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Abstract We propose in this paper a new formulation of community. Retrieving an accurate velocity field from im-
optical flow dedicated to 2D incompressible turbulent flowsage pairs is one of the main task in various scientific do-
It consists in minimizing an objective function constitdite mains. For environmental science such as meteorology and
by an observation term and a regularization one. The obseseeanography, the satellite images provide informatian fo
vation term is based on the transport equation of the pathe estimation of cloud motions and ocean current. In the
sive scalar field. For non-fully resolved scalar images, wdield of experimental fluid dynamics, the imaging and mea-
propose to use the Mixed model in Large Eddy Simulatiorsurement techniques constitute an unique basis for thg stud
to determine the interaction between large scales and unref unsteady flow. For example, Particle Image Velocimetry
solved ones. The regularization term is based on the cofPRIV) technique (Adriari99]) is a well established method,
tinuity equation of 2D incompressible flows. Compared towhich consists in computing the instantaneous velocitd fiel
prototypical method, this regularizer preserves moreevort of flows based on the local spatial correlation.

structures by eliminating constraints over the vorticigtdi

The evaluation of the proposed formulation is done over syn- Despite of the efficiency of PIV, it is less applicable
thetic and experimental images, the improvements in term g¥hen the seeding density is low and inhomogeneous, since

estimation are discussed. the correlation peaks are hard to detect. In addition, the as
sumption that the variation of velocity field within the in-

Keywords Optical flow - Large Eddy Simulation terrogation windows is negligible may lead to no reliable

Turbulence Mixed model- incompressible flows estimation in some particular cases. Furthermore, PIV-tech

nique is not able to cope with scalar images, though this lat-
ter constitute the main source of data in many environmental
1 Introduction domains such as meteorology (satellite images).

For decades, the study of fluid flow from image sequence Compared to correlation techniques used in PIV, opti-
is of great interest to fluid mechanics and computer visiorcal flow performs more efficiently in dense estimation of
velocity field from image sequence. This family of meth-
ods, originally proposed in computer vision community with
the aim of extracting the apparent rigid motions from image
X. Chen pair (Horn and Schunck981), has become during the last
E-mail: chenxu.lucien@gmail.com decade more and more popular in fluid mechanic community
for its ability of dense velocity estimation with continuou
patterns. Besides, in comparison with PIV technique, aptic
flow is more adaptive to various physical constraint (Barron
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(OFCE): vorticity of the flow for turbulent flows. For incompressible
ol flows, the former should be zero, but the latter is related to
E(x,t)+u(x,t) -Ol(x,t)=0 (1) the dissipation, which is not of the same magnitude with

the first one. Interestingly, Guichard and Rudi®96 pro-
where[] is the spatial gradient. This term assumes that thgosed to minimize &' norm of divergence instead of the
gray-levell of the particular poink = (x,y)™ in two suc- gradient but one should notice that the aim of this strategy
cessive images is constant. Hewverepresents the velocity is for discontinuity detection of 2D rigid motions, which is
field. However, OFCE can, by no means, resolve the tw@ot based on the principles of fluid dynamics. In this work,
components of velocity field in iso-brightness regions as inwe propose to develop a physics-based regularizer for 2D
homogeneous areas, since all termslp\anish and the incompressible turbulent flows.
problem is ill-posed. This is known as the "aperture” prob-
lem in the computer vision community. To cope with this, In addition, although numerous researches have been
a regularization term has to be introduced as a constraitone over the variational optical flow formulations for flow
over the spatial distribution of the velocity field. Horn and estimation, the problem of turbulence has not been given
Schunck 98] have suggested to embed relatidhif an ~ enough attention. The turbulent flow is known as highly
optimization problem, which consists in minimizing an en-chaotic, and different physical processes may occur on vari
ergy defined by an observation term based on OFCE and@s scales (Pop000. In optical flow, the image sequence
regularization one represented by the magnitude of velods limited by the spatial resolution. More precisely, the€o
ity gradient (the idea behind this assumption being that al¢entration field characterized by image intensity is repre-

neighbor points have similar motions): sented till the scale of pixel. The missing information un-
der this scale may be negligible for rigid motion. However,
J(U1),1(x,1)) = Jo (u(x,t),1(x,1)) + aJr (U(X1)) when it comes to turbulent flow, the interaction between sub-
ol 2 pixel scales (unresolved scales) and resolved ones plays an
= /Q <E(X’t) +u(x,t)- Dl(x,t)) dx (2)  important role in energy transport, which should be taken
. into account. Recently, Cassisa et 20(1) and Zille et al
+a /Q||DU(X7t)|\2dX (2019 introduced the concept of Large Eddy Simulation

(LES), by considering the motions under pixel as subgrid tur
where Q denotes the image domain andis a weighting et dissipation. However, the coefficient of turbuleist d
coefficient. We refer to this equation as H&S for abbreviagipation is computed priori from velocity spectrum, which
tion in this paper. The minimization of this energy allows anjs ot practically accessible since the velocity field is un-
unique solution since the function is convex. known neither in physical space nor in spectral one. To cope
Based on H&S, considerable work has been done for thg;it, this issue, we suggest in this study to apply physical-

application of optical flow in a context of fluid mechanics.SpaCe subgrid models and to compute systematically the sub-
Ruhnau et alZ009 proposed a continuous variational for- grid scale term embedded in OFCE.

mulation, along with a multi-scale strategy for particle-im
ages; Liu and Sher2008 used the projected-motion equa-  The objective of this paper thus is to propose a new for-
tions as the optical flow constraint; Heitz et 2008 rein-  mulation for 2D turbulent flows estimation. It is based on the
forced optical flow method by adding the robustness of comprototypical method proposed by Horn and Schuri&g(),
relation techniques; Papadakis and Mén28d8, based on which consists of the minimization of an objective function
the optimal control theory, proposed a variational techaiq where we modified the observation and regularization terms:
by imposing a temporal consistency. A detailed overviewthe observation models the SubGrid Scale (SGS) fluxes so
over different estimation techniques for fluid motion meaas to predict them as accurately as possible; the reguariza
surement is presented in Heitz et 200.0. tion one eliminates constraints on the vorticity and is dedi
Despite the fact that great efforts have been done to intated to incompressible flows. The evaluation of this formu-
prove fluid flow estimation, most of the approaches appliedation is done over synthetic and experimental images, and
a spatial regularization term by assuming #moothness  improvement of estimation is shown. The rest of the paper
of the velocity field over a small zone (Becker et28112  is organized as follows. In secti@we present our physics-
Dérian et al2012 Kadri-Harouna et aR013 Yuan et al based improved regularizer for 2D incompressible turbulen
2007). However, as Corpetti et a200§ demonstrated, the flows. Then in sectior8, we propose a novel observation
minimization of this term is equivalent to the penalizationterm based on the filtered transport equation with a physical
of the magnitude of divergence and vorticity field, which space subgrid model. We describe the optimization strategy
is critical in a context of fluid mechanics. They proposed abased on multiresolution and discretization scheme in sec-
new formulation based on continuity equation with a secondion 4. The experimental evaluation of our method is de-
order div-curl regularizer able to keep the divergence bad t scribed in sectio® and we compare the result with other ap-
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proaches in the literature. Finally, a conclusion is pregbs
in section6.

2 A regularization term dedicated to turbulence

logE(k) or logEy(k)

H Y
inertial range i diffusive range

To deal with the aperture problem, the seminal work of Horn |
and Schuncki981) proposed to introduce an additional con- nertial-comvective | inertiakdiffusive
straint based on the assumption on sheothness of veloc-
ity field. The smoothness constraint, which is called the reg ke i k

ularization term in optical flow community, is expressed agFig. 1 A symbolic illustration of the kinetic energy spectrum (ded

the module of the velocity gradient: line) and scalar variance spectrum (solide line)Sok 1 (Pope2000.
ke andk, represent respectively the wave number of Obukhov-Corrin

and Kolmogorov.

| 18utc ) ax ©)

This constraint is particularly suited for stable objectv&o  Similar to the classical first-order regularization termme t
ment or rigid motion. However, it is less appropriate whenproposed one constrains the global distribution of vejocit
it comes to the fluid motion estimation. It can be indeedfield as well, since it is a gradient-based regularizer that e
demonstrated that the penalization of the magnitude of thgples estimation in regions where the spatial brightness gr
gradient of the velocity is equivalent to the penalizatién o dient is weak. Besides, the new regularizer is much more
the magnitude of divergence and vorticity (Corpetti et alphysically meaningful since the key information in vortyci
20009: field is preserved.

(18- U2+ 19 ()2 dx @

N 3 Observation term based on subgrid modeling
Therefore such a penalization term does not seem adapted

because the vorticity, directly related to the dissipatia®  hg ¢jassical observation term, namely OFCE, links the ve-
of fluid, plays an important role in the energy cascade. AIIocity field u(x,t) to the observed image sequerice,t).
though other higher-order regularizers have been proposegl, scajar images, the gray-leveis related to the passive
most of them minimize more or less the magnitude of vorticg 4|4y concentration fieldl. Corpetti et al 2002 proposed
ity or its gradient (Su and DahtB9§ Corpetti et a2002.  a¢) [ [ gdz, wherez denotes the observation depth. Eig.
The key information contained in the vorticity field is then g, 5\vs the scalar variance spectrum along with the kinetic
erased and the underestimation of vortices may becomeéq]ergy spectrum for small Schmidt numbge & 1), from
source of error for velocity estimation. A new regularizer,,hich one can notice that there exists two inertial ranges
dedicated to flow estimation is then required in order to estiy, cqlar spectrum: the inertial-convective range<( kg)
mate accurately turbuI(_ant flows. ) o in which the scalar fluctuation is driven by that of velocity;

_ For ZQ incompressible flows_, the material dens_lty_ln thegnd the inertial-diffusive rangekf < Kk < ky), where the
fluid remains constant and the divergence of velocity is Zerq4|ar flyctuation is mainly influenced by the molecular dif-

fusivity. The smallest scalek ¢ kj,, diffusive range) are

U-u(x,)=0 () governed by the molecular viscosity, characterized by a ex-
In addition, if we compare the OFCE if)(to the transport ponential decay. In order to extract the total velocity field
equation of a passive scal@r the scalar concentration field must contain informatidn til
20 the Kolmogorov scal&, (Kolmogorov1941]).

E(X’U + 0 (u(x,1)0(x,t)) = KAB(X,t) (6) In optical flow, however, due to the limitation of acquisi-

tion period and the spatial resolution of the image, it iekar
(4 being the Laplace operator), we notice that two equationgossible to extract the scalar concentration field till tife d
are equivalent when the divergence free constrénis(sat-  fusive range. Information represented by the gray-lével
isfied and the molecular diffusivity is neglected « 1).  contains only the scalar concentratiéntill the scale of
This means that the classical OFCE has already implicitlyixel, which corresponds to the large scale motions (iakrti
taken into account the divergence free condition. Theegfor convective range) in most cases. The smaller ones (sub-
we propose to use @ampler regularization term by penaliz- pixel) are eliminated by a filter during image acquisition
ing the divergence df? norm: step. Nevertheless, for fluid flows, these small scale mstion
contributing to the energy transfer in the wavenumber space
Jr(u(xt)) = /QHD -u(x, )] %dx (7)  have an effect on the large scales. The interaction between
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Resolved Subgrid Resolved Subgrid
— e — je—
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§ = § 4 = \
k; . k, ke X
c log k c log k log k

Fig. 2 Decomposition of energy spectrum in LES (P&890: the exact solution splits into the resolved scale and tivgsd scale (should be
modeled) in spectral spade. is the cutoff wave number associated with grid size in ptafspace.

the unresolved scales and resolved ones cannot be neglectealwer spectrunk,,, cannot be obtained explicitly if the ve-

especially in the case of turbulent flows. Unfortunately thdocity field is unknown. Consequently, the valuedf re-

classical OFCE inX) neglects such interactions. It is then of mains indeterminable. Besides, the SGS viscous models is

prime importance to rely on alternative models. purely dissipative, thbackscatter effect in energy cascade
As a matter of fact, these sub-pixel motions correspondhas not been taken into account (Bertodl#85. To avoid

in essence to the unresolved scale motions in LES. This laihis ambiguity, we propose to determine the value of SGS

ter consists in calculating directly the low-frequency reed flux termtg by using the Mixed model proposed by Bardina

in space, while modeling the subgrid scale motions. A symet al 1980:

bolic representation of the concept of LES is shown inEig. — _= Vsgs ——=

In optical flow, the cutoff wave numbdg is related to the "¢ — & (u 6-u 9) - P:’QSDG (14)

pixel scaleA of image sequence:

with ¢; a global constant anlrsgs subgrid Prandtl number,
T ranging from 01 to 1 (Pope000Q. In fact, the Mixed model

ke = A (8) (14) is a linear combination of a structural model and a vis-
cosity model in LES.

The structural model is based on the hypothesis of scale
similarity that the statistical structures of the flow atfelif
o0 - 1 ent scales are locally auto-similar. Bardina et 980 as-
a0 +0-(ud) = @Ae (9) sumed that the residual stress tensor is similar to that eval

uated on the basis of the smallest resolved scales, since the

Here, 8 andT denote respectively the scalar and velocitySubgrid motion shares a common local scaling law with the
field in pixel grid. Re and Sc are Reynolds number and Smallestresolved one. Later on, in Bardina el@g3, they
Schmidt number. We divide the filtered non-linear tasth ~ Proposed to apply the analytical filter twice for the simula-

Applying a cutoff filter to the transport equation 8fand
rewriting in dimensionless form, we obtain:

model,i.e., the structural model without an eddy viscosity,
00 - i is not purely dissipative, but tHeackscatter effect has been
T (U0) +0-10 = ReSCAe (10) taken into account (Shao et #999. In practice, to avoid

the time integration instability, the Mixed modele., the

structural model with an eddy viscosity, is widely used in

- computational fluid community (Saga2®00.

To=ub—uo (11) The viscosity model is based on the hypothesis that the

Cassisa et al201]) proposed that this subgrid termg is  interaction between subgrid and resolved scales is essen-

related to the turbulent viscosity which can be expressed a§ally an energy cascade from large scales to smaller ones,
and the effect of which is analogous to molecule diffusion

To=—D700 (12) and can be considered as a turbulent dissipation. By intro-
ducing the concept of turbulent subgrid eddy viscosi,

with Dt a turbulent diffusion CoefﬁCient, which is a statisti- Smagorinsky1963 deve|oped the first SGS model:

cal constant calculated according to the formulation ofrfbea e

dorff (1970: Vags = (Cs4) " (25)5))

whererg is the subgrid scalar flux (Sag&2@00, defined as:

1
: (15)
. 3 o N whereA denotes grid size (pixel) ared a universal constant
Dr=Ax (Zng / Ew(K)dK)2 (13)  between QL and 02. S is called the filtered rate-of strain
s Jke tensor, defined as:
Despite of the performance of this SGS modeling (Cas= 1 /0y 0y
sisa et ak011), the main drawback lies in the fact that the 91 — 2 d_xj 9%

(16)
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Therefore, the Mixed modeld) is simply a combination of may lead to a misestimation of fluid velocity. A recursive

a subgrid viscosity model for the representation of the ensaussian filter (Deriche et 4993 is used to remove these

ergy cascade mechanism, with a scale similarity model fonoises. Moreover, in order to reserve more information in

the prediction of the subgrid tensor structure. It should bémages, it is preferred to use the convolution property for

mentioned that the turbulence in the third direction is supspatial gradients calculation:

posed to be zero since we focus on 2D incompressible turb 4G

bulence within the scope of this paper. —(G*x0)=——x6 (20)
Based on this modeling, we may end up with the defini- 28 0%

tion of our novel observation term by representing all physiThus, the spatial derivative is firstly computed on the filter

cal mechanism of full field: and then convolved with the scalar concentration field.

5 4.1 Discretization scheme

_ 00 1
! ga—
Jo(U,0) = / (E +U-00+0-7¢ Re SCA 6) dx The discretization process of the minimization d$) could
(17) be conducted by resolving the associated Euler-Lagrange

_ ] _ ) ] equations:
with the assumption thafl is proportional to the image

brightness. In practice, for particle or scalar images dtiwh 5_3'71 0y (1)
the concentration field is fully resolved (till the diffusiv Ui  0X; 0T j
range), no subgrid modeling is needed. In these cases, the

observation term will be written as: wheret; j = 0X' It should be noted that the SGS flux tetgn
5 in the observatlon ternil{) could be considered practically
Jo(U,0) = / (ﬁ +U-06 - iAE) dx (18) homogeneous at pixel level, so that its dependency on local
ot ReSc velocityT and its gradient j is weak. For the simplicity of

In previous sections, we have defined our novel regulafinimization scheme, we suppose that:
izer and the observation term for 2D incompressible fluid ;

flow. The estimation of fluid velocity field is conducted by 5~ = =0 (22)

minimizing the sum of the two terms:

minJ'(0,8) = Jo(U, 8) + BIK(W) (19) (jﬁ _o (23)
u Ul‘j

Here, is a weighting coefficient and,(T, 6) is expressed Based on these assumptions, we obtain:
in (17) for non-fully-resolved scalar image, and b8 for

particle image and fully-resolved scalar image. The assump?e 08 LAl 1 9% % 24
FUj =+ ——) =BTy, (24)

tion thatd [ | has been made in this paper. Let us now turndx - 0t ' dx; = dx;  ReScax;ax 9%

to some practical issues related to images, optimization a

discretization.

"We denotet by (U,v), then by neglecting higher order

terms, diinjJ can approximatively be discretized a25)

and @6), whereh represents the pixel length arfch,n)

4 Discretization and Multiresolution technique is the spatial coordinate24) can be solved iteratively
by using @7), in which we use the value ofy at iter-

It should be mentioned that the input images have to be pretion p to compute the velocity field at iteratiop+ 1.

processed before computation since the artifact and noise

Jd /0u ov _ _ _ _ _ _
% (5 + E/) ~ (Umt1n+ Um-1n — 20mn) /0% + (V1041 — Ym-1.041 — Yms 101+ Ym-1n-1) / (4h?) (25)
Jd /0u ov _ _ _ _ _ _ _
ay (dx E/) ~ (Ymn+1 -+ Ymn-1— 2%mn) /0 + (Omi1n+1 — Un-1n41 — Umitn-1+ Om-1,n-1) /(4h?) (26)
2 o -1 _
96 28 9606 2.0, 0 (0w , ow®\ 106 (96 1 p
<Up+l) B (H Th  axay Fup+ax(aux + avy) Ea_x(a_t*ResCAeJFD Te) @7)
yPtl) T 590 )2 2 d (ouP |, 9P 190 (36 1 p
v 2% () +% v+ g (B+5) 3% (% -ms0+0-1¢)
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Level k = 2
_—

Level k =1
—_—

Level k =0
B —

@

Winit
10°
Level k=2 E — — B - W — = 1005
4 4 k/2m
duy
4 @u: 4 Fig. 5 Scalar variance spectra of the original image and the filtere
@ (‘;) with varianceo = 0.9.
Level k=1 . — [E] «— . “— @ — .
4 fuy t et al 1992, which consists of a incremental coarse-to-fine
S strategy. The image pyramid structure is built by a series of
(f;‘) ? low-pass filters, such that image resolution is reduced suc-
— cessively by subsampling process (Bi@).
Level k=0 .—» E «— “+ @ — . More precisely, lek denote of the current pyramid level,
Juo , thusk+ 1 is the upper level with a coarser pixel grid. At
o(t) 0D By bt +1) Level k, we firstly warp the second image to the first one
1 with the estimation of Levet+ 1 by using the bicubic inter-
out polation:
(b)
By (Xt +1) = By(X+ Ty 1,t + 1) (28)

Fig. 3 A symbolic representation of the multiresolution pyram&j (

d the minimizati b) with -to-fi & . s
2Pallgegg_'mmlza lon process (b) with coarse-to-fine spa(Bergen Then, we compute the increment velocity fiéldk based on

B(x,t) andBy (x,t + 1) at Levelk with (24). The estimation
(v - at Levelk s finally updated by:

Uy = Uk 1 + OUk (29)

Fig.3(b) illustrates briefly this coarse-to-fine strategy. One
may refer to (BurtL988 Brox et al2004 Mallat 1989 for
more details. Let us now present our experiments.

5 Experimental validation

(a) scalar image (b) partical image

5.1 Synthetic images
Fig. 4 Synthetic scalar image (a) and the particle image (b).

5.1.1 Data description

The sequence is downloadable from the intérraatd has
been generated by Cemagref team (Carlier and Wieneke
2005 in Rennes, France. They aim at evolving the exact
solution of flow with a large scale range in the energy spec-
trum. The vorticity equation is solved with incompressible

Generally, optical flow has proven to be hlgh-performanc%ondition in Fourier space. A pseudo-spectral code was used

1;_(|)r estlma]tUorI] of a(ljppalrent mOI'OEStOf smtall magn'tuiﬁto reduce the computation time. Each of the producing im-
owever, for farge displacements between two Images, gges has a size of 256256 pixels, and the time inter-

d!scor_dance between the temporal d_erlvz_atlon and spa_aal 9%Val of two successive images is 10 times of that in DNS
dient in (1) may lead to a poor estimation. To get rid of

this issue, multiresolution technique is introduced (Berg ! http://fluid.irisa.fr/data-eng.htm

4.2 Multiresolution
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Fig. 6 Instantaneous vorticity field on scalar sequende=ab0 : exact DNS vorticity fieldd), result of H&S p), result of Cassisa et a2011J) (c),
estimation with proposed formulatiod)(

computation. The homogeneous and isotropic turbulent flodays in the inertial subrange. In practice, we use a Gaus-
represented in the image sequence, with Reynolds numbsian filter of variances = 0.9. A can then be computed
Re= 3000 and Schmidt numb&c = 0.7, has an average ve- with A = 2\/30 ~ 3.2 (Pope2000, and is set to be 4 ap-
locity around 3.5 pixels for each time interval. Both of sgal prox|mat|ve|y This choice leads to a smé!u ~ 597 < 0.1

and particle sequence are composed by 100 successive '(E o Ea

Ldk, is the int [length scal dicati
ages, as shown in Fig(a)and in Fig4(b), respectively. is the integral length scale), indicating

that the energy containing large scales is not altered &y th
gaussian filtering process.

5.1.2 Parameters setting

The multiresolution technique is not used in this case
- Scalar images since the magnitude of displacements is small. As for the
To remove the noise and artifacts, we firstly filtered the imsubgrid model, the global constamtandPrgs are set to be
ages with a gaussian filter. At the same time, some small.1 and 0.6 (Bardina et 41983 Sagau2000, respectively.
scale structures have also been filtered during this proceds addition the values = 0.19 is assumed and the weighting
as shown in Fig. From the point of view of LES, these coefficientB in (19)is setto be 150 in this case. The velocity
small scales correspond to the filter widfty;ie that is field estimated is filtered with a variance= 1 to remove the
larger than the pixel siz8 jxa. A subgrid model based on noise. Lastly the subgrid viscositygs is averaged within
the filter widthA = A (0) is therefore needed for the the whole image for a better estimation, since the flow is
estimation of motion within these scales. To ensure the pehomogeneous and isotropic. In order to introduce a temporal
tinence of the subgrid model, the varianzds need to be consistency, at each time step, the velocity field is in#éad
chosen in such a way that the corresponding filter wiith by the previous one.
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—— DNS —— DNS
— H&S — H&S
—— Cassisa 25) —— Cassisa
—— Proposed —— Proposed

;xjc: 10 iﬂ 15
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ky /(2m) ky /(2m)
(a) velocity spectrum log-log (b) velocity spectrum semi-log
107 0.
—+— DNS —+— DNS
107 — H&S 0.008 —— H&S
—— Cassisa —— Cassisa
10¢ —— Proposed 0.007 —— Proposed
0.006
8 10° 2 0.005
& &
& e 4 0,004
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107
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(c) vorticity spectrum log-log (d) vorticity spectrum semi-log

Fig. 7 Spectra of velocity and vorticity with log-log and semi-lmpresentation: results of DN8léck), H&S (green), Cassisa et aP011) (blue)
and proposed formulatiomed).

- Particle images Here, N represents the total number of pixels amndx,t)

We use a 2-level pyramidal decomposition for coarse-to-finandue(x,t) are respectively the exact and the estimated ve-
estimation. PIV images are filtered by a recursive Gaussialocity field.

filter of varianceo = 0.6 at each level and the velocity field

estimated is equally filtered with a variange= 1.25 in or-  5.1.4 Results

der to remove the noise. The weighting coefficiBrin (19)

is set to be 4000. Compared to the scalar images, the valueXalar images

of B is greater in this case in order to compensate the dif/e present in Fig the vorticity map for a given instanta-
ferences in term of gray-level between these two sequencé$ous velocity field (at timé = 50) obtained by different
Therefore in both cases the observation term and regulariz@€thods. The associated velocity field is superimposed to

tion term have the same order of magnitude. each map and the results share a common color legend. We
can clearly observe that the proposed formulation enables
5.1.3 \alidation criteria to improve the estimation. The vortex structures of diffeére

scales, which are comparatively blurred with H&S and are

In order to evaluate statistically the performance of ouslightly detected by Cassisa et @0(L1), are much more ac-
proposed approach, we calculate the Average Angle Errgiurately estimated with the subgrid modeling, such that the
(AAE) and Root Mean Square Error (RMSE) as evaluatioryortices have a similar behavior to that of DNS .

criteria, which are commonly used in optical field commu- ~ TO go into more details, Fig.presents the the spectra

nity (Baker et a2011): of velocity field and vorticity field in log-log and semi-log
representation. Compared to the classical H&§®dn), the
AAE(t) = 1 S arcco Ue(X, t)ue(X,t) ) (30) formulation of Cassisa et a2Q19) (blue) and the proposed
N. % [luc(x,t)[[[[ue(x, )] one (ed) lead to a better recovery of the field of small scales,

1 since both of the two approaches have introduced subgrid
RMSE(t) = \/N Z}Huc(x,t) — Ue(X,1)||2 (31) models that manage to predict small scale motion effects
xe with resolved scales information. Furthermore, the pregos
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Fig. 8 AAE (a) and RMSE b) errors of estimation for synthetic scalar E
images. R
method exhibits a better performance for large scale motion ' ° " * “’
(see semi-log representation in Fi@n,d)). It is due to the (a) AAE
new regularization term that maintains the rotationalcstru
ture, and to the Mixed modeling that predicts the behavior

of small scales (Shao et 4999.

In terms of quantitative values, the evaluation criteria
AAE and RSME are shown in Fig§. Results of the proposed
formulation &olid line) are compared to H&Sd6tted line)
and Cassisa et 82011 (dashed line). It is visible that the in- M/MWNV\NVW
troduction of sub-pixel motion modeling (Cassisa €2@1 1)
has already improved the precision of estimation by 40% for t
AAE and 34% for RMSE. However, even compared to this (o) RMSE
high-performance method, our new formulation leads to a_ o _
further improvement by 50% approximatively for both cri-t'?'c?é |1ng ;\ég (a) and RMSE p) errors of estimation for synthetic par-
teria. This significant improvement may be due to the per- ges.
formance of the Mixed modelindlL{), that better predicts

the interaction between resolved scale motions and thc_’(ﬁoposed formulation is more closer to the exact one than
under pixel. Whereas the proposed regularizer that avoidge ¢jassical optical flow method, which highlights the per-

pe_nalizing vortex stru_ctures of the.flovy, helps_ ao_lditioyla_ll formance of the novel regularizer for 2D incompressible
to improve the precision of the estimation. This first seriegyq,; estimation. The first order regularization term of the

of experiments in synthetic scalar images demonstrates thee g method prevents from a proper recovery of the vortic-
ability of the proposed method to properly recover turbulenity which is clearly underestimated.

velocity fields. Let us now turn to particle data. This improvement can be illustrated statistically in
Fig.10, where AAE and RSME are calculated for particle
- Particle images sequence. Compared to H&S, the proposed formulation al-
In Fig.9, we depicted our velocity vector maps over a zoomlows an improvement of 22% for AAE and 24% for RSME.
area (10x 10 pixels) of PIV image (Figk(b)), obtained by  This improvement is not as great as in scalar case, since the
our methods (red), H&S (blue) and compared to the groundpatial gradient of the images, based on which the velocity
truth (black). It is obvious that the velocity field from the is calculated, is better formulated for particle sequeAcel

RMSE (pixel)
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Fig. 11 AAE and RMSE errors for particle (above) and scalar (belongges of different methods. The data are taken form Hed{2052).

the classical optical flow method, along with the multireso- Eo(k)

lution technique, has already allowed an estimation witha

satisfactory precision. The novel regularization termerev 5 R

in this case, manages to increase the precision by more than § E(k) = viscous-convective

20% by amending the spatial distribution of velocity field, B

which highlights the performance of the proposed regular- = | ™

izer for 2D incompressible flows. = inertial-convective ‘

- Comparison with other methods Ky ks k

In order to show the performance of the proposed formularig. 12 A symbolic representation of Batchelor regime
tion, we compare our results with other state-of-the-athme
ods in Figll We plot AAE and RSME errors for both par-
ticle (above) and scalar (below) sequences. Error values agnd regularizer. From these experiments, one concludes tha
taken from Héas et aP012). our technique is vey well adapted to the estimation of tur-

For scalar images, the proposed estimation outperforn@'ence motions. In the next section we show some experi-
other state-of-the-art methods in optical flow communityments on real data.
This gap is mainly due to the introduction of subgrid model
into the observation term, which takes into account the role
of sub-pixel motions of turbulent flows.

As for particle images, it is shown that the proposed regub.2 Experimental scalar image
larizer outperforms some of the high-accuracy algorithms i
the literature (compared to Becker et2002 and Yuanetal 5.2.1 Data description
(2007, the estimation improved by 438% and by %% re-
spectively). The proposed formulation is comparable to thé\n experimental study of the dispersion of passive scalar
regularizer based on the scale invariance property (Hé&ds e in a 2D turbulence at high Péclet number is reported in Jul-
2012, while higher-order regularizers (Dérian et2012  lien et al 000. The Batchelor regime, characterizeddy
Kadri-Harouna et a2013 lead to estimations with best ac- spectrum, is observed. In this regime, only one velocitjesca
curacy (with an improvement of 13% in comparison withis active in dispersion process. Batchelor el@59 derived
our formulation). A further research dedicated to parficle  a diffusive cutoff wave number, namely the Batchelor wave
ages is needed to find a better formulated observation termumber, for scalar field with a very-high Schmidt number
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107 ‘ ‘ vortex structure of various scales. The gradient-basedtreg
. larizer 3) constrains the velocity field to be oversmoothed
w0ty . 5'&“'” ] in order to satisfy the continuity condition. The proposed
. diffusive range regularization scheme, as expected, enables to estimate vo
o' 1 tex structures more clearly and more distinguishably, evhil
5 ~’°‘- allowing a sufficient smoothness for the velocity field. This
v’ * ] is to our opinion a very good behavior and once again, this
proves the great efficiency of the proposed technique.
10" °
103 107 o7 o 6 Conclusion
ky /(2m)
Fig. 13 Scalar variance spectrum of experimental image 94). In this paper, we have proposed a new formulation in the
framework of optical flow for turbulence motion estimation.
The formulation is based on the minimization of an objective
(Sc>1): function constituted by original observation and reguiati
e \1/4 tion terms: the observation is based on the transport exuati
ks = (m) (32) of the passive scalar field, where we proposed to determine

the value of SGS flux termy by using the Mixed model
wheree, v andk represent respectively turbulent dissipation for non-fully resolved scalar images; the regularizatenmt
kinematic viscosity and molecular diffusivity. Fi2 is a  is based on the continuity equation of 2D incompressible
symbolic representation of the scalar variance spectruim wi flows, which penalizes exclusively the divergence of the ve-
the kinetic energy spectrum. Compared to Eig viscous- locity field without any constraint on the vorticity field.
convective range (Saga2®00 is observed, where the scalar ~ Tests on particle images and experimental images have
fluctuations are influenced mainly by the viscous effect oforoven the performance of the novel regularizer, resulte ha
velocity field. shown that it allows a better prediction of the vortex struc-
The scalar concentration field is visualized by using gures compared to Horn and Schundi®8). As for the
512x 512 CCD camera with .@mm overall spatial reso- Synthetic scalar sequence, the Mixed model along with the
lution (Fig.14(a)and Figl4(b). The Péclet numbePe=  novel regularizer, estimates precisely the behavior of sub
UL/k = ReSc) is approximatively equal to 0 One may  grid scale motion and its effect to the resolved one (as shown
refer to Paret and Tabelind 999 for details of experiment in velocity spectra). The proposed formulation leads to in-
setup. crease the precision by 50% in comparison with Cassisa
et al 2017 and outperforms other state-of-the-art optical

5.2.2 Parameters setting flow methods in the literature.

Fig.13shows the scalar variance spectrum of the eXperimerﬂieferences

tal image. Thek~! law is fairly observed, and the spectrum

drops rapidly beyond these scales, indicating an effectiv_drian RJ (1991) Particle-imaging techniques for experitakfluid
dissipation region (Jullien et &000. Since the wave num- mechanics. Annual review of fluid mechanics 23(1):261-304
ber associated with pixel is within the diffusive range, theBaker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski ®(

barid | del | for fl timati But A database and evaluation methodology for optical flow.rtrae
supgrid-scale model Is unnecessary 1or friow estimation. bu tional Journal of Computer Vision 92(1):1-31

this case is still of interest to test the new regularizat@sm.  Bardina J, Ferziger J, Reynold W (1980) Improved subgralesmod-
We use a 2-Level multiresolution pyramid afids set to be els for large-eddy simulation. In: American Institute ofréeau-
100. For the purpose of noise removing, we filter the image tics and Astronautics, Fluid and Plasma Dynamics Conferenc

. - . . L . 13th, Snowmass, Colo., July 14-16, 1980, 10 p., vol 1
with 0 = 4 at finer grid level and witlo = 2 at coarser grid Bardina J, Ferziger J, Reynold W (1983) Improved turbulenoeels

level. Test with H&S has also been conducted for compari-  based on large eddy simulation of homogeneous, incomptessi
son. turbulent flows. Stanford Univ Report 1
Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of op-
tical flow techniques. International journal of computesion
5.2.3 Results 12(1):43-77
Batchelor G, et al (1959) Small-scale variation of convecieantities

; ; ; T like temperature in turbulent fluid. J Fluid Mech 5(1):11331
Fig-14(c)and Fig14(d)show respectively the vorticity field Becker F, Wieneke B, Petra S, Schroder A, Schnorr C (2012pVar

estimated based on H&S and the proposed formulation. Itis  {jona| adaptive correlation method for flow estimation. ged@ro-
visible that the novel formulation extracts more preciské/ cessing, IEEE Transactions on 21(6):3053-3065
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