulinemia Ihigh is

such that Ihigh > kl−kb

ksi
which yields from (9) : Ġ(t) < 0.

Assume that u(t) equals a constant Ulow smaller than Ueq

in (15) . Then from (10) the corresponding insulinemia Ilow is

such that Ilow < kl−kb

ksi
which yields from (9) : Ġ(t) > 0.

Property 3 : ISF [mg/dl/U] = ksi.
ku

Vi

Definition : With D(t) = 0 and u(t) = Ub + 1.δ(t+1 )

ISF = −

∫ t2

t1

Ġ(t)dt for t2 − t1 ≫ Tu

Proof:

Assuming u(t) = Ub + 1.δ(t+1 ) = Ub + ũ(t) and
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Fig. 2. Patient IF3: M = 94 kg
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Fig. 3. Patient LR: M = 54 kg

with (14) one gets I(t) = Ieq + Ĩ(t) =
(kl − kb)

ksi

+ Ĩ(t)

The latter is substituted in (9) so that

Ġ(t) = −ksi.(Ieq + Ĩ(t)) + kl − kb = −ksi.Ĩ(t)

consequently ISF = −

∫ t2

t1

Ġ(t)dt

ISF = ksi.

∫ t2

t1

Ĩ(t)dt = ksi.
ku

Vi

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

hours

 IF9 from October 15
th

, 9 30 pm to October 17
th

, 11 30 am

 

CGM (mg/dl) − Da a

Amount of CHO (g) − Data

Glycemia (mg/dl) − Simu ation

Hypoglycemia threshold (BG=70 mg/dl)

0 5 10 15 20 25 30 35

10
−2

10
−

10
0

10

10
2

hours

 

Insulin injection (U/h) − Data

Insulinemia (U/l) − Simulation

85 g

115 g

0 75 U / h 0 75 U / h

0 45 U / h0 45 U / h 0 45 U / h0 45 U / h

0 55 U / h

1 U

17 2 U
7 U

2 U

c ock t me 2 m 2 m2 am

Fig. 4. Patient IF9: M = 68 kg
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Fig. 5. Patient BE: M = 73.5 kg

Property 4 : Raise [mg/dl/15gCHO] = 15.103
kr

VB

Definition : With r(t) = 15.103δ(t+1 ) and u(t) = Ub

Raise =

∫ t2

t1

Ġ(t)dt for t2 − t1 ≫ Tr

Proof: Assuming u(t) = Ub and using (14)

one gets I(t) = Ieq =
(kl − kb)

ksi

which is substituted

in (9) so that Ġ(t) = −ksi.Ieq + kl − kb +D(t) = D(t)

consequently Raise =

∫ t2

t1

D(t)dt = 15.103
kr

VB

Property 5 : U/P [U/20gCHO] = 20.103
Vi

ksi.ku

kr

VB

Definition : Assume t2 − t1 ≫ Tr, t2 − t1 ≫ Tu. P defines

the meal r(t) = 20.103.P.δ(t+1 ) and U/P is the ratio where

U defines the insulin injection u(t) = Ub +U.δ(t+1 ) such that
∫ t2

t1
Ġ(t)dt = 0
Proof: With (12) and (14) we can write :

I(t) = Ieq + Ĩ(t) =
(kl − kb)

ksi

+ Ĩ(t)

Ġ = −ksi.I + kl − kb +D = −ksi.Ĩ(t) +D

∆G =

∫ t2

t1

Ġdt = −ksi.

∫ t2

t1

Ĩ(t)dt+

∫ t2

t1

Ddt = 0

∆G = −ksi.
ku

Vi

.U + 20.103.
kr

VB

.P = 0

U/P =
U

P
= 20.103

Vi

ksi.ku

kr

VB
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