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Abstract

We consider Jackson queueing networks with finite buffer constraints (JQN) and analyze the efficiency
of sampling from their stationary distribution. In the context of exact sampling, the monotonicity
structure of JQNs ensures that such efficiency is of the order of the coupling time (or meeting time) of
two extremal sample paths. In the context of approximate sampling, it is given by the mixing time.

Under a condition on the drift of the stochastic process underlying a JQN, which we call hyper-
stability, in our main result we show that the coupling time is polynomial in both the number of queues
and buffer sizes. Then, we use this result to show that the mixing time of JQNs behaves similarly
up to a given precision threshold. Our proof relies on a recursive formula relating the coupling times
of trajectories that start from network states having ’distance one’, and it can be used to analyze the
coupling and mixing times of other Markovian networks, provided that they are monotone. An illustrative
example is shown in the context of JQNs with blocking mechanisms.

1 Introduction

The stationary behavior of Markovian queueing networks (QN) can be computed quite efficiently only under
specific assumptions that yield the so called product-form property [6, 13]. This property means that the
stationary probability distribution of network states can be written, up to a normalizing constant, as the
product of a number of simple terms, where each term is associated to a different network node (or queue),
and provides a way to compute the stationary behavior of a QN that is much faster than the solution of
the global-balance equations of the underlying Markov chain [8]. In several cases, product-form QNs have
a restricted modeling power because they often assume that nodes have infinite buffer sizes or that the
behavior of a network node does not depend on the state of other nodes; e.g., [12]. Examples of phenomena
that do not yield, in general, the product-form property are loss or blocking mechanisms due to finite-buffer
constraints or state-dependent routing. On the other hand, the stationary behavior of non-product-form
QNs is extremely difficult to obtain. While it is possible to obtain it through the solution of a set of linear
equations, i.e., the global-balance equations of the underlying Markov chain, the huge size of their state space
makes this approach prohibitively expensive from a computational standpoint. For instance, for a QN with
10 nodes where each node has a buffer of 10 units, the number of such equations is not smaller than 1110.
In this setting, simulation is a useful approach to obtain robust measures and insights on the stationary
behavior.

Existing research in the simulation of Markov chains relies on two approaches: simulation into the future
(or Monte Carlo simulation) and simulation from the past (or coupling from the past – CFTP). These are
briefly summarized in the following.

Simulation into the future generates a trajectory from one state of the chain according to its transition
matrix until when it is believed that the proportion of visits on any network state is sufficiently close to
its corresponding stationary probability. The mixing time [17], i.e., the point in time where the Markov
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chain is close to its stationary behavior up to a given precision threshold, is a desirable quantity of interest
for deciding when to stop the simulation, and it is used to measure the efficiency of simulation into the
future. In practice, this type of simulation has the drawbacks of producing excessively-long simulations and
approximate estimates of stationary measures.

On the other hand, simulation from the past (or CFTP) generates a trajectory for each state of the
chain according to its transition matrix and iteratively goes backward in time until when all trajectories
have collided in a singleton [20]. The remarkable property of this type of simulation is that such singleton
is perfectly distributed according to the stationary distribution of the chain. Then, to infer the stationary
behavior of the chain, one can get several independent samples by running several of such simulations and
use the law of large numbers. It is important to note that running a trajectory from each state of the chain
sounds impractical. However, in monotone chains, which is the case of the QNs studied in this paper, it
sufficies to generate a trajectory only for each extremal state, and there will be only two of such states in
our case. This holds true because monotonicity ensures that the trajectories from non-extremal states are
sandwiched between the ones from extremal states.

The major issue behind CFTP is the understanding of the time it takes to produce one sample, which
gives a quantitative estimate of the amount of resources that are needed to simulate the Markov chain of
interest. In the context of monotone chains, this time is of the order of the coupling time (also known as
meeting time), i.e., the point in time where the trajectories starting from all possible states collapse into a
single one [20].

The mixing time and the coupling time of a Markov chain are related (see Section 4). In this paper, we
are interested in bounding these two quantities for a class of important QNs.

1.1 Related work

Since the structure of QNs is arbitrary, exact expressions for the mixing and coupling times are typically
difficult to obtain and, therefore, one seeks bounds. In some cases, the mixing time of Markovian QNs with
finite state-space can be bounded through general results that involve the second largest eigenvalue modulus
of the transition matrix of the chain (see [9, Theorem 3.2]). However, this numerical approach usually hides
the understanding of its qualitative dependence with respect to general input parameters.

Qualitative bounds on both the coupling and mixing time of closed Jackson QNs with infinite buffer sizes
[8] have been proposed in [10, 16, 15], where the product-form of such networks is the essential tool used
for their derivation; see also the references therein for other results concerning product-form QNs. However,
the problem becomes much more difficult when buffer sizes are finite because in general the product-form
property is lost. In this context, open Jackson QNs with finite buffers (or JQN in the following) have been
studied during the last decade. Upper bounds on the mean coupling time of such JQNs are derived in [3],
where conditions are given to prove that

i) the coupling time is linear in the total number of queues and exponential in the size of the largest
buffer size, and

ii) the coupling time is linear in the sum of the buffer sizes of all queues, provided that the total number
of queues is constant.

Linearity in the buffer sizes holds true if the JQN is acyclic, as it has been also shown in [11] in the context
of state-dependent routing, or if some other strong conditions on the JQN parameters are satisfied. These
conditions, which include restrictions on network topology, will be discussed in Section 3.2. It is conjectured
in [3, 21] that linearity in the buffer sizes holds even when the network contains cycles. As numerical
experiments reveal, this indicates that the mean coupling time of Markovian QNs can be much smaller than
the size of the state space, which is given by the product of the buffer size of each queue, implying that
CFTP is efficient for simulating the behavior of JQNs.

1.2 Our contribution

In this paper, we consider JQNs where jobs that try to join a saturated queue are lost. These QNs are
intractable in general, as the only exact solution method that is known in the literature relies on the numerical

2



solution of the global-balance equations of the underlying Markov chain. This amounts to solve
∏M

i=1(Ci+1)
linear equations (one for each state), where M is the number of queues and Ci is the buffer size of queue i,
for i = 1, . . . ,M . Matter of fact, the stationary distribution of this class of QNs does not have a product-
form; e.g., [3, 11]. To keep the product-form property in networks of queues with finite buffers, one needs
special conditions on the topology, the value of the parameters and on the blocking policies used to deal with
saturated queues (see for example [5] for a rather exhaustive treatment of such questions). In the general
case treated here, no product-form solution exists and the stationary behavior is prohibitively expensive to
compute. This motivates our investigation of the efficiency of simulation.

We study the mean coupling time of JQNs in a regime where both the number of queues and buffer
sizes vary. In our main result, we give a sufficient condition to prove that the coupling time of JQNs is
polynomial in M and the Ci’s. This condition lets us deal with networks having arbitrary topology, for
which the best bound available in the literature is exponential in the Ci’s, provided that both M and the
Ci’s vary [3]. Exploiting classical arguments, we then use this result to prove that the mixing time of JQNs
behaves similarly up to a precision threshold.

The starting idea of our proof relies on a new recursive formula on the coupling times of special trajectories
having “distance one” at most and follows by stochastic comparison arguments. This allows for a tractable
decomposition of the problem that yields our bound. Our approach also provides a new framework for
obtaining bounds on the coupling and mixing times of other monotone queueing systems with arbitrary
topology, and an example is given in the context of JQNs with blocking [5].

The paper is organized as follows. In Section 2, we give a probabilistic description of JQNs in terms of
job movements and an equivalent definition in terms of discrete events. We also briefly review the CFTP
method in order to provide the necessary background. In Section 3, we derive our polynomial bound on the
coupling time, and, in Section 4, we exploit this bound to derive a bound on the mixing time. Section 5
shows how our approach applies to other queueing network models, and Section 6 draws the conclusions of
our work. A preliminary version of this work appeared in [4].

2 Queueing network model

We consider JQNs with M queues. The vector C = (C1, . . . , CM ) denotes the buffer size of each queue. If
not otherwise specified, indices i, j, k will implicitly range from 1 to M .

An infinite stream of jobs that follow a Poissonian process with rate λ joins the JQN from an external
source. The probability that a job joins queue i, upon arrival to the network, is p0i. Thus,

∑

i p0i > 0. In
queue i, each job requires some processing for an exponentially distributed amount of time with mean service
rate µi. The service discipline of each queue i is work-conserving. Upon completion of service at queue i,
a job is sent to queue j with probability pij , and it is accepted if queue j has an available slot (i.e., if it is
non-saturated), otherwise it is lost. The probability that a job leaves the network after service at i is pi0,
which can be also interpreted as the probability that a job is sent to a queue with buffer of size zero. Since
each job eventually leaves the network,

∑

i pi0 > 0.
The stochastic process {(x1(t), . . . , xM (t)) ∈ ZM : 0 ≤ xi(t) ≤ Ci, ∀i}t≥0, is the continuous-time Markov

chain of interest, where state x(t)
def
= (x1(t), . . . , xM (t)) denotes the number of jobs in each queue at time t.

The space of all the possible states is S
def
= {x ∈ ZM : 0 ≤ xi ≤ Ci, ∀i}.

2.1 Discrete-event definition of JQN and coupling from the past (CFTP)

The JQN with M queues described above can be seen as a discrete-event system with a single type of events,
namely aij , (i, j ∈ {0, 1, . . . ,M}) corresponding to the service of one job in queue i that then joins queue j.
The dummy queue 0 corresponds to the outside world. An event of type a0j is an exogenous arrival in
queue j and an event of type ai0 corresponds to the departure of a job from queue i. If queue i is empty or
if queue j is full, then event aij is disabled. The set of all events is denoted by A.

The rate of event aij is γij and, in view of Remark 1, it is independent of M and C, for any i, j. Using
the previous description of a JQN, if i, j 6= 0, then γij = µipij , γ0j = λp0j , and γi0 = µipi0. The total event

rate Γ
def
=
∑

i≥0,j≥0 γij is finite (we fix γ00 = 0).
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We also denote by αi the expected number of events occurring between two consecutive events involving
queue i. By definition, we have

αi = Γ/(γii +
∑M

j=0,j 6=i(γji + γij)), ∀i. (1)

The continuous-time Markov chain described above can be transformed into a discrete-time Markov chain
xn with the same stationary distribution by uniformization by constant Γ. In the following, this discrete
chain is assumed to be irreducible and aperiodic. The evolution of the Markov chain xn can be written
under the form xn+1 = φ(xn, un) where un is a random variable over the event space that takes value aij
with probability γij/Γ, and the transition function φ : S ×A → S is defined as follows:

• If i, j 6= 0 then φ(x, aij) = x− ei + ej if 0 ≤ x− ei + ej ≤ C.

• If i, j 6= 0 and 0 ≤ x− ei + ej and x− ei + ej 6≤ C then φ(x, aij) = x− ei.

• If i, j 6= 0 and 0 6≤ x− ei then φ(x, aij) = x.

• If i = 0 then φ(x, a0j) = x+ ej if x+ ej ≤ C and φ(x, a0j) = x otherwise.

• If j = 0 then φ(x, ai0) = x− ei if 0 ≤ x− eix and φ(x, ai0) = x otherwise.

Let φ(n) : S × An → S denote the function whose output is the state of the chain after n iterations
starting in state x ∈ S. That is:

φ(n) (x, u1→n)
def
= φ (. . . φ (φ (x, u1) , u2) , . . . , un) .

This notation can be extended to sets of states: for E ⊆ S,

φ(n) (E, u1→n)
def
=
{

φ(n) (x, u1→n) , ∀x ∈ E
}

.

In the following, |E| denotes the cardinality of set E.
By definition, the function φ is monotone for all event aij ∈ A. This implies that the trajectories of

the Markov chain starting from ordered initial states (using the component-wise ordering) stay ordered: if

x0 ≤ x
(1)
0 then xn = φ(n)(x0, u1→n) ≤ x

(1)
n = φ(n)(x

(1)
0 , u1→n).

Theorem 1 ([20]).
lim

n→∞

∣

∣φ(n) (S, u−n+1→0)
∣

∣ = 1 almost surely.

Furthermore, φ(n)(S, u−n+1→0) is steady-state distributed as soon as it is reduced to a singleton, and the
mean backward coupling time (Emin{n ∈ N|

∣

∣φ(n) (S, u−n+1→0)
∣

∣ = 1}) is finite.

Theorem 1 has an algorithmic counterpart, namely a coupling from the past (CFTP) algorithm, given as
Algorithm 1. In this algorithm, it is implicit that the events u−i are stored and reused along the iterations
of the repeat cycle. Provided that n is initialized properly, the average time efficiency of Algorithm 1
is O(ET ) where T is the number of iterations in the last for loop (called coupling-time in the following);
see [20].

The notation used in the remainder of the paper is summarized in Table 1 for quick reference.

3 Bound on coupling time

In this section, we present our main result (Theorem 2) on the efficiency of CFTP applied to the queueing
network model described above.

Let
τ(x,y)

def
= min{n : φ(n)(x, u1→n) = φ(n)(y, u1→n)} (2)

be the coupling time of x and y, i.e., the random variable of the time where the trajectories starting in states
x ∈ S and y ∈ S of a JQN with M queues and buffer sizes C meet for the first time.
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Algorithm 1: Coupling from the past (CFTP)

Data: φ , {u−n}n∈N

Result: A state sampled from the stationary distribution of the input JQN
begin

n = 1; m1 := C; m2 := 0;
repeat

for i = n− 1 downto 0 do

m1 := φ(m1, u−i);
m2 := φ(m2, u−i);

n := 2n;

until m1 = m2;
return m1;

The mean coupling time Eτ(0,C) is related to the efficiency of simulation from the past. In particular,
it is of the order of the average time efficiency of Algorithm 1, as discussed above. The goal of this paper is
to bound Eτ(0,C) from above with respect to JQNs with arbitrary topology.

In the following, we denote by ≤st the usual stochastic order [19]: for two random variables X1 and
X2, X1 ≤st X2 if and only if Pr(X1 ≥ x) ≤ Pr(X2 ≥ x). The following proposition, known as Strassen’s
theorem, gives an equivalent characterization of the ≤st-order and will be the basic tool used in our proofs.

Proposition 1. For two random variables X1 and X2, X1 ≤st X2 if and only if there exists a pair of
random variables (X̃1, X̃2) defined on a common probability space such that X1 =dist X̃1, X2 =dist X̃2, and
Pr(X̃1 ≤ X̃2) = 1.

The following proposition is the starting point of our proof technique.

Proposition 2. For all i and y ∈ S : yi > 0

τ(0,y) ≤st τ(0,y − ei) + max
k:x∗+ek∈S

τ(x∗,x∗ + ek) (3)

where x∗ = φ(n)(y − ei, u1→n) with n = τ(0,y − ei).

For M = 2 queues, Figure 1 renders a possible illustration of inequality (3) with respect to a sample
sequence of events and y = C, i = 2. Using the transition function φ, the trajectories starting from 0 and
C− e2 collide at point x∗. By definition, their length is τ(0,C− e2). The dashed trajectory starts from C

and uses the same events as the previous ones. At time τ(0,C− e2), it has reached point x∗ + e2. Adding
the coupling time of the trajectories starting from points x∗ and x∗ + e2 provides a bound on τ(0,C). The
stochastic comparison ≤st follows by a sample path coupling between the trajectories from C and C − ei.
In this example, a sequence of events can provided to show that at time τ(0,C− e2), the upper trajectory
is in point x∗ + e1. Intuitively, this motivates the max in (3).

Proof. (of Proposition 2). First, we introduce the following lemma.

Lemma 1. For any possible event a ∈ A, k = 1, . . . ,M , and any state y such that y,y − ek ∈ S,

0 ≤
∑

i

(φ(y, a)i − φ(y − ek, a)i) ≤ 1. (4)

Proof. In fact, we have the following cases for every y ∈ S and k such that y − ek ∈ S:

i) For each queue i, if a = a0i (arrivals) and

a) if y : yi < Ci, then φ(y, a) = φ(y − ek, a) + ek

b) if y : yi = Ci and k 6= i, then φ(y, a) = φ(y − ek, a) + ek

5



M Number of queues
C = (C1, . . . , CM ), vector of the buffer sizes of all queues
λ Mean arrival rate of jobs

pij Probability that a job is forwarded to j upon completion at i,
p0i Probability that a job joins queue i upon arrival to the network,
pi0 Probability that a job leaves the network after completion at i,
µi Mean job service rate at queue i,
S = {x ∈ ZM : 0 ≤ xi ≤ Ci, ∀i}, state space,

x,y Generic states,
A = {aij : 0 ≤ i, j ≤ M}, set of all possible events,
γij = µipij , 0 ≤ i, j ≤ M , rate of the event aij ,
αi see (1),
u Random variable over the event space, Pr(u = aij) = γij/Γ,

φ(x, u) = (φ(x, u)1, . . . , φ(x, u)M ), transition function,

φ(n)(x, u1→n) n-step transition function,

φ
(n)
∞ (x, u1→n) n-step transition function when Ci = +∞ for all i,

Γi =
∑M

j=0 γji, minimal upper bound on the mean arrival rate at queue i,

ρi = Γi/µi,

Γ =
∑

i≥0,j≥0 γij , uniformization constant of the Markov chain (φ(n)(x, u1→n))n∈N,

τ(x,y) Coupling time of the trajectories starting in states x and y (see (2))
ei Unit vector in direction i of size M ,

Table 1: Summary of the notation used in the paper.

c) if y : yi = Ci and k = i, then φ(y, a) = φ(y − ek, a)

ii) For each queue i, if a = ai0 (network departures) and

a) if y : yi ≥ 0 and k 6= i, then φ(y, a) = φ(y − ek, a) + ek

b) if y : yi > 1 and k = i, then φ(y, a) = φ(y − ek, a) + ek

c) if y : yi = 1 and k = i, then φ(y, a) = φ(y − ek, a) (here, yi = 0 is not considered because
otherwise y − ek /∈ S)

iii) For each queue i > 0, for each queue j > 0, if a = aij (routings) and

a) if y : 1 < yi ≤ Ci and k = i, then φ(y, a) = φ(y − ek, a) + ek

b) if y : yi = 1 and k = i and yj < Cj , then φ(y, a) = φ(y − ek, a) + ej

c) if y : yi = 1 and k = i and yj = Cj , then φ(y, a) = φ(y − ek, a)

d) if y : yj < Cj and k = j, then φ(y, a) = φ(y − ek, a) + ek

e) if y : yj = Cj and k = j and yi 6= 0, then φ(y, a) = φ(y − ek, a)

f) if y : yj = Cj and k = j and yi = 0, then φ(y, a) = φ(y − ek, a) + ek

g) if k 6= i and k 6= j, then φ(y, a) = φ(y − ek, a) + ek

The above cases cover all the possible situations and prove (4).

Now, let us compare the trajectories (sample paths) from y, y − ei and 0 under the same events. From
(4), at the time n∗ = τ(y − ei,0) where the trajectories from y − ei and 0 have collided (at state x∗),
either φ(n∗)(y, u1→n∗) = φ(n∗)(y−ei, u1→n∗) or φ(n∗)(y, u1→n∗) = φ(n∗)(y−ei, u1→n∗)+ek (under the same
sequence of events), for some k (see Figure 1 for the latter case where k = i and y = C). Our upper bound
on τ(0,y) follows by excluding the possibility of the former case. Taking into account only the latter case,
the coupling of the trajectories from y and 0 occurs before τ(0,y− ei) plus the additional coupling time of
the trajectories starting in x∗ and x∗ + ek, where x∗,x∗ + ek ∈ S. Taking the worst-case k, this establishes
the stochastic comparison in inequality (3).
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Figure 1: Illustration of (3) with two queues, y = C and under the sequence of events

{a
(C1)
10 , a

(C2−1)
21 , a02, a

(C1)
01 } (a

(n)
ij reads aij for n times). The additional time τ(x∗,x∗ + e2) provides a bound

on τ(0,C).

Proposition 2 provides a recursive framework to analyze τ(0,C) in terms of the coupling times of trajec-
tories having “distance one” at most, i.e., τ(x∗,x∗ + ek). The fact that the trajectories from x∗ and x∗ + ek
remain at distance one at each time step follows by Lemma 1, used in the proof of Proposition 2. As we show
in the following, this decomposition of the problem is very useful because these trajectories appear easier to
analyze than directly τ(0,C).

When a single queue is considered, i.e., M = 1, the next proposition is known for the mean hitting time
from state x to state zero, defined as Emin{n : φ(n)(x, u1→n) = 0} [11].

Proposition 3. Assume M = 1 and ρ
def
= λ/µ < 1. Then,

Emin{n : φ(n)(x, u1→n) = 0} ≤
1 + ρ

1− ρ
x. (5)

For an M/M/1/C queue, it is clear that the mean hitting time from C to 0 bounds from above its mean
coupling time of the trajectories from states C and 0. This observation, together with previous proposition,
will be exploited in Proposition 4.

Lemma 2. Let (φ
(n)
∞ (x, u1→n))n∈N be the Markov chain under investigation when S ≡ NM , i.e., Ci = +∞,

for all i. Let also τ∞(x− ei,x) be as in (2) but when the state space of the Markov chain is S ≡ NM . Then,

φ(n)(x, u1→n)i ≤st φ(n)
∞ (x, u1→n)i, ∀i, n,x ∈ S (6)

τ(x− ei,x) ≤st τ∞(x− ei,x), ∀i,x,x− ei ∈ S. (7)

Proof. Relation (6) follows immediately by coupling the sample paths of both processes (φ(n)(x, u1→n))n∈N

and (φ
(n)
∞ (x, u1→n))n∈N under the same sequence of events. Then, using (6) and the list of transitions in the

proof of Lemma 1, one can easily verify that if φ
(n)
∞ (x, u1→n) = φ

(n)
∞ (x − ei, u1→n), then φ(n)(x, u1→n) =

φ(n)(x− ei, u1→n).

Let Γi be an upper bound on the maximum mean rate in which jobs can arrive in queue i. For any
network state, the minimal upper bound that one can choose is

Γi
def
=

M
∑

j=0

γji, ∀i, (8)
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which corresponds to the situation where all queues are non-empty. Let also

ρi
def
= Γi/µi, ∀i. (9)

The following proposition provides a bound on the mean coupling time of the trajectories that start from
states x and x− ek.

Proposition 4. Let a JQN be given such that ρi < 1, ∀i. Then, for any x ∈ S and k1 such that x−ek1 ∈ S,

Eτ(x− ek1 ,x) ≤ c max
i

{xi, b} . (10)

where

b
def
= maxi

ρi

1−ρi
, c

def
= (1 +

∑M

i=1 Vk1
(i))maxi αi

1+ρi

1−ρi
(11)

and (Vk1(1), . . . , Vk1(M)) is the unique solution of the linear system







Vk1(i) =
∑M

j=1,j 6=i

γij∑
M
k=0,k 6=j

γjk
Vk1(j), ∀i 6= k1

Vk1(k1) = 1 +
∑M

j=1,j 6=k1

γk1j
∑

M
k=0,k 6=j

γjk
Vk1(j).

(12)

Proof. Since Eτ(x−ek1
,x) ≤ Eτ∞(x−ek1

,x) by Lemma 2, we find a bound on Eτ∞(x−ek1
,x) (recall that

the subscript ∞ denotes that Ci = +∞, for all i). Before time τ∞(x− ek1
,x), Lemma 1 ensures that

∑

i

(φ(n)
∞ (x, u1→n)i − φ(n)

∞ (x− ek1 , u1→n)i) = 1. (13)

Therefore, for n > 0, we define

I(n)
def
=







argmax
i=1,...,M

φ
(n)
∞ (x, u1→n)i − φ

(n)
∞ (x− ek1

, u1→n)i, if
∑

i φ
(n)
∞ (x, u1→n)i − φ

(n)
∞ (x− ek1

, u1→n)i = 1

0, if
∑

i φ
(n)
∞ (x, u1→n)i − φ

(n)
∞ (x− ek1 , u1→n)i = 0

(14)

and I(0)
def
= k1. Note that I(n) is well-defined because

∑

i φ
(n)(x, u1→n)i − φ(n)(x− ek1

, u1→n)i ∈ {0, 1} for

all n, and therefore I(n) is the index i of the unique queue such that φ
(n)
∞ (x, u1→n)i−φ

(n)
∞ (x−ek, u1→n)i = 1

if such index exists, and zero otherwise. The process (I(n))n∈N starts in k1 and remains in k1 until when
one of cases ii).c and iii).b occur (these cases are defined in the proof of Lemma 1). For instance, case iii).b

corresponds to a routing event ak1k2
, for some k2 > 0 such that γk1k2

> 0, when φ
(n)
∞ (x, a1→n)k1

= 1 and

φ
(n)
∞ (x, a1→n)k2

< Ck2
= ∞. If case iii).b occurs at time n, then I(n + 1) = k2. If ii).c occurs at time n,

then I(n+ 1) = 0, and it will remain to zero for all n′ > n+ 1 because both trajectories from x and x− ek1

met. Therefore, if H is the random variable of the total number of jumps of the process (I(n))n∈N, then the

ergodicity of the Markov chain φ
(n)
∞ (x, u1→n) ensures that H ≥ 1 is finite almost surely.

By construction, it is clear that τ∞(x − ek1
,x) = min{n : I(n) = 0}. Therefore, in the following we

study the mean hitting time to zero of the {0, 1, . . . ,M}-valued stochastic process (I(n))n∈N, i.e., Emin{n :
I(n) = 0}.

For h ≥ 1, let T (h) be the random variable “time where the process (I(n))n∈N makes the h-th jump if it

exists, and ∞ otherwise” and T (0)
def
= 0.
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Using the law of total expectation, we have

Emin{n : I(n) = 0} = E (E(min{n : I(n) = 0}|H)) (15)

=
∑

h:Pr(H=h)>0

E(min{n : I(n) = 0}|H = h) Pr(H = h) (16)

=
∑

h:Pr(H=h)>0

E(T (h)|H = h)Pr(H = h) (17)

=
∑

h:Pr(H=h)>0

E

(

h
∑

h′=1

T (h′)− T (h′ − 1)|H = h

)

Pr(H = h) (18)

=
∑

h:Pr(H=h)>0

h
∑

h′=1

E (T (h′)− T (h′ − 1)|H = h) Pr(H = h). (19)

We now derive a bound for E (T (h′)− T (h′ − 1)|H = h).

Lemma 3. For t ≤ h,

E(T (t)− T (t− 1)|H = h) ≤ max
i

αi

1 + ρi
1− ρi

max

{

xi,
ρi

1− ρi

}

. (20)

Proof. Between times T (t − 1) and T (t) − 1, I(n) is constant, which means that there exists i such that

φ
(n)
∞ (x, u1→n)i = φ

(n)
∞ (x− ek1

, u1→n)i + 1 for all n ∈ {T (t− 1), . . . , T (t)− 1}.
Assume t = 1. Since T (0) = 0 and using that ρi < 1 for all i, it is clear that E(T (1)|H = h) can be

upper bounded, up to the multiplicative constant αki
(see (1)), by the mean hitting time from xk1

to 0 of an
M/M/1 queue with arrival rate Γk1

and service rate µk1
. This holds true by simply coupling such M/M/1

queue with the one-dimensional process (φ
(n)
∞ (x, u1→n)k1)n∈N in the instants where (φ

(n)
∞ (x, u1→n))n∈N moves

along dimension k1. The stochastic dominance of such M/M/1 queue holds because Γk1
is the maximum

rate in which jobs can join queue k1. The hitting time to zero corresponds to the occurrence of one of cases
ii).c and iii).b, which trigger a jump of I(n). Therefore, using also Proposition 3, we obtain

E(T (1)|H = h) ≤ αk1

1 + ρk1

1− ρk1

xk1
. (21)

Assume t > 1. Using the same coupling argument above, E(T (t)−T (t−1)|H = h) can be upper bounded
by the mean hitting time from some initial state explicited in the following to 0 of an M/M/1 queue with
arrival rate Γkt

and service rate µkt
, provided that kt = I(n) when T (t − 1) ≤ n < T (t). The initial state

of such M/M/1 queue must be greater than or equal to the random variable of the value of φ
(n)
∞ (x, u1→n)kt

at the time n = T (t− 1) of the (t− 1)-th jump of (I(n))n∈N. We denote such random variable by J(t− 1).
Conditioning on J(t− 1) and using again Proposition 3, we have

E(T (t)− T (t− 1)|H = h) ≤
∑

x>0

αkt

1 + ρkt

1− ρkt

x× Pr(J(t− 1) = x) (22)

= αkt

1 + ρkt

1− ρkt

EJ(t− 1). (23)

The following lemma provides a bound on EJ(t− 1) and concludes the proof of (20).

Lemma 4. EJ(t− 1) ≤ max
{

xkt
,

ρkt

1−ρkt

}

.

Proof. For all t, we recall that we defined kt as the value of I(n) when T (t−1) ≤ n < T (t). First, we observe

that φ
(n)
∞ (x, u1→n) is stochastically bounded by the vector Y (n)

def
= (Y1(n), . . . , YM (n)) of the number of jobs

in M independent M/M/1 queues at time n where each queue i has arrival rate Γi, service rate µi and it
is started in xi, i.e., Yi(0) = xi, for all i. This property is shown in [18] and follows again by coupling the
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sample paths of both vector processes under the same sequence of events. Therefore, for any time n (random
or not),

φ(n)
∞ (x, u1→n)i ≤st Yi(n), ∀i. (24)

It is well-known, e.g., [1], that for the stable M/M/1 queue Yi(n),

EYi(n) ≤ max

{

Yi(0),
ρi

1− ρi

}

(25)

for any non-random time n. Using (24) in the former, we get

Eφ(n)
∞ (x, u1→n)kt

≤ max

{

xkt
,

ρkt

1− ρkt

}

(26)

for any non-random time n. The proof is thus concluded if we show that (26) holds true even when n is the

random time T (t− 1), which is what we prove now. We recall that J(t− 1) is φ
(n)
∞ (x, u1→n)kt

when n is the
time T (t− 1) of the (t− 1)-th jump of (I(n))n∈N. Conditioning on T (t− 1), we have

EJ(t− 1) = Eφ(T (t−1))
∞ (x, u1→T (t−1))kt

(27)

=
∑

n

E[φ(n)
∞ (x, u1→n)kt

|T (t− 1) = n] Pr(T (t− 1) = n) (28)

using (24)

≤
∑

n

E[Ykt
(n)|T (t− 1) = n] Pr(T (t− 1) = n) (29)

using (25)

≤
∑

n

max
i

{

Yi(0),
ρi

1− ρi

}

Pr(T (t− 1) = n) (30)

= max
i

{

Yi(0),
ρi

1− ρi

}

. (31)

In (30), we have used that T (t− 1) and Ykt
(n) are independent random variables: in fact, by construction,

T (t− 1) is a random variable that only depends on some queue kt−1 6= kt that hits zero (because either case
ii).c or iii).b occurs at time T (t− 1)− 1) and all the M queues Yi(n)’s are independent.

Using (20) in (19), we obtain

Emin{n : I(n) = 0} ≤ max
i

αi

1 + ρi
1− ρi

max

{

xi,
ρi

1− ρi

}

∑

h>0

hPr(H = h). (32)

Therefore, it sufficies to understand the magnitude of EH =
∑

h hPr(H = h). Now, let Ĩ(t) be the value of
(I(n))n∈N at the time where it makes the t-th jump. Since the jumps of (I(n))n∈N are only due to occurrences
of cases ii).c and iii).b, if Ĩ(t) = j then the probability that Ĩ(t + 1) = i is

γji∑
M
k=0,k 6=j

γjk
, for all j, i. Given

these jump probabilities, we can interpret the stochastic process (Ĩ(t))t∈N as a discrete-time Markov chain
where state zero is absorbing. Given this interpretation, we let Vk1(i) denote the mean number of visits

that (Ĩ(t))t∈N makes to state i when it is started in k1. This means EH =
∑M

i=0 Vk1
(i). From the theory of

absorbing Markov chains [14, Chapter 3], EH is called ‘mean time to absorption’ and it is known that the
Vk1(i)’s are given by the solution of (12). It is clear that Vk1(0) = 1 because (Ĩ(t))t∈N remains in state zero
after having visited (absorbing) state zero. Substituting this in (32) proves (10).

With the above propositions, we are now in a position to state and prove our main result.

Theorem 2. Let a JQN be given such that ρi < 1, ∀i. Then,

Eτ(0,C) ≤ cM
∑

i

ρi
1− ρi

×
∑

i

Ci (33)

where c is given by (11).
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Proof. Recall that u−n+1→0 is a sequence of n independent events from time −n+ 1 to time 0.

For simplicity of notation, let x∗(y)
def
= φ(n∗)(y, u−n∗+1→0) = φ(n∗)(0, u−n∗+1→0) where n∗ def

= n∗(y) is
the backward coupling time between 0 and y, i.e., min{n ∈ N |φ(n) (0, u−n+1→0) = φ(n) (y, u−n+1→0)}. By
definition, n∗(y) has the same distribution as τ(y,0), and therefore n∗ < ∞ almost surely by Theorem 1.
We have

Pr(x∗
i (y) ≥ xi) ≤ Pr(x∗

i (C) ≥ xi) (34)

= lim
n→∞

Pr(φ(n)(0, u1→n)i ≥ xi) (35)

≤ lim
n→∞

Pr(φ(n)
∞ (0, u1→n)i ≥ xi). (36)

The first inequality comes from the fact that φ(·) is monotone; the following equality comes from Theorem 1;
the last inequality follows from (6).

Using Propositions 2 and 4, if ρi < 1 for all i, then

Eτ(0,y + ei)− Eτ(0,y) ≤ E[E[max
k

τ(x∗(y),x∗(y) + ek)|x
∗(y)]] (37)

≤
∑

k

E[E[τ(x∗(y),x∗(y) + ek)|x
∗(y)]] (38)

≤
∑

k

∑

x∈NM

E[τ(x∗(y),x∗(y) + ek)|x
∗(y) = x] Pr(x∗(y) = x) (39)

using (10)

≤ M
∑

x∈NM

c max
i

{xi, b}Pr(x
∗(y) = x) (40)

= Mc max{b,E[max
i

x∗
i (y)]} (41)

= Mc max







b,
∑

x≥1

Pr(max
i

x∗
i (y) ≥ x)







(42)

using (36)

≤ Mc max







b,
∑

x≥1

lim
n→∞

Pr(max
i

φ(n)
∞ (0, u1→n)i ≥ x)







(43)

≤ Mc max







b,
∑

x≥1

lim
n→∞

Pr
(

∑

i

φ(n)
∞ (0, u1→n)i ≥ x

)







(44)

≤ Mc max

{

b,
∑

i

ρi
1− ρi

}

(45)

= Mc
∑

i

ρi
1− ρi

. (46)

In (45), we have used that the mean stationary number of jobs in queue i of a Jackson network with infinite
buffers is geometric. Now, for y = C− ei and following the recursion along dimension i we have

Eτ(0,C) ≤ Eτ(0,C− Ciei) +Mc
∑

i
ρi

1−ρi
Ci. (47)

Solving the recursion along each dimension, we get (33).

Theorem 2 provides sufficient conditions to characterize the qualitative behavior of the mean coupling
time of JQNs when the network size, i.e., the number of queues and the buffer sizes, varies. In the following
remark, we derive such qualitative behavior.

Remark 1. We recall that the Vk1(i)’s, as defined in (12), are interpreted as the mean number of visits
performed to each queue of our JQN by a job that starts visiting the network from queue k1; see, e.g., [7,
Chapter 7]. Suppose we are given a sequence of JQNs indexed by r where M (r) and C(r) are increasing in
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r ∈ N. Furthermore, in each JQN of the sequence, assume that
maxi α

(r)
i

M(r) , maxi ρ
(r)
i , V

(r)
i (solution of (12))

for all i, j ≥ 0, are uniformly bounded by a constant independent of the sequences (M (r))r≥0 and (C(r))r≥0.
As a consequence, c = O((M (r))2), and Theorem 2 shows that the mean coupling time of the r-th JQN is

O
(

(M (r))4
∑

i

C
(r)
i

)

. (48)

Formula (48) shows that the coupling time of JQNs is polynomial in both M and C. This improves the
bounds developed in [3] (a comparison with those bounds follows below).

The following remark comments on the assumption of Theorem 2.

Remark 2. For a network with arbitrary topology and service rates, the assumption ρi = Γi/µi < 1 corre-
sponds to what can be called an “hyper-stable” queue. Indeed, in such a case, the arrival rate in queue i is
always smaller than its service rate, even when all input queues in i are not empty and send jobs to i at full
rate. This does not mean that the network is in a light-load regime. In fact, by varying the external arrival
rates and the routing probabilities of some downstream queues, each queue can have any load between 0 and
1 within this assumption. From a technical standpoint, this assumption implies that the drift along each
dimension i of the state space of the underlying Markov chain transitions can be bounded uniformly (from
above) by a positive constant, i.e., Γi. This structure is essentially exploited in the proof of Proposition 4.
This bounded drift assumption suggests that our main result can be proved using some Lyapunov function on
the expected time to empty the system. However, this approach cannot work as we discuss in Section 3.1.

3.1 Time to empty the system

It is easy to see that τ(0,C) can be stochastically bounded from above by the hitting time from C to 0, i.e.,
min{n : φ(n)(C, u1→n) = 0}. In turn, using a simple coupling argument, we have

min{n > 0 : φ(n)(0, u1→n) = 0} ≤st min{n : φ(n)(C, u1→n) = 0} (49)

and, using Kac’s lemma, Emin{n > 0 : φ(n)(0, u1→n) = 0} = 1/π(0), where π(0) denotes the stationary
probability of being in state 0. However, it is known that 1/π(0) grows exponentially in M : in fact, if
the Ci’s are sufficiently large and the overall mean arrival rate to i, say λi, is such that λi < µi, then
π(0) ≈

∏M

i=1(1− λi/µi) [8].

Remark 3. The argument above shows that we cannot use an argument based on a Lyapunov function and
on the expected time to empty the system to prove polynomial bounds on Eτ(0,C) when M and the Ci’s
increase, even when the drift to 0 of the underlying Markov chain is uniformly bounded as in the assumption
of Theorem 2.

3.2 Comparison with [3]

The main difference of our bound (33) with respect to the ones in [3] is that (33) is of the order of a
polynomial in both M and C (see (48)). In other words, it is not exponential in either M or the Ci’s.

For the case of JQN with cycles, Proposition 4.3 in [3] gives some conditions to prove that the coupling
time of JQN is linear in the buffer size of a single queue. In particular, the constant of proportionality is
not specified and, most importantly, the number of queues M is considered as a constant (in contrast with
our approach). If all the buffer sizes are allowed to grow, these conditions are stronger than the ones in
Theorem 2. In fact, there it is required hyperstability (as we do) plus the condition on the network topology
that each queue can either receive jobs from outside or send jobs to outside, i.e., γi0 > 0 or γ0i > 0, for all i.

4 Bound on mixing time

The mixing time of a discrete-time Markov chain (Xn)n∈N with state space S is the time n needed for the
measure of Xn to be close to the stationary measure up to a precision threshold. This notion is very useful to
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get probabilistic guarantees for Monte Carlo simulation. More precisely, let P be the transition matrix of the

chain and let d(n)
def
= maxx∈S ||Pn(x, ·)− π(·)||TV , where || · ||TV is the total variation distance. The mixing

time with uncertainty ǫ, m(ǫ), is the time it takes for the total variation distance between the distribution of
the chain at time n and the stationary distribution π, to be less than or equal to ǫ, uniformly on the initial
state. Namely,

m(ǫ)
def
= min{n : d(n) ≤ ǫ}.

The mixing time is usually defined with uncertainty 1/4: Tmix
def
= m(1/4) (see [17]).

If we consider the Markov chain defined by a monotone QN with finite buffer, then its mixing time is
bounded from above by its coupling time. This is stated in the following proposition, whose proof is based
on rather classical arguments that relate the mixing and the coupling time.

Proposition 5. Let a monotone QN with buffer vector C be given. Then, for all ǫ > 0

m(ǫ) ≤ 4⌈log2
1

ǫ
⌉Eτ(0,C). (50)

Proof. Theorem 5.2 in [17] says that ||Pn(x, ·) − Pn(y, ·)||TV ≤ Pr(τ(x,y) > n). From this point, let s(n)
be the total variation between to transient measures of the chain. We have

s(n) = maxx,y∈S ||Pn(x, ·)− Pn(y, ·)||TV

≤ maxx,y∈S Pr(τ(x,y) > n)
= Pr(τ(0,C) > n),

(51)

where the last equality comes from the monotonicity of the chain. Now, the mixing can also be bounded
since by definition d(n) ≤ s(n),

m(ǫ) = min{n : d(n) ≤ ǫ}
≤ min{n : Pr(τ(0,C) > n) ≤ ǫ}
≤ min{n : Eτ(0,C)/n ≤ ǫ}
= Eτ(0,C)/ǫ,

(52)

where the penultimate inequality is the Markov inequality. By replacing ǫ by 1/4, one gets Tmix ≤ 4Eτ(0,C).
Again, for an arbitrary integer k, d(km(ǫ)) ≤ s(km(ǫ)). Since s is sub-multiplicative (see [17]), s(km(ǫ)) ≤
s(m(ǫ))k. By definition of s, s(n) ≤ 2d(n). Therefore, s(m(ǫ))k ≤ (2d(m(ǫ))k ≤ (2ǫ)k. In total, we
get d(km(ǫ)) ≤ (2ǫ)k. By taking ǫ = 1/4 the later inequality provides d(kTmix) ≤ 2−k and m(ǫ) ≤
⌈log2 ǫ

−1⌉Tmix.

By means of Proposition 5, thus, it is possible to exploit the results on the coupling time presented in
Section 3 to bound the mixing time.

5 Queueing networks with blocking

The proof technique presented in Section 3 can be applied to other types of QNs with finite buffers, provided
that they remain monotone and hyper-stable. For example, the same approach can be used for other types
of QNs

• with other types of mechanisms to deal with full buffers (e.g,. with blocking),

• with state-dependent routing (e.g., join-the-shortest-queue),

• with stations having service rates depending on the number of jobs in their queues (e.g., −/M/k/C
queues), and

• cases where jobs belong to multiple classes.
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In all these cases, the coupling time can be shown to be polynomial both in the number of queues and buffer
sizes. Bounds on the mean mixing time trivially follow by using Proposition 5, which only requires the
monotonicity of the chain.

Here, we provide a detailed treatment of the blocking case. There exist many blocking mechanisms, and
the most classical ones include blocking after service, blocking before service, repetitive service or recirculate
blocking. They are all similar in terms of coupling and mixing times. We consider the case with repetitive
service, where upon completion of service at queue i, a job is sent to queue j with probability pij and if j
has no available slots, queue i repeats the service for that job. Afterwards, a new target queue is selected
according to the routing probabilities of i in a i.i.d. manner. As mentioned before, this type of blocking is
called Repetitive-Service (RS) blocking, and even for this class of JQNs no product-form is known for the
stationary distribution; see [5] for a background and further details.

Remark 4. The evolution of a JQN with RS blocking is thus identical to the model introduced in Section 2
except for routing events to queues that are full, for which the state remains unchanged (a state is still
represented by the number of jobs in each queue).

Furthermore, quantity Γi, defined in (8), still represents the minimal upper bound on the mean arrival
rate of jobs in queue i with respect to any network state. We also observe that JQNs with RS blocking are
monotone (as shown in [3]).

Proposition 6. Let a JQN with RS blocking be given. For all i and y ∈ S : yi > 0, (3) holds true.

Proof. For any possible event a ∈ A, k = 1, . . . ,M , and any state y such that y,y − ek ∈ S, (4) still holds
true. In fact, for every y ∈ S and k such that y− ek ∈ S, cases i.a)–ii.c) of the proof of Proposition 2 holds
for JQNs with RS blocking because their dynamics are equivalent to the ones of Section 2 (within these
cases). For each routing events a = aij , we have the following cases

iii.a) If y : 1 < yi ≤ Ci and k = i, then φ(y, a) = φ(y − ek, a) + ek

iii.b) If y : yi = 1 and k = i and yj < Cj , then φ(y, a) = φ(y − ek, a) + ej

iii.c’) If y : yi = 1 and k = i and yj = Cj , then φ(y, a) = φ(y − ek, a) + ek

iii.d) If y : yj < Cj and k = j, then φ(y, a) = φ(y − ek, a) + ek

iii.e’) If y : yj = Cj and k = j and yi 6= 0, then φ(y, a) = φ(y − ek, a) + ej

iii.f) If y : yj = Cj and k = j and yi = 0, then φ(y, a) = φ(y − ek, a) + ek

iii.g) If k 6= i and k 6= j, then φ(y, a) = φ(y − ek, a) + ek,

i.e., only cases iii.c) and iii.e) change. Therefore, (4) holds true and, at time τ(0,y − ei), both trajectories
from 0 and y will be at distance one.

The proofs of Proposition 4 and Theorem 2 are based on a stochastic dominance property of JQNs with
infinite buffers with respect to their finite counterparts (see Lemma 2). In JQNs with RS blocking, this
property is lost and thus those proofs cannot be applied directly to obtain the same bound. However, a
quadratic bound in the Ci’s can be derived as we show in the following.

The proof of the following proposition proceeds on the same lines of the proof of Proposition 4.

Proposition 7. Let a JQN with RS blocking be given such that ρi
def
= Γi/µi < 1, ∀i. Then, for any x ∈ S

and k1 such that x− ek1 ∈ S,
Eτ(x− ek1

,x) ≤ c max
i

Ci. (53)

where c is

c
def
= (1 +

∑M

i=1 Vk1(i))maxi αi
1+ρi

1−ρi
(54)

and (Vk1
(1), . . . , Vk1

(M)) is the unique solution of the linear system














Vk1
(i) =

∑M

j=1,j 6=i max

{

γji∑
M
k=0,k 6=j

γjk
,

γji∑
M
k=0,k 6=j

γkj

}

Vk1(j), ∀i 6= k1

Vk1
(k1) = 1 +

∑M

j=1,j 6=k1
max

{

γjk1∑
M
k=0,k 6=j

γjk
,

γjk1∑
M
k=0,k 6=j

γkj

}

Vk1
(j).

(55)
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Proof. Similarly to (14), let

I(n)
def
=

{

argmax
i=1,...,M

φ(n)(x, u1→n)i − φ(n)(x− ek1
, u1→n)i, if

∑

i φ
(n)(x, u1→n)i − φ(n)(x− ek1

, u1→n)i = 1

0, if
∑

i φ
(n)(x, u1→n)i − φ(n)(x− ek1

, u1→n)i = 0
(56)

for n > 0 and I(0)
def
= k1.

1 Note that (56) is well-defined because
∑

i φ
(n)(x, u1→n)i−φ(n)(x− ek1 , u1→n)i ∈

{0, 1}. By construction, it is clear that τ(x − ek1 ,x) = min{n : I(n) = 0}. Therefore, in the following we
study Emin{n : I(n) = 0}.

For h ≥ 1, let T (h) be as in the proof of Proposition 7 be the random variable “time where the process
(I(n))n∈N makes the h-th jump if it exists, and ∞ otherwise”, and let T (0) = 0.

Using the same argument in (19), we have

Emin{n : I(n) = 0} =
∑

h:Pr(H=h)>0

h
∑

h′=1

E (T (h′)− T (h′ − 1)|H = h) Pr(H = h), (57)

and therefore we derive a bound for E (T (h′)− T (h′ − 1)|H = h) and on Pr(H = h), where we recall that H
is the random variable of the total number of jumps of the process (I(n))n∈N.

As in Lemma 3, E(T (t) − T (t − 1)|H = h) can be upper bounded by the mean hitting time from some
state to 0 of an M/M/1/Ckt

with arrival rate Γkt
and service rate µkt

, provided that kt = I(n) when
T (t− 1) ≤ n < T (t). Using Proposition 3, in the worst case we trivially have

E(T (t)− T (t− 1)|H = h) ≤ max
i

αiCi

1 + ρi
1− ρi

, (58)

and substituting in (57) we obtain

Emin{n : I(n) = 0} = max
i

αiCi

1 + ρi
1− ρi

E(H), (59)

Now, let Ĩ(t) be the value of (I(n))n∈N at the time of its t-th jump.
The jumps of (I(n))n∈N to state k > 0 are only due to occurrences of cases iii).b and iii).c’ (defined in the

proof of Proposition 6), which means that at the time n+1 of a jump of I we have either φ(n)(x, u1→n)I(n) = 1

or φ(n)(x, u1→n)I(n) = CI(n). Therefore, if Ĩ(t) = j and nt + 1 is the time of the t-th jump then

Pr(Ĩ(t+ 1) = i|Ĩ(t) = j and φ(nt)(x, u1→nt
)I(nt) = 1) =

γji
∑M

k=0,k 6=j γjk
(60)

Pr(Ĩ(t+ 1) = i|Ĩ(t) = j and φ(nt)(x, u1→nt
)I(nt) = CI(nt)) =

γij
∑M

k=0,k 6=j γkj
(61)

for all i, j. Let Vk1
(i) denote the mean number of visits that (Ĩ(t))t∈N makes to state i when it is started in

k1. The above conditional jump probabilities imply

Pr(Ĩ(t+ 1) = i|Ĩ(t) = j) ≤ max

{

γji
∑M

k=0,k 6=j γjk
,

γij
∑M

k=0,k 6=j γkj

}

, (62)

and we can upper bound EH easily as done in the proof of Proposition 4 by summing the Vk1
(i)’s. It is clear

that Vk1(0) = 1, because (I(n))n∈N remains in state zero after having visited zero, and upper bounds on the
Vk1(i)’s are given by (55), which uses (62). Substituting this in (57) proves (53).

We are now in a position to prove the following result.

1The main difference with (14) is that (56) is defined in terms of φ(·) rather than φ∞(·). This is necessary because in the
case of RS blocking one can see that φ(x, a) �st φ∞(x, a), and the argument in the proof of Proposition 4 does not extend
immediately here.
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Theorem 3. Let a JQN with RS blocking be given such that ρi < 1, ∀i. Then, Eτ(0,C) ≤ Mc maxi Ci

∑

i Ci,
where c is given by (54).

Proof. Using Propositions 6 and 7, we have

Eτ(0,y + ei)− Eτ(0,y) ≤ E[E[max
k

τ(x∗(y),x∗(y) + ek)|x
∗(y)]] (63)

≤
∑

k

E[E[τ(x∗(y),x∗(y) + ek)|x
∗(y)]] (64)

≤ Mc max
j

Cj . (65)

Following the recursion along dimension i, we have

Eτ(0,C) ≤ Eτ(0,C− Ciei) +McCi max
j

Cj . (66)

Solving the recursion along each dimension, we finally find Eτ(0,C) ≤ Mc maxj Cj

∑

i Ci.

In the same conditions of Remark 1 and the ones of Theorem 3, we conclude that the qualitative behavior
of the mean coupling time when both M and C increase is

O
(

(M (n))3 max
i

C
(n)
i

∑

i

C
(n)
i

)

. (67)

6 Conclusions

We have proposed an approach to obtain bounds on the coupling and mixing times of a class of Markovian
queueing networks, which are related to the efficiency of sampling from their stationary distribution in an
exact or approximate manner, respectively. Our results give conditions to show that the coupling time
of Jackson queueing networks with finite buffers and arbitrary topology grows slowly (polynomially) when
both the number of queues and the size of all buffers increase. Our bounds significantly improve the best
bounds known in the literature and extend the ones found for acyclic Jackson QNs in [3, 21]. We have also
shown that the mixing time of finite Jackson QNs behaves in a similar way up to a factor depending on
the accuracy of the desired samples. Under minor variations in the proof-technique used, we extended our
approach to a class of queueing networks with blocking obtaining similar (polynomial in M and the Ci’s)
bounds. Other possible extensions include monotone networks where i) routing can be state-dependent, e.g.,
join-the-shortest-queue, ii) stations have service rates depending on the number of jobs in their queues, e.g.,
−/M/k/C queues, and iii) cases where jobs belong to multiple classes. Again, these follow by adapting
(with minor variations) the proofs of Propositions 2 and 4 and Theorem 2 or 3. In conclusion, our bounds
promote both CFTP and Monte Carlo methods as efficient tools for evaluating the stationary performance
of monotone queueing networks. While the former produces exact samples, the latter is more efficient, and
one can choose among these two techniques based upon which properties best suit one’s needs.
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[5] S. Balsamo, V. de Nitto Personé, and R. Onvural. Analysis of queueing networks with blocking. Inter-
national series in operations research and management science. Kluwer, 2001.

[6] F. Baskett and K.M. Chandy and R. Muntz and F.G. Palacios Open, Closed, and Mixed Networks of
Queues with Different Classes of Customers. Journal of the ACM, 22(2):248–260, 1975.

[7] U. Narayan Bhat. An Introduction to Queueing Theory: Modeling and Analysis in Applications.
Birkhauser Verlag, 2008.

[8] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Networks and Markov Chains. Wiley-
Interscience, 2005.

[9] P. Bremaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues. Texts in Applied
Mathematics. Springer-Verlag, Berlin-Heidelberg, 1999.

[10] W.-L. Chen and C. A. O’Cinneide. Towards a polynomial-time randomized algorithm for closed product-
form networks. ACM Trans. Model. Comput. Simul., 8(3):227–253, 1998.

[11] J. Dopper, B. Gaujal, and J.-M. Vincent. Bounds for the coupling time in queueing networks perfect
simulation. In Celebration of the 100th anniversary of Markov, pages 117–136, 2006.

[12] J. R. Jackson. Job shop-like queueing systems. Management Sci., 10,131, 1963.

[13] F. Kelly. Reversibility and Stochastic Networks. 1979.

[14] J.G. Kemeny and J.L. Snell. Finite Markov chains. VanNostrand, University series in undergraduate
mathematics, 1969.

[15] S. Kijima and T. Matsui. Approximation algorithm and perfect sampler for closed jackson networks
with single servers. SIAM J. Comput., 38(4):1484–1503, 2008.

[16] S. Kijima and T. Matsui. Randomized approximation scheme and perfect sampler for closed jackson
networks with multiple servers. Annals OR, 162(1):35–55, 2008.

[17] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American Mathematical
Society, 2008.

[18] W. A. Massey. An Operator Analytic Approach to the Jackson Network. Journal of Applied Probability,
21:379–393, 1984.

[19] A. Müller and D. Stoyan. Comparison methods for stochastic models and risks. Wiley, 2002.

[20] J. G. Propp and D. B. Wilson. Exact sampling with coupled markov chains and applications to statistical
mechanics. Rand. Struct. Alg., 9(1-2):223–252, 1996.

[21] J.-M. Vincent. Perfect generation, monotonicity and finite queueing networks. In IEEE QEST, page
319, 2008.

[22] W. Whitt. The efficiency of one long run versus independent replication in steady-state simulation.
Management Sci., 37(6):645–666, 1991.

17


