
HAL Id: hal-01102947
https://hal.science/hal-01102947v1

Submitted on 13 Jan 2015 (v1), last revised 12 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object-Oriented Component-based Design using
Behavioral Contracts: Application to Railway Systems

Sebti Mouelhi, Khalid Agrou, Samir Chouali, Hassan Mountassir

To cite this version:
Sebti Mouelhi, Khalid Agrou, Samir Chouali, Hassan Mountassir. Object-Oriented Component-based
Design using Behavioral Contracts: Application to Railway Systems. [Research Report] FEMTO-ST.
2015. �hal-01102947v1�

https://hal.science/hal-01102947v1
https://hal.archives-ouvertes.fr

INSTITUT FEMTO-ST

UMR CNRS 6174

Object-Oriented Component-based Design using

Behavioral Contracts: Application to Railway Systems

Sebti Mouelhi — Khalid Agrou — Samir Chouali — Hassan Mountassir

Rapport de Recherche

DÉPARTEMENT DISC – January 13, 2015

Object-Oriented Component-based Design using
Behavioral Contracts: Application to Railway Systems

Sebti Mouelhi∗, Khalid Agrou† , Samir Chouali‡ , Hassan Mountassir‡

Département DISC

VESONTIO

Rapport de Recherche – January 13, 2015 (23 pages)

Abstract: In this report, we propose a formal approach for the design of object-oriented component-

based systems using behavioral contracts. This formalism merges interface automata describing

communication protocols of components with the semantics of their operations. On grounds of

consistency with the object-oriented paradigms, we revisit the notions of incremental design and

independent implementability of interface automata by novel definitions of components compatibility,

composition, and refinement. Our work is illustrated by a design case study of CBTC railway systems

to argue their relevance in the safety-critical context.

Key-words: Object-oriented components, Behavioral contracts, Interface automata, Semantics,

Refinement, Railway systems.

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE

Tél : (33 3) 81 66 64 00 – Fax : (33 3) 81 66 64 23 – e-mail : brigitte.bataillard@univ-fcomte.fr

∗ SafeRiver, 92120, Montrouge, France (sebti.mouelhi@safe-river.com).
† UPMC Pro, 75005, Paris, France (khalid.agrou@free.fr).
‡ FEMTO-ST Institute, UMR CNRS 6174, 25030, Besançon, France ({schouali,hmountas}@femto-st.fr).

Conception par des Contrats Comportementaux des Systèmes à base de
Composants Orientés Objet: Application aux systèmes Ferroviaires

Résumé : Dans ce rapport, nous proposons une approche formelle pour la conception de systèmes

à base de composants orientés objet en utilisant les contrats de comportement. Ce formalisme fu-

sionne les automates d’interface décrivant les protocoles de communication des composants avec

la sémantique de leurs opérations. Pour des raisons de cohérence avec les paradigmes orientés ob-

jet, nous revisitons les notions de conception incrémentale et l’implémentation indépendante établies

pour les automates d’interface en définissant autrement la compatibilité, la composition, et le raffine-

ment des composants par le billet de leurs contrats de comportement. Notre travail est illustré par

un cas d’utilisation des systèmes ferroviaires CBTC pour valoir leur pertinence dans le contexte de

systèmes critique.

Mots-clés : Composants orientés objets, Contrats comportementaux, Automates d’interface,

Sémantique, Raffinement, Systémes ferroviaire.

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE

Tél : (33 3) 81 66 64 00 – Fax : (33 3) 81 66 64 23 – e-mail : brigitte.bataillard@univ-fcomte.fr

Object-Oriented Component-based Design using Behavioral Contracts 1

1 Introduction

Component-based development approaches aim to reduce the cost of complex systems design
by reusing prefabricated components. A software component is a black box unit of a third-
party composition and deployment, with explicit dependencies to its environment [17]. It is
exclusively reusable via its interface behavioral specification without disclosing implementation
details. However, the design by composition often raises mismatches. A safe interoperability
between components should fulfill two main properties: (1) their interactions do not lead to
undesirable situations, and (2) the substitution of a component with a new one does not alter
the compound system.

Commonly, the functional interoperability of components is usually checked at the signature,
semantic and protocol levels. At the signature level, it is checked on the names and argument
types of component operations. At the semantic level, it is verified on the meanings of opera-
tions generally modeled by pre/postconditions and invariants. The protocol level regards the
consistency of the temporal scheduling of assumptions on the environment inputs to a com-
ponent, its output behavior, and its local operations. Component protocols can be modeled
naturally by interface automata [9] obedient to an optimistic approach of composition closely
related to the object-oriented context: if they communicate within an environment allowing
them to avoid deadlocks, they can be used without changes. In the industrial context, this
approach allows errors detection during the design phase, and hence taking the appropriate de-
cision: either keeping components as they was received from their manufacturer, or requesting
their modification.

The first contribution of this report is to demonstrate how object-oriented component-based
design (OOCBD) is more rigorous by means of behavioral contracts merging interface automata
with the semantics of methods. The optimistic approach of interface automata composition
is accordingly adapted to fulfill the interaction aspects of object-oriented components. The
composition of two interface automata is computed by removing from their synchronized product
all states from which the environment cannot prevent deadlock states (arising from semantic
and protocol mismatches) by enabling controllable or autonomous actions [9, 4]. We define
the concept of autonomous actions differently by reclassifying them into method, return, and
exception actions.

The second is about the study of components refinement using behavioral contracts, in-
tended to ensure an independent implementability of components. We present refinement as an
expanding simulation between interface automata allowing (i) the introduction, in a component
refinement, more details about common provided services with the abstraction, and (ii) provid-
ing more services than the abstraction. These features lead to consider the refinement relation
as covariance on input and output events of a component: refinement issues (resp. provides)
more outputs (resp. inputs) than the abstraction. A concrete version C ′ of a component refines
an abstract one C if each input, output, or local event of C is simulated at least by the same
event in C ′. The refinement approach, originally proposed in [9], requires contravariance on
input and output events of interface automata: refinement may accept more inputs, and may
provide fewer outputs, than the abstraction. It is defined as an alternating simulation [5]: a
component model C ′ refines a second one C if each input event of C can be simulated by C ′,
and each output event of C ′ can be simulated by C. This approach is not quite consistent, from
our perspective, with the object-oriented context.

All through the report, we justify the relevance of our approach for checking design integrity
of railway systems. We propose a case study of trains protection functions in modern railway
CBTC control systems to track the evolution of safety standards such as the European Norm

DISC Department

2 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

EN 50128 [1], and to give a new industrial perspective for the design of such critical systems
using an object-oriented approach.

The report results appeared partially in preliminary formulations and other contexts in [8,
15]. In Section 2, we start by introducing informally our case study to avoid cluttering the
contribution sections. It is nevertheless recalled gradually to validate the various introduced
formal concepts. In sections 3 and 4, we proceed with the study of behavioral contracts, and
our approach of components compatibility and composition. Section 5 is devoted to the study
of refinement of behavioral contracts. Conclusions are presented in Section 6.

T1

T2

Trains path

Coverage area of MCU

BTS

Wireless communication with T1

Event 1: sending coverage requests to MCU

Event 2: T1 and T2 are covered

Event 3: requesting VMAZs from MCU

Event 4: VMAZs of T1 and T2 from MCU

Event 5: computing VLMA

s1

s2

s3

s4 s5 s6

Velocity profile of T1

DEU
MCU

Wireless communication with T2

p1

TEL HEL s7

TEL HEL

VLMA of T1

Boundary between
VMAZ1 and VMAZ2

Figure 1: Simplified trains protection in CBTC systems.

2 Railway case study

In this section, we introduce a simplified case study of trains protection functions in CBTC
(Communications-Based Train Control) systems [2], used to illustrate our work (cf. Figure 1).
These systems are the next generation of railway control technology which is increasingly be-
ing adopted in subways and other similar means of transportation, as well as many industrial
major projects worldwide, such as ERTMS/ETCS (European Rail Traffic Management Sys-
tem/European Train Control System) [11, 10]. A CBTC system is an automatic train controller
independent of track circuits. It determines continuously, in real-time, precise locations of trains,
and sends them back control signals by means of bidirectional train-to-wayside data communica-
tions. It has train-borne and wayside processor devices implementing automatic train protection
(ATP) functions, as well as automatic train operation (ATO), and automatic train supervision
(ATS) functions. ATP devices ensure safety-critical requirements (speed control and braking).
ATO devices cover non safety-related requirements (doors opening and closing, etc). ATS de-
vices handle the traffic management when necessary [2]. CBTC systems reduce significantly
the amount of wayside equipments and allows benefits such as high traffic densities, better
headways, reliability of anti-collision processing, adoption of automated trains, etc.

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 3

We consider trains control based on moving block regime. The positions of a moving train
and its velocity are continuously computed based on its kinetic and potential energy, and then
communicated via wireless to wayside equipments. Thus, a protected area of circulation is
established for each train up to the next nearest obstacle. For the train T1 in Figure 1, this
point is the tail of T2. The train is consequently able to adapt its speed and braking curves in
order to not overcome the limit of this area, namely the danger point [16] and ensures a safe
stopping before that point if necessary. ATO and ATS functions do not play a significant role
on safety, and they are not considered in this report.

The On-Board Device (OBD) of each train computes two fictional locations: the tail and
head external locations (TEL and HEL). The track fragment between them covers the whole
train. Usually, this choice is caught on grounds of safety to keep a safe distance between trains in
case of system malfunction. Locations are coordinates on the trains path composed of segments
and set in a given direction according to the railroad switches positions. A segment is identified
by a number, a length, and a beginning coordinate. In Figure 1, the switch p1 is positioned on
the segment s3, and the train path is the sequence s1, s2, s3, s4, s5, s6, etc.

The OBDs of T1 and T2 initiate the protection process by asking if they are visible to a Move-
ment Control Unit (MCU). There are several MCUs covering the entire line, with overlapping
coverage sections allowing safe information handover between them. Only one is represented
in our case study. The trains locations are sent by wireless to the nearest Base Transmission
Station (BTS). The latter converts radio signals to digital data and transmits them to the
Data Exchange Unit (DEU), which in turn transfers them to MCU (event 1). MCU determines
whether the zone between TEL and HEL is completely or partially included within its coverage
area, and responds T1 and T2. In Figure 1, T1 and T2 are both visible to MCU (event 2).

Next, each train asks from its covering MCUs the Vital Movement Authority Zone (VMAZ):
the area (sequence of segments) in which the train can safely circulate (event 3). In Figure 1,
MCU sends to T1 a VMAZ limited by the beginning of s1 (containing its TEL and HEL) and the
end of s3, and sends to T2 a VMAZ limited by the beginning of s4 (containing its TEL) and the
end of s5, the last segment covered by MCU (event 4). MCU ensures that VMAZs of successive
trains never overlap to avoid collisions. VMAZs are computed by chaining segments according
to the route informations. Chaining may be interrupted up to the nearest obstacle on the train
trajectory: the end of MCU coverage area, an uncontrolled switch, or the beginning of the
segment containing TEL of the next train, etc. This function is covered by a separate wayside
component managing persistent informations (segment and switch locations) and variant ones
(switch positions) of the route during the traffic.

Finally, the train computes the danger point, called Vital Limit of Movement Authority
(VLMA), within the boundaries of the received VMAZ. To locate VLMA, OBD takes a fixed
safety margin beforehand the limit of its VMAZ. The train velocity is gradually reduced to
reach zero when HEL reaches VLMA (event 5).

3 Behavioral contracts

The functional interoperability of object-oriented components is checked at the signature, se-
mantic and protocol levels. Each of these levels alone is not sufficient to ensure a reliable
interoperability. We combine interface automata with the semantics of methods in a single
formalism called behavioral contracts. We start by introducing interface automata.

DISC Department

4 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

3.1 Interface automata

Interface automata [9, 4] model the communication protocols of software components in terms
of temporal scheduling of their input, output, and hidden actions. In OOCBD, input actions
may represent the component public provided methods, the assignment of return values of their
calls, and catching their exceptions. Output actions may represent method calls, and return
or exception events. Private methods are implicit and not specified by actions. However, their
calls, the assignment of their return values, and the catching of their thrown exceptions are
modeled by hidden actions.

Definition 1. A interface automaton A is a tuple (ΥA, ıA, ΣI
A, ΣO

A, ΣH
A, δA) where: ΥA is a

finite set of states; ıA ∈ ΥA is the initial state; ΣI
A, ΣO

A, and ΣH
A are resp. the sets of input,

output, and hidden actions; δA ⊆ ΥA ×ΣA ×ΥA is the set of transitions. A is empty iff ΥA = ∅.

The alphabet of A consists of “a?” for a ∈ ΣI
A, “a!” for a ∈ ΣO

A, and “a;” for a ∈ ΣH
A. The

sets ΣIm
A ⊆ ΣI

A, ΣOm
A ⊆ ΣO

A, and ΣHm
A ⊆ ΣH

A, are resp. actions of public provided methods, call
of environment public methods, and calls of private methods. The set Σm

A of method actions
of A is ΣIm

A ∪ ΣOm
A ∪ ΣHm

A . Given a set of variables V , we define by T[v] the type of v ∈ V
i.e. v:T[v], and by TJV K =

∏
v∈V T[v] the type of V (cartesian product of T[v] for all v ∈ V).

The signature of a method action a ∈ Σm
A is a(i1:T[i1], ..., ik:T[ik]) → o:T[o] ♯ e. The set of

input parameters of a is Ψi
A(a) = {i1, ..., ik}. The set of return parameters Ψo

A(a) of a is the
singleton {o}. We define RA(a) = o the return action of a, and EA(a) = e the exception action
of a. The set of attributes used by a is denoted by ΛA(a) if a ∈ ΣIm

A ∪ ΣHm
A . The absence of

parameters, attributes, or exceptions is represented by a void. If RA(a) and EA(a) are defined,
we set Σr

A and Σe
A resp. to {RA(a) | a ∈ Σm

A} and {EA(a) | a ∈ Σm
A}. We denote, by Σ∗r

A and
Σ∗e

A , resp. the sets Σr
A ∩ Σ∗

A and Σe
A ∩ Σ∗

A where ∗ ∈ {I, O, H}. It is worth to mention here
that ΣA = Σm

A ∪ Σr
A ∪ Σe

A. We set SuccA(s, a) = t such that (s, a, t) ∈ δA. A run σ of A is
a finite alternated sequence s0[a0]...[an−1]sn of states and actions where (sk, ak, sk+1) ∈ δA for
all k ∈ N<n. We set ΣA〈σ〉 = {ak ∈ ΣA | k ∈ N<n} and ΥA〈σ〉 = {sk ∈ ΥA | k ∈ N≤n}. We
denote, by ΘA(s), the set of runs reaching s ∈ ΥA from ıA. A state s ∈ ΥA is reachable in A if
ΘA(s) 6= ∅.

Assumptions: Interface automata are deterministic, i.e. for all (s, a, s1), (s, a, s2) ∈ δA, s1 =
s2. All states s ∈ ΥA are reachable in A. Consider an action a ∈ Σm

A where RA(a) and EA(a) are
defined. If a ∈ ΣIm

A (resp. ΣOm
A and ΣHm

A), then EA(a) ∈ ΣO
A \ Σm

A (resp. ΣI
A \ Σm

A and ΣH
A \ Σm

A):
a component providing or requiring a knows its exception. If a ∈ ΣIm

A , then RA(a) ∈ ΣO
A \ Σm

A :
the method a must output its return value. If a ∈ ΣOm

A ∪ ΣHm
A , then RA(a) may belong or not

to (ΣI
A ∪ ΣH

A) \ Σm
A : a component invoking a may assign or not its return value.

Well-formedness

Object-oriented implementation rules should be covered by the runs of interface automata. A
provided public non-void method should be specified at least by a sequence of events starting
and ending resp. by an input method action and an output return one interposed, by calls of
local private or environment public methods and the assignment of their return values. They
may be interleaved optionally by catching or throwing exceptions events. A call of a non-
void method, made by a component requiring the assignment of its return value, is followed
necessarily by a return input action, and optionally by an exception catch one. All the actions
of a component are autonomous (controllable), except method or exception input actions. It’s
up to the environment to enable or not these actions. In [9, 4], only output and hidden actions

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 5

are required to be autonomous. From our perspective, input return actions of non-void method
calls, made by a component, are also autonomous because the environment is expected to
provide their return values and the component has the option to assign them or not.

The set Σaut
A of autonomous actions is ΣA \ (ΣIm

A ∪ ΣIe
A). We define by Σ∗

A(s) where ∗ ∈
{I, O, H, Im, Om, Hm, Ir, Or, Hr, Ie, Oe, He, m, r, e, aut} the set of actions in Σ∗

A enabled from
s ∈ ΥA. ΣA(s) is the set of all enabled actions from s. The run σ = s0[a0]...[an−1]sn is called
autonomous in A if ΣA〈σ〉 ⊆ Σaut

A for all k ∈ N<n. It is called exception-free if ΣA〈σ〉 ⊆ ΣA \Σe
A

for all k ∈ N<n. A state s′ ∈ ΥA is reachable autonomously (resp. without exceptions) from
s ∈ ΥA in A if there is an autonomous (resp. exception free) run between s and s′.

Definition 2. An interface automaton A is well-formed iff for all state s ∈ ΥA, and action
a ∈ Σm

A(s) where RA(a) ∈ Σr
A, there is at least a state t ∈ ΥA, where RA(a) ∈ Σr

A(t), reachable
autonomously without exceptions from SuccA(s, a).

3.2 Method semantics

The semantics of a provided method consists of: (i) a precondition representing the environ-
ment assumptions on input parameters, (ii) an abstract specification of the return parameter
computation using input parameters and attributes, (iii) a termination postcondition on the
return parameter depending on input parameters and attributes, and (iv) an extra postcondi-
tion describing exception conditions on parameters and attributes. A method call semantics is
defined only by a precondition on input parameters and a postcondition on input and return
parameters. Given a set of variables V , a condition on v is a subtype of T[v]. A condition Q on
V is a subtype of TJV K. We denote by Q[w1, ..., wn] (or QJW K), the projection of Q on variables
in W = {w1, ..., wn} ⊆ V . These conditions can be concretely defined as predicates in a theory
adapted to the variable types. Consider the set Z ⊆ W , and two conditions P and Q subtypes
of TJV K, we set the following equivalences to define semantic formulas in the rest of the report:

• ⊥JW K ≡ P JW K = ∅; ⊤JW K ≡ P JW K = TJW K; ¬P JW K ≡ TJW K \ P JW K;

• P JZK∧QJW K ≡ (P JZK×QJW \ ZK)∩QJW K; P JZK∨QJW K ≡ (P JZK×QJW \ ZK)∪QJW K;

• P JW K ⇒ QJW K ≡ P JW K ⊆ QJW K.

Definition 3. Given an interface automaton A, an input semantics Ia = (Pa, Ba, Qa, Ea) of
an action a ∈ ΣIm

A is defined by:

• a precondition Pa ⊆ TJΨi
A(a)K;

• a specification Sa ⊆ TJΨi
A(a) ∪ ΛA(a) ∪ Ψo

A(a)K;

• a termination postcondition Qa ⊆ TJΨi
A(a) ∪ ΛA(a) ∪ Ψo

A(a)K;

• an exception postcondition Ea ⊆ TJΨi
A(a) ∪ ΛA(a) ∪ Ψo

A(a)K.

An output semantics Ob = (Pb, Qb) of an action b ∈ ΣOm
A is defined by:

• a precondition Pb ⊆ TJΨi
A(b)K;

• a postcondition Qb ⊆ TJΨi
A(b) ∪ Ψo

A(b)K.

These conditions are denoted resp. by Ia.P , Ia.S, Ia.Q, Ia.E, Ob.P , and Ob.Q.

In the previous definition, we consider only the semantics of observable method actions
(a ∈ ΣIm

A ∪ ΣOm
A). We omit the semantics of private method actions (a ∈ ΣHm

A) because they
are not relevant for interoperability. We define behavioral contracts as follows.

DISC Department

6 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

Definition 4. A behavioral contract B of a component is a tuple (A, I, O) such that:

• A is an interface automaton;

• I is a map associating for each a ∈ ΣIm
A , an input semantics Ia;

• O is a map associating for each a ∈ ΣOm
A , an output semantics Oa.

We denote by, B.A, the interface automaton of B, by B.I, the map I of B, and by B.O, the
map O of B.

Definition 5. Given a behavioral contract B and an action a ∈ ΣIm
A where B.A = A and

B.I(a) = (Pa, Ba, Qa, Ea), for all (i, f, o) ∈ Ψi
A(a) × ΛA(a) × Ψo

A(a),

• a is correct with respect to B.I(a) iff Pa[i] ∧ Sa[i, f, o] ⇒ Qa[i, f, o];

• a terminates with respect to B.I(a) iff Pa[i] ∧ Sa[i, f, o] ⇒ Qa[i, f, o] ∧ ¬Ea[i, f, o];

• a throws exceptions with respect to B.I(a) iff Pa[i] ∧ Sa[i, f, o] ⇒ Ea[i, f, o];

The previous definition establishes the different relations between the specification and the
pre/postconditions of an input method action a ∈ ΣIm

A . The stated conditions are based on the
Hoare triplet [12]: a provided method is correct if its behavior under the precondition ensures
the postcondition; it terminates if it is correct and the exception postcondition is not satisfied,
and throws exceptions if the exception postcondition is satisfied.

3.3 Design of the railway case study

The UML-like component architecture in Figure 2 presents the different ATP equipments men-
tioned in Section 2. We count four component classes: OnBoardDevice, DataExchangeUnit,
MovementControlUnit, and SubRouteBuilder instantiated resp. by the components OBD, DEU,
MCU, and SRB. The last three ones implement resp. the interfaces DataExchange, Movement-
Control, and RouteBuilder.

The component DEU implements the public (+) method covReq (coverage request), whose
arguments are: tel and ts, resp. the coordinate of TEL, sent by OBD, and the identifier of
the segment containing TEL, hel and hs, resp. the coordinate of HEL and the identifier of the
segment containing HEL, and t, the train identifier. According to the interface automaton Ad of
DEU (cf. Figure 3(b)), the method covReq transfers the coverage request to MCU by invoking
the method isCovered. MCU responds OBD, via DEU, by returning 2 (resp. 1) if it covers
completely (resp. partially) the train (signal covered), or by throwing uncovered if not.

Subsequently, if the train is covered by MCU, OBD requests its VMAZ (vmazReq). DEU
transfers the request by calling computeVmaz implemented by MCU. In turn, MCU calls the
method chain of SRB to perform chaining on segments in order to compute the VMAZ bounds
within the sequence of segments from start to end, the arguments of chain. If MCU covers only
hel, the argument start is set to the first segment in the trains path fully covered by MCU.
Otherwise, it is set to ts. The argument end is always set to the last segment fully covered
by MCU. According to Am in Figure 3(c), if chaining is interrupted by an uncontrolled switch,
MCU handles the exception uncontSW thrown by chain and in turn, throws default.

Based on the path database bdd, SRB returns VMAZ segments in the table segs of size
max the maximum number of segments covered by MCU. The field useful nb ≤ max indicates
the number of segments included in VMAZ. MCU computes accordingly the VMAZ bounds
coordinates on the path frame based on informations of useful segments (identifiers, beginning
coordinates, and lengths saved in data structures of type Seg). In the case where MCU covers

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 7

OnBoardDevice

-deu:DataExchangeUnit

-computeVlma(vmaz bounds:realˆ2)
-ctrlVelocity(vlma:real,curr velocity:real)
-emgcyBrake()

Component
OBD

Component
DEU

DataExchangeUnit

-mcu:MovementControlUnit

+covReq(t:nat,tel:real,ts:nat,hel:real,hs:nat):nat
+vmazReq(t:nat):realˆ2

MovementControlUnit

-cst:{seg:int 7→ train:int}ˆmax

-srb:SubRouteRuilder

+isCovered(t:nat,tel:real,ts:nat,hel:real,hs:nat):nat
+computeVmaz(t:nat):realˆ2

Component
MCU

SubRouteBuilder

-bdd:{seg:Seg 7→ sw:Switch}ˆmaxs

+chain(start:nat,end:nat):{segs:Segˆmax,useful nb:nat}

Component
SRB

DataExchange

MovementControl

RouteBuilder

Figure 2: UML-like component architecture.

1 2 3 4

56

covReq!

covered? vmazReq!

vmaz?computeVlma;ctrlVelocity;

emgcyBrake;

uncovered?

IN: covered,uncovered,vmaz

OUT: covReq,vmazReq

LOC: computeVlma,ctrlVelocity,emgcyBrake

a b c d

e

f

ghi

covReq? isCovered! yes?

no?uncovered!

covered!

vmazReq?computeVmaz!result?vmaz!

IN: covReq, vmazReq, yes, no, result, default

OUT: isCovered, computeVmaz, covered, uncovered, vmaz

1 2 3 4 5

7

6

isCovered?

no!

yes! computeVmaz? chain!

uncontSW?default!

vmazSegs?result!

IN: isCovered, computeVmaz, vmazSegs, uncontSW

OUT: chain, yes, no, result, default

(a) Ao (OBD) (b) Ad (DEU) (c) Am (MCU)

Figure 3: Interface automata of OBD, DEU, and MCU: method actions (double transitions);
return actions (simple transitions); exception actions (dashed transitions).

Table 1: Semantics of the method action covReq.

Output semantics Bo.O Input semantics Bd.I

Bo.O(covReq).P ≡ t ∈ {0, ..., 30}∧ Bd.I(covReq).P ≡ t ∈ {0, ..., 30}∧

ts, hs ∈ {0, ..., 500}∧ ts, hs ∈ {0, ..., 500}∧

tel, hel ∈ [0, 5000] ∧ tel < hel tel, hel ∈ [0, 5000]

Bd.I(covReq).S ≡ ⊥[t, tel, hel, ts, hs, covered]

Bo.O(covReq).Q ≡ covered ∈ {0, 1, 2} Bd.I(covReq).Q ≡ covered ∈ {1, 2}

Bd.I(covReq).E ≡ covered = 0

only a part of the train VMAZ, it returns a pair vmaz of coordinates where one of them is null
and the other is a positive real. Otherwise, the two coordinates are positive reals. The map
attribute cst (covered segments and trains) is finally updated such that segments covered both
by MCU and VMAZ of the train are associated to its identifier.

According to Ao in Figure 3(a), OBD fixes finally VLMA by calling its private (−) method
computeVlma before the final bound of VMAZ. It controls the train speed if HEL is sufficiently
far from VLMA (ctrlVelocity), or performs an emergency brake (emgcyBrake) otherwise.

Let us consider three behavioral contracts Bo, Bd, and Bm resp. for components OBD,
DEU, and MCU where Bo.A is Ao, Bd.A is Ad, and Bm.A is Am. Table 1 shows a semantics
of covReq in Bo and Bd whose signature is covReq (t, tel, ts, hel, hs) → covered ♯ uncovered
(parameter types are given in Figure 2). The semantics of covReq in Bo and Bd states that the
minimal and maximal identifiers t of trains, are resp. 0 and 30, and those of segment identifiers
(ts and hs), are resp. 0 and 500. The precondition of covReq in Bo states that the conditions
tel, hel ∈ [0, 5000] and tel < hel have to be satisfied by calling the method, where 5000um (unit
of measurement) is the size of the longest trains path. In Bd, the precondition states simply

DISC Department

8 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

that tel, hel ∈ [0, 5000]. In Bo, the postcondition of covReq states that the return parameter
covered is a signal in {0, 1, 2}. However, in Bd, it states only that covered is a signal in {1, 2}
because if it is equal to 0, the exception uncovered is thrown. The specification Bd.I(covReq).S
is not defined (⊥[t, tel, hel, ts, hs, covered]): at the level of Bd, there is no parameter or attribute
(ΛAd

(covReq) = ∅) describing how the return parameter covered is computed. MCU, after
receiving the coverage request from OBD, is expected to ask SRB to check in bdd whether tel
and hel are really placed resp. on ts and hs, as claimed by OBD. This function of SRB does not
appear intentionally at this stage. We expect using this detail to justify refinement in Section 5

Finally, consider that RAo(covReq) is covered ∈ Σr
Ao

, RAo(vmazReq) is vmaz ∈ Σr
Ao

, and
EAo(covReq) is uncovered ∈ Σe

Ao
, we can deduce that Ao is well-formed. The reader can easily

deduce the well-formedness of Ad and Am by finding their method, return and exception actions.

4 Components Composition

The composition of two behavioral contracts may induce deadlock situations caused by potential
semantic or protocol incompatibilities. At the protocol level, the composition of two interface
automata may contain deadlock states. From that states, one of the two interface automata
requests an input not accepted by the other. For example, a component calls a method throwing
exceptions without handling them. In Java, a deadlock state is the detection of a method call
exception not included in a clause try/catch. The thrown exception is the output action and
the try/catch freedom is considered as the absence of the corresponding input action.

At the semantic level, the synchronization of shared input/output method actions with in-
compatible semantics, leads to deadlock states. A component outputting a method call have
more informations about its arguments. Thus, the call precondition is stronger than that of
the method implementation: the environment is expected to provide input arguments included
in the implementation precondition. In return, the component providing the method commu-
nicates to the environment a postcondition on its return parameter: it vouches to provide only
return values that satisfy the postcondition. The calling component cannot have more detailed
informations about the return parameter than the implementing one. That’s why the postcon-
dition of a method invocation is weaker than that provided by its implementation. Note that
preconditions, like postconditions, of provided observable methods are required to be satisfiable.
Not all calling environments satisfy the precondition, or expect return guarantees larger than
the postcondition [4]. In this case, synchronization disparities are detected.

4.1 Synchronization of interface automata and semantic compatibility

The synchronization of two interface automata A1 and A2 is possible only if they are mutually
composable i.e. ΣI

A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2

= ΣH
A2

∩ ΣA1
= ∅. The set of shared

input/output actions in A1 and A2 is Shared(A1, A2) = (ΣI
A1

∩ΣO
A2

)∪(ΣI
A2

∩ΣO
A1

). For simplicity,
we denote the couple of states (s1, s2) by s1s2. By synchronizing A1 and A2, transitions labeled
by shared actions synchronize and the others are interleaved asynchronously. The synchronized
product A1 ⊗ A2 of A1 and A2 is an interface automaton where ΥA1⊗A2

= ΥA1
× ΥA2

, ıA1⊗A2
=

ıA1
ıA2

, ΣI
A1⊗A2

= (ΣI
A1

∪ ΣI
A2

) \ Shared(A1, A2), ΣO
A1⊗A2

= (ΣO
A1

∪ ΣO
A2

) \ Shared(A1, A2),

ΣH
A1⊗A2

= ΣH
A1

∪ ΣH
A2

∪ Shared(A1, A2), and (s1s2, a, s′
1s′

2) ∈ δA1⊗A2
iff :

• a ∈ Shared(A1, A2) ∧ (s1, a, s′
1) ∈ δA1

∧ (s2, a, s′
2) ∈ δA2

;

• a 6∈ Shared(A1, A2) ∧ ((s1, a, s′
1) ∈ δA1

∧ s2 = s′
2 ∨ (s2, a, s′

2) ∈ δA2
∧ s1 = s′

1).

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 9

Given tow behavioral contracts B1 and B2 where B1.A = A1 and B2.A = A2, B1 and
B2 are composable if A1 and A2 are composable, and each a ∈ Shared(A1, A2) ∩ Σm

A1
has the

same signature in A1 and A2. We deduce, from the composability of B1 and B2, that for
each a ∈ Σm

Ai
∩ Shared(A1, A2) for i ∈ {1, 2}, if RAi

(a), EAi
(a) ∈ ΣAi

for all i ∈ {1, 2}, then
RA1

(a) = RA2
(a) = ra, EA1

(a) = EA2
(a) = ea and ra, ea ∈ Shared(A1, A2). In the following

definition, we provide the semantic compatibility conditions of input/output method actions
shared between A1 and A2.

Definition 6. Given an action a ∈ Shared(A1, A2) ∩ Σm
A1

, for all (i, o) ∈ Ψi
A1

(a) × Ψo
A1

(a), if
one of the following conditions holds, then the action a in B1 is semantically compatible with
a in B2 i.e. SemCompa(B1, B2):

• B1.O(a).P [i] ⇒ B2.I(a).P [i] ∧ B1.O(a).Q[i, o] ⇐ B2.I(a).Q[i, o] if a ∈ ΣOm
A1

;

• B1.I(a).P [i] ⇐ B2.O(a).P [i] ∧ B1.I(a).Q[i, o] ⇒ B2.O(a).Q[i, o] if a ∈ ΣIm
A1

.

Example 1. According to our case study (cf. Section 3.3), Bo.A and Bd.A are composable.
The set Shared(Ao, Ad) is defined by {covReq, vmazReq, covered, uncovered, vmaz}. Based on
Table 1, SemCompa(Bo, Bd) is true for a = covReq.

a1 b1 c2 d3

e1

f3 g3 h4 h5

h6

h7h1

covReq? isCovered; yes;

no;uncovered!

covered! vmazReq? computeVmaz; chain!

uncontSW?

vmazSegs?result;vmaz!

IN: covReq, vmazReq, vmazSegs,uncontSW

OUT: covered, uncovered, vmaz, chain

HID: isCovered, yes, no, result, default

Figure 4: Interface automaton (Bd|Bm).A.

Definition 7. Assume that B1 and B2 are composable, we define by B1|B2, the synchronized
behavioral contract of B1 and B2 where:

• (B1|B2).A is defined by A1 ⊗ A2 restricted to the set of reachable states from ıA12
;

• (B1|B2).I is defined by:

– B1.I(a) for all a ∈ ΣIm
A1

\ Shared(A1, A2);

– B2.I(a) for all a ∈ ΣIm
A2

\ Shared(A1, A2);

• (B1|B2).O is defined by:

– B1.O(a) for all a ∈ ΣOm
A1

\ Shared(A1, A2);

– B2.O(a) for all a ∈ ΣOm
A2

\ Shared(A1, A2).

We denote (B1|B2).A by A12 for simplicity. Deadlock states in A12 represent possible
deadlocks during the communication between the components specified by B1 and B2 at the
protocol and semantic levels. They are states s1s2 such that (i) there exists at least a ∈
Shared(A1, A2) enabled from s1 and not from s2 or inversely, or (ii) a is a method action
enabled from s1 and s2 but, the condition SemCompa(B1, B2) is falsified. The latter condition
is essential for the calling component in order to define properly the output semantics of the
method call with respect to the input semantics imposed by the environment: this allows the
detection of the assumptions on components exchanged data as early as possible, and make the
design more reliable.

DISC Department

10 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

Definition 8. The set of deadlock states Dead(A1, A2) in A12 is defined by {s1s2 ∈ ΥA12
|

(∃ a ∈ Shared(A1, A2). D1(s1s2) ∨ D2(s1s2))} where

D1(s1s2) ≡ (a ∈ ΣO
A1

(s1)∧a /∈ ΣI
A2

(s2))∨(a ∈ ΣOm
A1

(s1)∧a ∈ ΣIm
A2

(s2)∧¬SemCompa(B1, B2));

D2(s1s2) ≡ (a ∈ ΣO
A2

(s2)∧a /∈ ΣI
A1

(s1))∨(a ∈ ΣOm
A2

(s2)∧a ∈ ΣIm
A1

(s1)∧¬SemCompa(B1, B2)).

Example 2. According to Figure 3, the interface automata Ad and Am are composable. Let us
consider two composable behavioral contracts Bd and Bm where Bd.A = Ad and Bm.A = Am.
By supposing that actions isCovered and computeVmaz are semantically compatible between Bd

and Bm, the state h6 is the only deadlock state in (Bd|Bm).A: the exception action default ∈
Σe

Am
(6) ∩ Shared(Ad, Am) is not enabled from the state h in Ad (cf. Figure 4).

4.2 Optimistic approach of composition

The incremental bottom-up design means that the compatibility checking between components
can be performed for partial descriptions of the system. The optimistic approach of interface
automata composition is closely consistent with the incremental design oncoming.

In this approach, the presence of deadlock states in A12 doesn’t imply necessarily the in-
compatibility of B1 and B2: the existence of a suitable environment E where E.A provides
good input steps and semantics for A12 and prevents reaching deadlock states, implies that
they are compatible. E must satisfy the following conditions: (1) E and B1|B2 are composable,
(2) E.A is non-empty interface automaton, (3) Dead(A12, E.A) = ∅, and (4) no state in the set
Dead(A1, A2) × ΥE.A is reachable in ((B1|B2)|E).A [9].

1 2

chain?

vmazSegs!

IN: chain

OUT: vmazSegs, uncontSW

Figure 5: Interface automaton As of SRB.

Example 3. We assume that SRB does not throw the exception uncontSW if an uncontrolled
switch is detected during chaining. The train VAMZ is limited by the switch position: for
example, in Fig 1, if p1 is uncontrolled, VMAZ of T1 is bounded by the end of segment s2. Let
us consider a behavioral contract Bs for SRB composable with Bd|Bm where Bs.A = As (cf.
Figure 5) and SemCompa(Bd|Bm, Bs) is valid for a = chain. Bs is a suitable environment for
Bd|Bm. In ((Bd|Bm)|Bs).A, the states h61 and h62 are not reachable because from the state 2
in As the action uncontSW is not enabled. Consequently, Bd and Bm are compatible.

In the product A12, all states s1s2 from which deadlock states are autonomously reachable,
are considered as incompatible and must be removed from A12. No environment can prevent
reaching deadlocks from those states as explained in Section 3.1. A state s1s2 ∈ ΥA12

is
compatible in A12 if there is no state s′

1s′
2 ∈ Dead(A1, A2) autonomously reachable from s1s2.

We denote, by Cmp(A1 , A2), the set of compatible states in A12. B1 and B2 are compatible iff
they are composable and ıA12

∈ Cmp(A1 , A2). The interface automaton of the composition of
two behavioral contracts is restricted to the compatible states of their synchronized product.

The composite interface automaton of the composition of two behavioral contracts is re-
stricted to the set of compatible states of the interface automaton of their synchronization.

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 11

a1 b1 c2 d3

e1

f3 g3 h4 h5

h7h1

covReq? isCovered; yes;

no;uncovered!

covered! vmazReq? computeVmaz; chain!

vmazSegs?result;vmaz!

IN: covReq, vmazReq, vmazSegs,uncontSW

OUT: covered, uncovered, vmaz, chain

HID: isCovered, yes, no, result, default

Figure 6: Interface automaton (Bd‖Bm).A.

Definition 9. The composition B1‖B2 of two compatible behavioral contracts B1 and B2 is
defined by:

• (B1‖B2).A, an interface automaton where Υ(B1‖B2).A = Cmp(A1 , A2), ı(B1‖B2).A = ıA12
,

Σ∗
(B1‖B2).A = Σ∗

A12
for ∗ ∈ {I, O, H}, and δ(B1‖B2).A = {(s, a, s′) ∈ δA12

| s, s′ ∈ Υ(B1‖B2).A};

• (B1‖B2).I = (B1|B2).I;

• (B1‖B2).O = (B1|B2).O.

Example 4. The interface automaton (Bd‖Bm).A (cf. Figure 6) is the restriction of (Bd|Bm).A
to the set of compatible states Υ(Bd|Bm).A \ {h6}. Assume that Ad is not well-formed and do
not expect to assign the return value of computeVmaz, h7 is a deadlock state in (Bd|Bm).A. In
this case, states h5, h4, and g3 are incompatible (the path between g3 and h7 is autonomous).
The call of vmazReq leads inevitably to a deadlock for all possible environments.

The following property states the preservation of interface automata well-formedness by
composition of behavioral contracts.

Theorem 1. If B1 is compatible with B2 and B1.A and B2.A are well-formed, then (B1‖B2).A
is also well-formed.

Proof. We denote (B1‖B2).A by A′
12. Given s1s2 ∈ ΥA′

12

and a ∈ Σm
A′

12

(s1s2) where RA′
12

(a) ∈

Σr
A′

12

, we have to prove that, there is at least t1t2 ∈ ΥA′
12

, where RA′
12

(a) ∈ ΣA′
12

(t1t2), reach-

able from SuccA′
12

(s1s2, a) by an autonomous exception-free run? We have the following as-
sumptions: (i) if a ∈ Σm

A1
(s1) and RA1

(a) ∈ Σr
A1

, then there is at least a state t1 ∈ ΥA1

such that RA1
(a) ∈ Σr

A1
(t1) reachable from SuccA1

(s1, a) by an autonomous exception-free

run σ1 = s1
1[a1

1]...sk−1
1 [ak−1

1]sk
1 where s1

1 = SuccA1
(s1, a) and sk

1 = t1; (ii) if a ∈ Σm
A2

(s2) and
RA2

(a) ∈ Σr
A2

, then there is at least a state t2 ∈ ΥA2
such that RA2

(a) ∈ Σr
A2

(t2) reach-

able from SuccA2
(s2, a) by an autonomous exception-free run σ2 = s1

2[a1
2]...sl−1

2 [al−1
2]sl

2 where
s1

2 = SuccA2
(s2, a) and sl

2 = t2.

(1) If a ∈ Σm
A1

∩Shared(A1, A2), we have RA1
(a) = RA2

(a) = ra since B1 and B2 are compos-
able. The transitions labeled by a enabled from s1 and s2 synchronize if SemCompa(A1, A2):

(1.1) if ra ∈ Shared(A1, A2), then the transitions enabeled from sk
1 and sl

2 labeled by ra synchro-
nize. If (ΣA1

〈σ1〉 ∪ ΣA2
〈σ2〉) ∩ Shared(A1, A2) = ∅, then the transitions of σ1 and σ2 are

interleaved asynchronously and produce autonomous exception-free runs between s1
1s1

2 and
sk

1sl
2. If (ΣA1

〈σ1〉∪ΣA2
〈σ2〉)∩Shared(A1, A2) 6= ∅, then all transitions labeled by shared ac-

tions in σ1 and σ2 synchronize and produce autonomous exception-free runs between s1
1s1

2

and sk
1sl

2. For each σ from those runs, if ΥA12
〈σ〉 ∪ {SuccA12

(sk
1sl

2, ra)} ⊆ Cmp(A1, A2),
then σ remains in A′

12 if s1s2 ∈ Cmp(A1, A2). Otherwise, σ is removed in A′
12 and

s1s2 6∈ ΥA′
12

.

DISC Department

12 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

(1.2) if ra 6∈ Shared(A1, A2) and a ∈ ΣIm
A1

, then the transition enabling ra as output action is

interleaved form sk
1t2 where t2 is reachable from s2 in A2. If ΣA1

〈σ1〉 ∩ Shared(A1, A2) =
∅, the transitions of σ1 are interleaved and among the produced runs, we distinguish
the autonomous exception-free run σ = s1

1t2[a1
1]...sk−1

1 t2[ak−1
1]sk

1t2 in A12 where t2 =
s1

2: if ΥA12
〈σ〉 ∪ {SuccA12

(sk
1t2, ra)} ⊆ Cmp(A1, A2), then σ remains in A′

12 if s1s2 ∈
Cmp(A1, A2). Otherwise, σ is removed in A′

12 and s1s2 6∈ ΥA′
12

. If ΣA1
〈σ1〉∩Shared(A1, A2)

6= ∅, then all transitions labeled by shared actions of σ1 synchronize with their equivalents
in A2 if they exist: either a deadlock state is hit and then s1s2 6∈ ΥA′

12

, or there is an au-

tonomous exception-free run σ between s1
1s1

2 and sk
1t2 containing only actions in ΣA1

〈σ1〉
where t2 is reachable from s2 in A2. In the latter case, if ΥA12

〈σ〉 ∪ {SuccA12
(sk

1t2, ra)} ⊆
Cmp(A1, A2), then σ remains in A′

12 if s1s2 ∈ Cmp(A1, A2). Otherwise, σ is removed in
A′

12 and s1s2 6∈ ΥA′
12

. The same reasoning is adapted if a ∈ ΣIm
A2

.

Finally, if ¬SemCompa(A1, A2), s1s2 is deadlock in A12 and removed in A′
12.

(2) If a ∈ Σm
A1

\ Shared(A1, A2), we have RA1
(a) = ra 6∈ Shared(A1, A2). The transition

enabled from sk
1 labeled by ra and that enabled from s1 labeled by a are interleaved in A12. If

ΣA1
〈σ1〉 ∩ Shared(A1, A2) = ∅, the transitions of σ1 are interleaved and among the produced

runs, we distinguish the autonomous exception-free run σ = s1t2[a]s1
1t2[a1

1]...sk−1
1 t2[ak−1

1]sk
1t2 in

A12 where s1
1t2 = Succ(s1t2, a) and s1t2 is reachable in A12: if ΥA12

〈σ〉 ∪ SuccA12
(sk

1t2, ra) ⊆
Cmp(A1, A2), then σ remains in A′

12 if s1t2 ∈ Cmp(A1, A2). Otherwise, σ is removed in A′
12 and

(s1t2, a, s1
1t2) 6∈ δA′

12

. If ΣA1
〈σ1〉 ∩ Shared(A1, A2) 6= ∅, then all transitions labeled by shared

actions of σ1 synchronize with their equivalents in A2 if they exist: either a deadlock state is
hit and then all reachable states s1t2 in A12 are removed in A′

12, or there is an autonomous
exception-free run σ between all s1t2 reachable in A12 and sk

1t2 containing only actions in
{a}∪ΣA1

〈σ1〉. In the latter case, if ΥA12
〈σ〉∪{SuccA12

(sk
1t2, ra)} ⊆ Cmp(A1, A2), then σ remains

in A′
12 for all s1t2 ∈ Cmp(A1, A2). Otherwise, σ is removed in A′

12 and (s1t2, a, s1
1t2) 6∈ δA′

12

.

The same reasoning is adapted if a ∈ ΣIm
A2

. Consequently, from proofs (1) and (2), we can
deduce that (B1‖B2).A is well-formed.

The following theorem is in the heart of incremental design of component-based systems. It
is a straightforward generalization of interface automata associativity [9] to behavioral contracts.

Theorem 2. The composition operation ‖ between compatible behavioral contracts is commu-
tative and associative.

Proof. This proof is adapted from [4]. Let us consider three behavioral contracts B1, B2, and
B3 mutually composable and compatible. The proof of commutativity is trivial. It is also easy
to check that ((B1‖B2)‖B3).I = (B1‖(B2‖B3)).I = ((B1‖B3)‖B2).I and ((B1‖B2)‖B3).O =
(B1‖(B2‖B3)).O = ((B1‖B3)‖B2).O. The proof of associativity is mainly required at the level
of interface automata. We denote B1.A, B2.A, and B3.A resp. by A1, A2, and A3. We recall
that the synchronization ⊗ of interface automata is a commutative and associative operation
(proof sketch in [7]): we have (A1 ⊗A2)⊗A3 = A1 ⊗(A2 ⊗A3) = (A1 ⊗A3)⊗A2 = A1 ⊗A2 ⊗A3

(denoted A123). We consider projections Ai ⊗ Aj (denoted Aij) of A123 for i, j ∈ {1, 2, 3} and
i 6= j. A state s1s2s3 is a deadlock state in A123 if sisj is a deadlock state in one of the
projections Aij . A state s1s2s3 is incompatible in A123 if there is a deadlock state d1d2d3 in
A123 autonomously reachable from s1s2s3. For l ≥ 0, a state s1s2s3 is l-incompatible if there is
a deadlock state d1d2d3 autonomously reachable from s1s2s3 by enabling at most l transitions.

It is sufficient to show that (B1‖B2‖B3).A (denoted A′
123), for any insertion of parentheses,

is the associative product A123 by removing incompatible states. We follow two steps: (1) we

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 13

demonstrate that a state s1s2s3 is incompatible in A123 if there is a state sisj incompatible
in one of its projection Aij ; (2) we demonstrate that if there are transitions labeled by non-
autonomous actions (ΣIm

Aij
∪ (ΣI

Aij
∩ Σe

Aij
)) reachable autonomously from sisj and removed in

(Bi‖Bj).A (denoted A′
ij), then in the product A123 without those transitions, there is always

an autonomous run starting from s1s2s3 reaching a deadlock state.

(1) Given a state s1s2s3 in A123 and a projection sisj of s1s2s3 k-incompatible in the product
Aij , we show that s1s2s3 is l′-incompatible with l′ ≤ l in A123. Given σ the smallest autonomous
run between sisj and a deadlock state didj in Aij . The proof is by induction: (base case 1)
if sisj ∈ Dead(Ai, Aj), then s1s2s3 is a deadlock state (0-incompatible in A123); (base case 2)
if sisj ∈ Comp(Ai, Aj) and s1s2s3 ∈ Dead(Aij , Ak) for k ∈ {1, 2, 3} \ {i, j} (0-incompatible in
A123); (step case) if the first transition of σ is labeled by an autonomous action, synchronized
or interleaved in A123, then the successor state t1t2t3 of s1s2s3 by enabling this action, is (l−1)-
incompatible. The proof is iterated inductively until reaching a deadlock state d1d2d3 (one of
the base cases).

(2) Given a state s = s1s2s3 incompatible in A123, we assume that there are transitions
labeled by non-autonomous actions a ∈ ΣIm

Aij
∪ ΣIe

Aij
, reachable from sisj in a sub-product Aij

and removed in A′
ij and A′

123. Only transitions (t, a, v) where a is hidden in A123 and their
projections onto Aij are transitions (titj , a, vivj) where a is non-autonomous and synchronized
by its corresponding output action in Ak for k ∈ {1, 2, 3} \ {i, j}, can be removed in this way.
Once (t, a, v) is removed from A123, the input non-autonomous action is no longer enabled from
titj because interface automata are deterministic. Consequently, the state t ∈ Dead(Aij , Ak).
Hence, after removing (t, a, v) from A123 there is always an autonomous run between s and a
deadlock state, especially t.

The compatibility check procedure of two behavioral contracts is similar to that described
in [9] for interface automata, by considering the semantic layer of actions and the new defini-
tion of autonomous runs. The linear complexity of the proposed algorithm is extended by the
satisfiability decision problems of the semantic compatibility conditions of shared method ac-
tions. The original algorithm becomes a semi-algorithm on account of the various satisfiability
problems which are either decidable (propositional logic) or not (arithmetic, etc).

5 Refinement

Refinement embodies with more details an abstract specification of a component in a more
concrete one. It guarantees a safe substitutability of an abstract version of a component by a
refined one. We propose a refinement approach for behavioral contracts at the protocol and
semantic levels suitable to the object-oriented context. We start by introducing refinement at
the level of interface automata.

5.1 Expanding simulation

The original refinement approach of interface automata is contravariant [9]: a refined version of
a component must accept the same or more inputs and provide the same or fewer outputs, than
the abstraction. It is based on an alternating simulation relation [5]: an interface automaton A′

refines an interface automaton A if each input event of A can be simulated by A′, and each output
event of A′ can be simulated by A. At the protocol level in OOCBD, refinement ensures that
a refined specification of component (i) may contain more details about the common provided

DISC Department

14 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

methods with the abstract one, which are output and hidden method calls encapsulated in their
implementations, and (ii) may provide more methods than the abstract one. In order to satisfy
the previous requirements, we define refinement as a covariant expanding simulation relation
between interface automata: A′ refines A if A′ accepts (resp. issues) more inputs (resp. outputs)
than A, and each input, output, or local event of A is simulated in A′ by the same one followed
or preceded by other events.

To formalize this relation, we define the closure set ClosA(s, Σ) of s ∈ ΥA under actions in
Σ ⊆ ΣA by the largest set Υ ⊆ ΥA such that s ∈ Υ and if t ∈ Υ, t′ = SuccA(t, a), and a ∈ Σ,
then t′ ∈ Υ i.e. ClosA(s, Σ) contains states reachable from the state s by enabling actions of Σ.

Definition 10. Given two interface automata A and A′, a binary relation & ⊆ ΥA × ΥA′ is an
expanding simulation from A to A′ iff for all states s ∈ ΥA and s′ ∈ ΥA′ such that s & s′, for
all a ∈ ΣA(s) and t = SuccA(s, a), the following conditions hold:

(1) if a ∈ ΣOm
A (s) ∪ ΣIr

A(s) ∪ ΣIe
A(s), then a ∈ ΣA′(s′) and t & t′ for t′ = SuccA′(s′, a);

(2) if a ∈ ΣIm
A (s) ∪ ΣHm

A (s), then a ∈ ΣA′(s′), and there is a set Σ ⊆ ((Σaut
A′ \ ΣOr

A′) \ Σe
A′) \ ΣA

and a state t′ ∈ ClosA′(SuccA(s′, a), Σ) such that t & t′;

(3) if a ∈ ΣOr
A (s) ∪ ΣHr

A (s), then there is a state v′ ∈ ClosA′(s′, Σ) such that a ∈ ΣA′(v′),
Σ = ((Σaut

A′ \ ΣOr
A′) \ Σe

A′) \ ΣA, and t & t′ for t′ = SuccA′(v′, a);

(4) if a ∈ ΣOe
A (s) ∪ ΣHe

A (s), then there is a state v′ ∈ ClosA′(s′, Σ) such that a ∈ ΣA′(v′),
Σ = ((Σaut

A′ \ (ΣOe
A′ ∪ ΣOr

A′)) ∪ ΣIe
A′) \ ΣA, and t & t′ for t′ = SuccA′(v′, a).

Our expanding simulation relation pinpoints where refinement details are added in the ab-
stract version of an interface automaton. Condition (1) of Definition 10 states that every
transition labeled by an output method action, or an input return or exception action must be
matched by a transition labeled by the same action in A′. Method calls sent to the environment,
the reception of their return values, and catching their thrown exceptions, cannot be refined.

Condition (2) states that every transition labeled by an input or hidden method action in A
is matched in A′ by a transition labeled by the same action followed by zero or more transitions
labeled by a “subset” of new autonomous non-exception actions in ((Σaut

A′ \ ΣOr
A′) \ Σe

A′) \ ΣA.
A provided public method in the abstraction of a component can be refined by adding to its
body new private or public method calls. In addition, since providing private methods is not
specified by actions in interface automata (cf. Section 3), our simulation relation allows adding
refinement details about private methods after their calls.

Condition (3) states that every transition labeled by an output or hidden return action a
in A is matched in A′ by zero or more transitions labeled by new autonomous non-exception
actions in ((Σaut

A′ \ ΣOr
A′) \ Σe

A′) \ ΣA followed by a transition labeled by a. The return event of
a private or public provided method in the abstraction is computed based on the return values
of new calls of private or public methods added as refinement details.

Condition (4) states that every transition labeled by an output or hidden exception action
a in A is matched in A′ by zero or more transitions labeled either by new autonomous and
hidden exception actions in (Σaut

A′ \ (ΣOe
A′ ∪ ΣOr

A′)) \ ΣA, or by new input exception actions in
ΣIe

A′ \ ΣA, followed by a transition labeled by a. The exception events of a provided private or
public method in the abstraction is the propagation of catching exception events of new calls
of private or public methods added as refinement details.

From the previous definition, we establish the refinement relation between interface au-
tomata as follows.

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 15

Definition 11. A′ refines A, denoted A � A′, iff

(1) ΣI
A ⊆ ΣI

A′, ΣO
A ⊆ ΣO

A′, and ΣH
A ⊆ ΣH

A′;

(2) there is an expanding simulation & from A to A′ such that ıA & ıA′.

A trivial consequence of condition (1) of Definition 11 is covariance from A to A′ on method,
return, and exception actions: Σm

A ⊆ Σm
A′ , Σr

A ⊆ Σr
A′ , and Σe

A ⊆ Σe
A′ . Condition (2) requires the

existence of an expanding simulation from A to A′ relating their initial states ıA and ıA′ and
recursively propagated to their successor states.

We infer from conditions of Definition 10 that extra new input method actions are not
considered as refinement details by the expanding simulation relation, which obviously makes
sense. By cons, it allows the extension of interface automata by adding protocols related to
additional methods provided by a component extended interface. They can be enabled for
example separately from the initial state.

SubRouteBuilder

-bdd:{seg:Seg 7→ sw:Switch}ˆmaxs

+chain(start:nat,end:nat):{segs:Segˆmax,useful nb:nat}
+checkLocs(tel:real,ts:nat,hel:real,hs:nat):nat

Component
SRB

RouteBuilder

Figure 7: Extended version of SubRouteBuilder.

1’ 2’ 3’ 5’

4’

6’ 7’ 8’

10’

9’

isCovered? checkLocs! localized?

unlocalized?
no!

yes! computeVmaz? chain!

uncontSW?default!

vmazSegs?result!

IN: isCovered, computeVmaz, vmazSegs, uncontSW, localized, unlocalized

OUT: checkLocs, chain, yes, no, result, default

1’ 2’3’

chain?

vmazSegs!

localized!

unlocalized!

checkLocs?

IN: chain, checkLocs

OUT: vmazSegs, uncontSW, localized, unlocalized

(a) A′
m (MCU) (b) A′

s (SRB)

Figure 8: Refined interface automata of MCU and SRB.

Example 5. After receiving a train coverage request, MCU asks SRB to check if tel and hel
are really on segments ts and hs respectively by calling the method checkLocs, presented in
Figure 8(left), as a new service of the class SubRouteBuilder and the interface RouteBuilder.
If true, SRB responds by sending the status (localized), and MCU in turn, responds OBD, via
DEU, by returning yes if the train is completely (or partially) included in its coverage area.
Otherwise, SRB throws the exception unlocalized to MCU, which in turn, propagates it to
DEU by throwing the exception no. In A′

m shown in Figure 8(a), the method call checkLocs!
is encapsulated in the runs describing the body of the method isCovered provided by MCU.
Providing the public method checkLocs is equally depicted in the interface automaton A′

s shown
in Figure 8(b) by a new input method action enabled separately from ıA′

s
= 1′. A′

m and A′
s

resp. refine Am and As (shown resp. in Figure 3(c) and Figure 5): condition (1) of Definition 11
is met by A′

m and Am, as well by A′
s and As, and there are two expanding simulations &m=

{11′, 23′, 36′, 47′, 58′, 69′, 7(10′)} from Am to A′
m with ıAm &m ıA′

m
and &s= {11′, 22′} from As

to A′
s with ıAs &s ıA′

s
.

DISC Department

16 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

5.2 Semantic substitutability

The semantic substitutability of method actions between an abstract and a concrete versions
of a component behavioral contract is based on behavioral sub-typing principles introduced
in [6, 13]: in the refined specification, a common provided method must have a weaker precon-
dition, a stronger termination postcondition, and does not introduce exceptions by supplying a
stronger exception condition, than the abstraction. Inversely, a common method call must have
a stronger precondition and a weaker postcondition than the abstraction. Given tow behavioral
contracts B and B′, we denote B.A by A and B′.A by A′.

Definition 12. Given an action a ∈ ΣIm
A , B′.I(a) = (P ′

a, B′
a, Q′

a, E′
a) substitutes B.I(a) =

(Pa, Ba, Qa, Ea) i.e. SemSuba(B, B′), iff for all (i, f, o) ∈ Ψi
A(a) × ΛA(a) × Ψo

A(a), the following
conditions hold:

(1) Pa[i] ⇒ P ′
a[i], Qa[i, f, o] ⇐ Q′

a[i, f, o], and Ea[i, f, o] ⇐ E′
a[i, f, o];

(2) Pa[i] ∧ S′
a[i, f, o] ⇒ Sa[i, f, o].

Given an action b ∈ ΣOm
A , B′.O(b) = (P ′

b, Q′
b) substitutes B.O(b) = (Pb, Qb) i.e. SemSubb(B, B′),

iff for all (i, o) ∈ Ψi
A(b) × Ψo

A(b), the following condition holds:

(3) Pb[i] ⇐ P ′
b[i] and Qb[i, o] ⇒ Q′

b[i, o].

The following property is evident based on definitions 5 and 12. The correctness, termi-
nation and exception preservation is what we expect for a correct refinement at the level of
provided methods semantics: if a refined semantics of a provided method satisfies the condition
(2) of Definition 12, then any property holding for a specification S under the precondition
in the abstract method semantics, holds also for the refined specification S′ under the same
precondition, and thus S′ may be used instead of S [14, 3].

Property 1. Given a ∈ ΣIm
A where SemSuba(B, B′), for all (i, f, o) ∈ Ψi

A(a) × ΛA(a) × Ψo
A(a),

• Pa[i] ∧ S′
a[i, f, o] ⇒ Qa[i, f, o] if a is correct with respect to B.I(a);

• Pa[i] ∧ S′
a[i, f, o] ⇒ Qa[i, f, o] ∧ ¬Ea[i, f, o] if a terminates with respect to B.I(a);

• Pa[i] ∧ S′
a[i, f, o] ⇒ Ea[i, f, o] if a throws exceptions with respect to B.I(a).

Property 2 says that the semantic compatibility validity of shared observable method actions,
between a component behavioral contracts and its environment, is preserved by the semantic
substitutability. The property is obvious based on Definition 6 and conditions (1) and (3) of
Definition 12. Given a behavioral contract E, we set E.A = AE .

Property 2. Given an action a ∈ Shared(A, AE) ∩ Σm
A , for all (i, o) ∈ Ψi

A(a) × Ψo
A(a), if

SemSuba(B, B′), then SemCompa(B, E) = SemCompa(B′, E) .

Finally, we can define refinement of behavioral contracts based on refinement of interface
automata and the semantic substitutability of observable method actions.

Definition 13. B′ refines B (B ⊒ B′) iff A � A′ and for all a ∈ ΣIm
A ∪ ΣOm

A , SemSuba(B, B′).

5.3 Refinement properties

In this subsection, we present the properties and requirements under which our refinement
approach allows independent implementability of components using their behavioral contracts.

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 17

Reflexivity and transitivity

Lemma 3 states that the expanding simulation between interface automata is a transitive rela-
tion. This result is necessary to prove that the refinement relation ⊒ is a preorder (Theorem 4)
i.e. a behavioral contract can be gradually refined in several steps while remaining consistent
with its abstract specification.

Lemma 3. given three interface automata A, A′, and A′′, and two expanding simulations
&′ ⊆ ΥA × ΥA′ and &′′ ⊆ ΥA′ × ΥA′′, then the composite relation &′′ ◦ &′ ⊆ ΥA × ΥA′′ is an
expanding simulation.

Proof. We set some notations. Given an interface automaton M , a state s ∈ ΥM , and a set of
actions Σ ⊆ ΣM , we define recursively Closk

M (s, Σ) by: Clos0
M (s, Σ) = {s} and Closk

M (s, Σ) =
Closk−1

M (s, Σ) ∪ {t = SuccM (s, a) | a ∈ Σ ∧ s ∈ Closk−1
M (s, Σ)} for k > 0. We prove that

&′′ ◦ &′= {ss′′ ∈ ΥA × ΥA′′ | (∃s′ ∈ ΥA′ | s &′ s′ &′′ s′′)} is an expanding simulation. For
all s ∈ ΥA, based on Definition 10, we state the following properties for all a ∈ ΣA(s) and
t = SuccA(s, a):

(1) if a ∈ ΣOm
A (s) ∪ ΣIr

A(s) ∪ ΣIe
A(s), a ∈ ΣA′(s′), a ∈ ΣA′′(s′′), and t &′ t′ &′′ t′′ for t′ =

SuccA′(s′, a) and t′′ = SuccA′′(s′′, a), that is t &′′ ◦ &′ t′′;

(2) if a ∈ ΣIm
A (s)∪ΣHm

A (s), then a ∈ ΣA′(s′), and there is a set Σ′ ⊆ ((Σaut
A′ \ΣOr

A′)\Σe
A′)\ΣA and

a state t′ ∈ ClosA′(SuccA′(s′, a), Σ′) such that t &′ t′. We have to prove that a ∈ ΣA′′(s′′),
and there is a set Σ ⊆ ((Σaut

A′′ \ ΣOr
A′′) \ Σe

A′′) \ ΣA and a state t′′ ∈ ClosA′′(SuccA′′(s′′, a), Σ)
such that t &′ t′ &′′ t′′? We consider Closk

A′(SuccA′(s′, a), Σ′) ⊆ ClosA′(SuccA′(s′, a), Σ′)
where k is the first natural such that t′ ∈ Closk

A′(SuccA′(s′, a), Σ′). We define the states
s′

i ∈ Closk
A′(SuccA′(s′, a), Σ′)∪{s′} inductively on 0 ≤ i ≤ k+1: s′

0 = s, s′
1 = SuccA′(s′

0, a),
s′

i ∈ Closi−1
A′ (s′

1, Σ′) \ Closi−2
A′ (s′

1, Σ′) for i > 1. We define s′′
i and Υ′′

i inductively on i:

(2.1) i = 0: s′′
0 = s′′ (we recall that s′

0 &′′ s′′
0); Υ′′

0 = {s′′
0};

(2.2) i = 1: a ∈ ΣA′′(s′′
0), there is a set Σ′′

0 ⊆ ((Σaut
A′′ \ ΣOr

A′′) \ Σe
A′′) \ ΣA′ and a state s′′

1 ∈
ClosA′′(SuccA′′(s′′

0, a), Σ′′
0) such that s′

1 &′′ s′′
1; Υ′′

1 = Υ′′
0 ∪ ClosA′′(SuccA′′(s′′

0, a), Σ′′
0);

(2.3) i > 1: for all bi−1 ∈ ΣA′(s′
i−1) ∩ Σ′ and s′

i = SuccA′(s′
i−1, bi−1), we have three cases:

(2.3.1) if bi−1 ∈ ΣOm
A′ (s′

i−1) ∪ ΣIr
A′(s′

i−1), then bi−1 ∈ ΣA′′(s′′
i−1) and s′

i &
′′ s′′

i where the
state s′′

i = SuccA′′(s′′
i−1, bi−1); Υ′′

i = Υ′′
i−1 ∪ {s′′

i = SuccA′′(s′′
i−1, bi−1) | bi−1 ∈

(ΣOm
A′ (s′′

i−1) ∪ ΣIr
A′(s′′

i−1)) ∩ Σ′};

(2.3.2) if bi−1 ∈ ΣHm
A′ (s′

i−1), bi−1 ∈ ΣA′′(s′′
i−1), and there is Σ′′

i−1 ⊆ ((Σaut
A′′ \ ΣOr

A′′) \
Σe

A′′) \ ΣA′ and s′′
i ∈ ClosA′′(SuccA′′(s′′

i−1, bi−1), Σ′′
i−1) such that s′

i &
′′ s′′

i ; Υ′′
i =

Υ′′
i−1 ∪ (

⋃
φ ClosA′′(SuccA′′(s′′

i−1, bi−1), Σ′′
i−1)) where φ ≡ bi−1 ∈ ΣHm

A′ (s′
i−1) ∩ Σ′;

(2.3.3) if bi−1 ∈ ΣHr
A′ (s′

i−1), there is a state v′′
i−1 ∈ ClosA′′(s′′

i−1, Σ′′
i−1) such that bi−1 ∈

ΣA′′(v′′
i−1), Σ′′

i−1 = ((Σaut
A′′ \ ΣOr

A′′) \ Σe
A′′) \ ΣA′ , and s′

i &
′′ s′′

i for the state s′′
i =

SuccA′′(v′′
i−1, bi−1); Υ′′

i = Υ′′
i−1 ∪ (

⋃
φ ClosA′′(s′′

i−1, Σ′′
i−1)) ∪ {SuccA′′(v′′

i−1, bi−1) |

(∀v′′
i−1 | φ)} where φ ≡ bi−1 ∈ ΣHr

A′ (s′
i−1) ∩ Σ′.

We deduce from (2.1) and (2.2) that a ∈ ΣA′′(s′′). Given s′
k ∈ Closk

A′(SuccA′(s′, a), Σ′)
where s′

k = t′, according to (2.3), there is a set Υ′′
k+1 ⊆ ClosA′′(SuccA′′(s′′, a), Σ) where

Σ ⊆ ((Σaut
A′′ \ ΣOr

A′′) \ Σe
A′′) \ ΣA and t′′ ∈ Υ′′

k+1 such that t &′ t′ &′′ t′′, that is t &′′ ◦ &′ t′′.

(3) if a ∈ ΣOr
A (s) ∪ ΣHr

A (s), there is v′ ∈ ClosA′(s′, Σ′) such that Σ′ = ((Σaut
A′ \ ΣOr

A′) \ Σe
A′) \ ΣA,

a ∈ ΣA′(v′), and t &′ t′ for t′ = SuccA′(v′, a). We have to prove that there is a state
v′′ ∈ ClosA′′(s′′, Σ) such that Σ = ((Σaut

A′′ \ΣOr
A′′)\Σe

A′′)\ΣA, a ∈ ΣA′′(v′′), and t &′ t′ &′′ t′′

for t′′ = SuccA′′(v′′, a)? We consider Closk
A′(s′, Σ′) ⊆ ClosA′(s′, Σ′) where k is the first

DISC Department

18 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

natural such that v′ ∈ Closk
A′(s′, Σ′). We define the states s′

i ∈ Closk
A′(s′, Σ′) inductively on

0 ≤ i ≤ k: s′
0 = s′ and s′

i ∈ Closi
A′(s′, Σ′)\Closi−1

A′ (s′, Σ′) for i > 0. For all bi ∈ ΣA′(s′
i)∩Σ′

and s′
i+1 = SuccA′(s′

i, bi), we define equally s′′
i and Υ′′

i inductively on i:

(3.1) i = 0: s′′
0 = s′′ (s′

0 &′′ s′′
0); Υ′′

0 = {s′′
0};

(3.2) i > 0: for all bi−1 ∈ ΣA′(s′
i−1) ∩ Σ′ and s′

i = SuccA′(s′
i−1, bi−1), we have three cases:

(3.2.1) if bi−1 ∈ ΣOm
A′ (s′

i−1) ∪ ΣIr
A′(s′

i−1), then the definition goes as in (2.3.1);

(3.2.2) if bi−1 ∈ ΣHm
A′ (s′

i−1), then the definition goes as in (2.3.2);

(3.2.3) if bi−1 ∈ ΣHr
A′ (s′

i−1), then the definition goes as in (2.3.3).

Given s′
k ∈ Closk

A′(s′, Σ′) where s′
k = v′, and s′′

k ∈ Υ′′
k where s′

k &′′ s′′
k, according to (3.2),

there is v′′
k ∈ Υ′′

k ⊆ ClosA′′(s′′, ((Σaut
A′′ \ ΣOr

A′′) \ Σe
A′′) \ ΣA) such that a ∈ ΣA′′(v′′

k), and
t &′ t′ &′′ t′′ for t′′ = SuccA′′(v′′

k , a), that is t &′′ ◦ &′ t′′.

(4) if a ∈ ΣOe
A (s) ∪ ΣHe

A (s), there is v′ ∈ ClosA′(s′, Σ′) such that Σ′ = ((Σaut
A′ \ (ΣOe

A′ ∪ ΣOr
A′)) ∪

ΣIe
A′) \ ΣA, a ∈ ΣA′(v′), and t &′ t′ for t′ = SuccA′(v′, a). We have to prove that there is a

state v′′ ∈ ClosA′′(s′′, Σ) such that Σ = ((Σaut
A′′ \ (ΣOe

A′′ ∪ ΣOr
A′′)) ∪ ΣIe

A′′) \ ΣA, a ∈ ΣA′′(v′′),
and t &′ t′ &′′ t′′ for t′′ = SuccA′′(v′′, a)? We consider Closk

A′(s′, Σ′) ⊆ ClosA′(s′, Σ′) where
k is the first natural such that v′ ∈ Closk

A′(s′, Σ′). We define the states s′
i ∈ Closk

A′(s′, Σ′)
inductively on 0 ≤ i ≤ k: s′

0 = s′ and s′
i ∈ Closi

A′(s′, Σ′) \ Closi−1
A′ (s′, Σ′) for i > 0. For all

bi ∈ ΣA′(s′
i) ∩ Σ′ and s′

i+1 = SuccA′(s′
i, bi), we define equally s′′

i and Υ′′
i inductively on i:

(4.1) i = 0: s′′
0 = s′′ (s′

0 &′′ s′′
0); Υ′′

0 = {s′′
0};

(4.2) i > 0: for all bi−1 ∈ ΣA′(s′
i−1) ∩ Σ′ and s′

i = SuccA′(s′
i−1, bi−1), we have four cases:

(4.2.1) if bi−1 ∈ ΣOm
A′ (s′

i−1)∪ΣIr
A′(s′

i−1)∪ΣIe
A′(s′

i−1), then the definition goes as in (2.3.1);

(4.2.2) if bi−1 ∈ ΣHm
A′ (s′

i−1), then the definition goes as in (2.3.2);

(4.2.3) if bi−1 ∈ ΣHr
A′ (s′

i−1), then the definition goes as in (2.3.3);

(4.2.4) if bi−1 ∈ ΣHe
A′ (s′

i−1), then there is a state v′′
i−1 ∈ ClosA′′(s′′

i−1, Σ′′
i−1) such that

bi−1 ∈ ΣA′′(v′′
i−1), Σ′′

i−1 = ((Σaut
A′′ \(ΣOe

A′′ ∪ΣOr
A′′))∪ΣIe

A′′)\ΣA′ , and s′
i &

′′ s′′
i for s′′

i =
SuccA′′(v′′

i−1, bi−1); Υ′′
i = Υ′′

i−1 ∪ (
⋃

φ ClosA′′(s′′
i−1, Σ′′

i−1)) ∪ {SuccA′′(v′′
i−1, bi−1) |

(∀v′′
i−1 | φ)} where φ ≡ bi−1 ∈ ΣHe

A′ (s′
i−1) ∩ Σ′.

Given s′
k ∈ Closk

A′(s′, Σ′) where s′
k = v′, and s′′

k ∈ Υ′′
k where s′

k &′′ s′′
k, according to (4.2),

there is v′′
k ∈ Υ′′

k ⊆ ClosA′′(s′′, ((Σaut
A′′ \ (ΣOe

A′′ ∪ ΣOr
A′′)) ∪ ΣIe

A′′) \ ΣA) such that a ∈ ΣA′′(v′′
k),

and t &′ t′ &′′ t′′ for t′′ = SuccA′′(v′′
k , a), that is t &′′ ◦ &′ t′′.

From (1), (2), (3), and (4), we deduce that &′′ ◦ &′ ⊆ ΥA ×ΥA′′ is an expanding simulation.

Theorem 4. The refinement relation ⊒ between behavioral contracts is a preorder i.e. reflexive
and transitive.

Proof. Given three behavioral contracts B, B′, and B′′ where B.A = A, B′.A = A′, and
B′′.A = A′′. We have to prove that B ⊒ B (reflexivity) and if B ⊒ B′ and B′ ⊒ B′′, then B ⊒ B′′

(transitivity)? For reflexivity, it is trivial that A � A and for all a ∈ Σm
A , SemSuba(B, B). For

transitivity, we have to prove that (1) if A � A′ and A′ � A′′, then A � A′′, and (2) for all
a ∈ Σm

A , if SemSuba(B, B′) and SemSuba(B′, B′′), then SemSuba(B, B′′)?

(1) Based on Definition 11 and the assumptions A � A′ and A′ � A′′, we can deduce that
Σm

A ⊆ Σm
A′′ , Σr

A ⊆ Σr
A′′ , Σe

A ⊆ Σe
A′′ , ΣI

A ⊆ ΣI
A′′ , ΣO

A ⊆ ΣO
A′′ , and ΣH

A ⊆ ΣH
A′′ . It remains to

prove that there is an expanding simulation & ⊆ ΥA × ΥA′′ such that ıA & ıA′′ . We have,
as assumptions, two expanding simulation &′ ⊆ ΥA × ΥA′ and &′′ ⊆ ΥA′ × ΥA′′ such that
ıA &′ ıA′ &′′ ıA′′ . We choose the composite relation &′′ ◦ &′ ⊆ ΥA × ΥA′′ . From Lemma 3,
&′′ ◦ &′ is an expanding simulation such that ıA &′′ ◦ &′ ıA′′ .

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 19

(2) Based on Definition 12 and the assumptions SemSuba(B, B′) and SemSuba(B′, B′′) for all
a ∈ Σm

A , we can deduce that if a ∈ ΣIm
A , then for all (i, f, o) ∈ Ψi

A(a) × ΛA(a) × Ψo
A(a), Pa[i] ⇒

P ′′
a [i] (from Pa[i] ⇒ P ′

a[i] ⇒ P ′′
a [i]), Qa[i, f, o] ⇐ Q′′

a[i, f, o] (from Qa[i, f, o] ⇐ Q′
a[i, f, o] ⇐

Q′′
a[i, f, o]), Ea[i, f, o] ⇐ E′′

a [i, f, o] (from Ea[i, f, o] ⇐ E′
a[i, f, o] ⇐ E′′

a [i, f, o]), and Pa[i] ∧
S′′

a [i, f, o] ⇒ Sa[i, f, o] (from Pa[i] ∧ S′
a[i, f, o] ⇒ Sa[i, f, o], P ′

a[i] ∧ S′′
a [i, f, o] ⇒ S′

a[i, f, o], and
Pa[i] ⇒ P ′

a[i]) where B.I(a) = (Pa, Ba, Qa, Ea), B′.I(a) = (P ′
a, B′

a, Q′
a, E′

a), and B′′.I(a) =
(P ′′

a , B′′
a , Q′′

a, E′′
a). Else if a ∈ ΣOm

A , then for all (i, o) ∈ Ψi
A(a) × Ψo

A(a), Pa[i] ⇐ P ′′
a [i] (from

Pa[i] ⇐ P ′
a[i] ⇐ P ′′

a [i]) and Qa[i, o] ⇒ Q′′
a[i, o] (from Qa[i, o] ⇒ Q′

a[i, o] ⇒ Q′′
a[i, o]) where

B.O(a) = (Pa, Qa), B′.O(a) = (P ′
a, Q′

a), B′′.O(a) = (P ′′
a , Q′′

a).

Independent implementability

Refinement is expected to allow independent implementability of components: compatible be-
havioral contracts can be refined separately, while still maintaining compatibility. It lets in-
dustrials unrestricted to outsource the implementation of the different components by different
suppliers, after the refinement process, even if they do not communicate [4].

Our refinement approach guarantees the consistency between two behavioral contracts B
and B′ where B ⊒ B′ if they are considered “isolated” from their use context. However, it
does not prevent the introduction of poorly designed behaviors in their interface automata.
Since refinement may issues new outputs, the designer should “safely” define it to preserve
compatibility with the environment within the abstraction is incorporated without altering
their communication scenarios. For example, according to Definition 2 and conditions (2) and
(3) of Definition 10, the proposed expanding simulation relation preserves well-formedness in
refinement only for method actions events common with the abstraction. By cons, it does
not guarantee that new method actions events are followed necessarily by their return events.
In general, the higher the refinement design respects the environment requirements and well-
formedness, the safer the refinement is considered to be.

In the rest of the section, we consider three behavioral contracts B1, B′
1 and B2 such

that B1 and B2 are composable and compatible, B′
1 and B2 are composable, and B1 ⊒ B′

1.
Let B1.A = A1, B′

1.A = A′
1, B2.A = A2, (B1|B2).A = A12, and (B′

1|B2).A = A′
12, we set

EnabRiseDead(A1, A2) = {a ∈ (ΣIm
A12

∪ΣIe
A12

)∩ΣA12
〈σ〉 | σ ∈ ΘA12

(d1d2), d1d2 ∈ Dead(A1, A2)}:
the set of non-autonomous actions enabled by runs σ ∈ ΘA12

(d1d2) for all d1d2 ∈ Dead(A1, A2).
Since B1 and B2 are compatible, EnabRiseDead(A1, A2) 6= ∅ if Dead(A1, A2) 6= ∅.

Given & an expanding simulation from A1 to A′
1 such that ıA1

& ıA′
1

, we state the following
definition.

Definition 14. B′
1 is a safe refinement of B1 compared to B2, denoted B1 ⊒s

B2
B′

1, iff

(1) for all deadlock state d′
1d2 ∈ Dead(A′

1, A2), there is a deadlock state d1d2 ∈ Dead(A1, A2)
such that d1 & d′

1 or d′
1 ∈ ClosA′

1

(c′
1, ΣA′

1

\ ΣA1
) and d1 & c′

1, and

(2) Shared(A′
1, A2) ∩ EnabRiseDead(A1, A2) = ∅.

The previous conditions establish requirements whereby B′
1 is considered to be a safe re-

finement of B1 compared to B2. Condition (1) says that A′
12 does not introduce new deadlocks

compared to A12 by guaranteeing that all states in Dead(A′
1, A2) are simulated by states in

Dead(A1, A2). Condition (2) says that A′
1 does not share non-autonomous actions in the set

EnabledRiseDead(A1, A2) with A2 if they are enabled by the environment in A12 may lead
inevitably to deadlock states. We claim the following theorem.

DISC Department

20 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

Theorem 5. If B1 ⊒s
B2

B′
1, then B′

1 is compatible with B2 and B1‖B2 ⊒ B′
1‖B2.

Proof. Under the theorem assumptions, we have to demonstrate that (1) Cmp(A′
1, A2) 6= ∅ and

ıA′
12

∈ Cmp(A′
1, A2), and (2) A12 � A′

12 and for all a ∈ ΣIm
A12

∪ ΣOm
A12

, SemSuba(B1‖B2, B′
1‖B2)?

(1) First, we prove that ıA′
12

cannot be a deadlock state: if ıA′
12

∈ Dead(A′
1, A2), then, from

B1 ⊒s
B2

B′
1 (condition (1) of Definition 14), ıA1

ıA2
∈ Dead(A1, A2) which is in contradiction with

the compatibility of B1 and B2. Therefore, we conclude that ıA′
12

6∈ Dead(A′
1, A2). Second, we

prove that each σ′, starting from ıA′
12

and ending by a deadlock state in Dead(A′
1, A2), contains

at least a transition labeled by a ∈ ΣIm
A′

12

∪ΣIe
A′

12

: from B1 ⊒s
B2

B′
1 (condition (1) of Definition 14),

we can deduce that each run σ′ starting from ıA′
12

and reaching d′
1d2 ∈ Dead(A′

1, A2) is the image
of a run σ in A12 starting form ıA12

and reaching d1d2 ∈ Dead(A1, A2) such that d1 & d′
1 or

d′
1 ∈ ClosA′

1

(c′
1, ΣA′

1

\ ΣA1
) where d1 & c′

1: σ′ can be decomposed on fragments matching each
transition of σ. We consider that σ = s0t0[a0]...[an−1]sntn in A12 where n ∈ N

∗, s0t0 = ıA12
, and

sntn ∈ Dead(A1, A2). Since B1 ⊒ B′
1, we decompose σ′ inductively on 0 ≤ l ≤ n, to fragments

σ′
l as follows:

• l = 0: σ′
0 is the path of length 0 defined by s′

0t0 = ıA′
1

ıA2
(we have s0 & s′

0);

• 0 < l ≤ n: σ′
l is the concatenation of σ′

l−1 with a run α′
l (matching sl−1tl−1[al−1]sltl)

starting form s′
l−1tl−1, reaching s′

ltl where sl & s′
l, and containing necessarily a transition

labeled by al−1, and zero or more transitions labeled by autonomous exception-free actions
in the set Σaut

A′
1

\ΣA1
, if al−1 ∈ ΣA1

\Σe
A1

, or zero or more transitions labeled by autonomous

and exception actions in (Σaut
A′

1

∪ ΣIe
A′

1

) \ ΣA1
otherwise (the case where al−1 ∈ Σe

A1
).

As B1 and B2 are compatible, there is a transition sktk[ak]sk+1tk+1 in σ such that k ∈ N<n and
ak ∈ ΣIm

A12
∪ ΣIe

A12
. We can observe, based on the previous inductive decomposition, that for the

image σ′ = σ′
n of σ, ΣA′

12

〈σ′〉 contains at least the action ak belonging as well to ΣIm
A′

12

∪ ΣIe
A′

12

:

from B1 ⊒s
B2

B′
1, ak ∈ EnabRiseDead(A1, A2) is a non autonomous action not shared between

A′
1 and A2 (condition (2) of Definition 14). In addition, σ′ reach s′

ntn ∈ Dead(A′
1, A2) such

that sn & s′
n or s′

n is reachable by a fragment of σ′ enabling actions in ΣA′
1

\ ΣA1
from a state

c′
n ∈ ΥA′

1

where sn & c′
n. Consequently, we deduce that ıA′

12

∈ Cmp(A′
1, A2).

(2) The condition (1) of Definition 11 is met obviously with A = A12 and A′ = A′
12. It

remains to prove that there is an expanding simulation &′ from A′
12 to A12 such that ıA12

&′ ıA′
12

.
We take &′ defined by {(s1s2, s′

1s2) ∈ ΥA12
× ΥA′

12

| s1 & s′
1 ∧ s2 ∈ Cmp(A1, A2)}. Finally, it is

obvious that for all a ∈ ΣIm
A12

∪ ΣOm
A12

, SemSuba(B1‖B2, B′
1‖B2) is true.

Given a fourth behavioral contract B′
2 such that B′

2 is composable with B′
1 and B2 ⊒ B′

2, the
independent implementability property of behavioral contracts is established by the following
corollary, which is obviously deductible from theorems 4 and 5.

Corollary 6. If B1 ⊒s
B2

B′
1 and B2 ⊒s

B′
1

B′
2, then B′

1 and B′
2 are compatible behavioral contracts

and B1‖B2 ⊒ B′
1‖B′

2.

Proof. We set B′
2.A = A′

2. From Theorem 5, we have B′
1 and B2 are compatible and B1‖B2 ⊒

B′
1‖B2. We have also, from the corollary premises and Theorem 5, B′

1 and B′
2 are compatible

and B′
1‖B2 ⊒ B′

1‖B′
2. As ⊒ is a preorder (Theorem 4), from the previous deductions, we

conclude that B1‖B2 ⊒ B′
1‖B′

2.

Given two interface automata A and A′, the refinement relation A′ � A is checkable in time
O((|δA| + |δA′ |).(|ΥA| + |ΥA′ |)) [5, 4], where |S| is the cardinality of a set S. The algorithm

FEMTO-ST Institute

Object-Oriented Component-based Design using Behavioral Contracts 21

of checking refinement between interface automata, in our approach, can be deduced naturally
form that proposed in [9]. Safe refinement can be checked in linear time by forward or back-
ward traversals, that is B1 ⊒s

B2
B′

1 can be checked in time O(|δ(B1|B2).A|.|δ(B′
1
|B2).A|). The

previous complexity is extended by the satisfiability decision problems related to the semantic
substitutability conditions of common observable method actions between the refinement of a
behavioral contract and its abstraction.

6 Conclusions

This report is a contribution to the design of object-oriented component-based applications
using behavioral contracts. This formalism combines protocol and semantic levels of component
interface specifications. The protocol level is designed by means of interface automata and
the semantic level is defined on methods by pre/postconditions and specifications stated on
their parameters and components attributes. The optimistic approach of interface automata
composition is accordingly adapted to fulfill the interaction aspects between components in
the object-oriented context. Refinement of behavioral contracts is defined from the perspective
of OOCBD. It is based on a simulation relation allowing addition of refinement details about
the behavioral protocol and semantics of common provided services between a refined and an
abstract versions of a component behavioral contract. The work is illustrated by a case study
of design integrity of railway CBTC systems.

References

[1] Railway applications – communications, signalling and processing systems – software for
railway control and protection systems. CENELEC, EN 50128, 2001 (revised at 2011).

[2] IEEE Standard for Communications-Based Train Control (CBTC) Performance and Func-
tional Requirements. IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999), pages
1–45, 2004 (reaffirmed at 2009).

[3] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York, NY, USA, 1996.

[4] L. d. Alfaro and T. A. Henzinger. Interface-based design. In Engineering Theories of
Software-intensive Systems, NATO Science Series: Mathematics, Physics, and Chemistry
195, pages 83–104. Springer, 2005.

[5] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement rela-
tions. In Proceedings of the 9th Int. Conf. on Concurrency Theory, pages 163–178, London,
UK, 1998. Springer-Verlag.

[6] P. America. Designing an object-oriented programming language with behavioural sub-
typing. In Proceedings of the REX School/Workshop on Foundations of Object-Oriented
Languages, pages 60–90, London, UK, 1991. Springer-Verlag.

[7] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

DISC Department

22 S. Mouelhi – K. Agrou – S. Chouali – H. Mountassir

[8] S. Chouali, H. Mountassir, and S. Mouelhi. An I/O automata-based approach to verify
component compatibility: Application to the CyCab car. Electron. Notes Theor. Comput.
Sci., 238:3–13, June 2010.

[9] L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT Softw. Eng. Notes,
26(5):109–120, 2001.

[10] European Railway Agency. ERTMS/ETCS Functional Requirements Specification. Tech-
nical report, 2010.

[11] European Railway Agency. ERTMS/ETCS System Requirements Specification. Technical
report, 2010.

[12] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[13] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst., 16:1811–1841, November 1994.

[14] J. Mikác and P. Caspi. Temporal refinement for lustre. In Proceedings of Languages Ap-
plications and Programming, SLAP’05, Electronic Notes in Theoretical Computer Science.
Elsevier, 2005.

[15] S. Mouelhi, S. Chouali, and H. Mountassir. Refinement of interface automata strengthened
by action semantics. Electron. Notes Theor. Comput. Sci., 253:111–126, October 2009.

[16] W. Schön, G. Larraufie, G. Moens, and J. Pore. Railway Signalling and Automation Volume
1, volume 3. La Vie du Rail, 2013.

[17] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

FEMTO-ST Institute

FEMTO-ST INSTITUTE, headquarters
32 avenue de l’Observatoire - F-25044 Besançon Cedex FRANCE

Tél : (33 3) 81 85 39 99 – Fax : (33 3) 81 85 39 68 – e-mail: contact@femto-st.fr

FEMTO-ST - AS2M : TEMIS, 24 rue Alain Savary, F-25000 Besançon
FEMTO-ST - DISC : UFR Sciences - Route de Gray - F-25030 Besançon cedex France

FEMTO-ST - ENERGIE : Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST - MEC’APPLI : 24, chemin de l’épitaphe - F-25000 Besançon France

FEMTO-ST - MN2S : 32, rue de l’Observatoire - F-25044 Besançon cedex France
FEMTO-ST - OPTIQUE : UFR Sciences - Route de Gray - F-25030 Besançon cedex France

FEMTO-ST - TEMPS-FREQUENCE : 26, Chemin de l’Epitaphe - F-25030 Besançon cedex France

http://femto-st.fr

	Introduction
	Railway case study
	Behavioral contracts
	Interface automata
	Method semantics
	Design of the railway case study

	Components Composition
	Synchronization of interface automata and semantic compatibility
	Optimistic approach of composition

	Refinement
	Expanding simulation
	Semantic substitutability
	Refinement properties

	Conclusions

