
HAL Id: hal-01102944
https://hal.science/hal-01102944v1

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optical flow for incompressible turbulence motion
estimation

Xu Chen, Pascal Zillé, Liang Shao, Thomas Corpetti

To cite this version:
Xu Chen, Pascal Zillé, Liang Shao, Thomas Corpetti. Optical flow for incompressible turbulence
motion estimation. Experiments in Fluids, 2015, to be published. �10.1007/s00348-014-1874-6�. �hal-
01102944�

https://hal.science/hal-01102944v1
https://hal.archives-ouvertes.fr


Experiments in Fluids manuscript No.
(will be inserted by the editor)

Optical flow for incompressible turbulence motion estimation
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Abstract We propose in this paper a new formulation of
optical flow dedicated to 2D incompressible turbulent flows.
It consists in minimizing an objective function constituted
by an observation term and a regularization one. The obser-
vation term is based on the transport equation of the pas-
sive scalar field. For non-fully resolved scalar images, we
propose to use the Mixed model in Large Eddy Simulation
to determine the interaction between large scales and unre-
solved ones. The regularization term is based on the con-
tinuity equation of 2D incompressible flows. Compared to
prototypical method, this regularizer preserves more vortex
structures by eliminating constraints over the vorticity field.
The evaluation of the proposed formulation is done over syn-
thetic and experimental images, the improvements in term of
estimation are discussed.

Keywords Optical flow · Large Eddy Simulation·
Turbulence· Mixed model· incompressible flows

1 Introduction

For decades, the study of fluid flow from image sequence
is of great interest to fluid mechanics and computer vision
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community. Retrieving an accurate velocity field from im-
age pairs is one of the main task in various scientific do-
mains. For environmental science such as meteorology and
oceanography, the satellite images provide information for
the estimation of cloud motions and ocean current. In the
field of experimental fluid dynamics, the imaging and mea-
surement techniques constitute an unique basis for the study
of unsteady flow. For example, Particle Image Velocimetry
(PIV) technique (Adrian1991) is a well established method,
which consists in computing the instantaneous velocity field
of flows based on the local spatial correlation.

Despite of the efficiency of PIV, it is less applicable
when the seeding density is low and inhomogeneous, since
the correlation peaks are hard to detect. In addition, the as-
sumption that the variation of velocity field within the in-
terrogation windows is negligible may lead to no reliable
estimation in some particular cases. Furthermore, PIV tech-
nique is not able to cope with scalar images, though this lat-
ter constitute the main source of data in many environmental
domains such as meteorology (satellite images).

Compared to correlation techniques used in PIV, opti-
cal flow performs more efficiently in dense estimation of
velocity field from image sequence. This family of meth-
ods, originally proposed in computer vision community with
the aim of extracting the apparent rigid motions from image
pair (Horn and Schunck1981), has become during the last
decade more and more popular in fluid mechanic community
for its ability of dense velocity estimation with continuous
patterns. Besides, in comparison with PIV technique, optical
flow is more adaptive to various physical constraint (Barron
et al1994; Fleet and Weiss2006).

The usual assumption behind optical flow is the well-
known brightness conservation (Horn and Schunck1981),
namely the classical Optical Flow Constraint Equation
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(OFCE):

∂ I
∂ t

(x, t)+u(x, t) ·∇I(x, t) = 0 (1)

where∇ is the spatial gradient. This term assumes that the
gray-levelI of the particular pointx = (x,y)T in two suc-
cessive images is constant. Here,u represents the velocity
field. However, OFCE can, by no means, resolve the two
components of velocity field in iso-brightness regions as in
homogeneous areas, since all terms in (1) vanish and the
problem is ill-posed. This is known as the ”aperture” prob-
lem in the computer vision community. To cope with this,
a regularization term has to be introduced as a constraint
over the spatial distribution of the velocity field. Horn and
Schunck (1981) have suggested to embed relation (1) in an
optimization problem, which consists in minimizing an en-
ergy defined by an observation term based on OFCE and a
regularization one represented by the magnitude of veloc-
ity gradient (the idea behind this assumption being that all
neighbor points have similar motions):

J (u(x, t), I(x, t)) = JO (u(x, t), I(x, t))+αJR (u(x, t))

=

∫

Ω

(

∂ I
∂ t

(x, t)+u(x, t) ·∇I(x, t)
)2

dx

+α
∫

Ω
‖∇u(x, t)‖2dx

(2)

whereΩ denotes the image domain andα is a weighting
coefficient. We refer to this equation as H&S for abbrevia-
tion in this paper. The minimization of this energy allows an
unique solution since the function is convex.

Based on H&S, considerable work has been done for the
application of optical flow in a context of fluid mechanics.
Ruhnau et al (2005) proposed a continuous variational for-
mulation, along with a multi-scale strategy for particle im-
ages; Liu and Shen (2008) used the projected-motion equa-
tions as the optical flow constraint; Heitz et al (2008) rein-
forced optical flow method by adding the robustness of cor-
relation techniques; Papadakis and Mémin (2008), based on
the optimal control theory, proposed a variational technique
by imposing a temporal consistency. A detailed overview
over different estimation techniques for fluid motion mea-
surement is presented in Heitz et al (2010).

Despite the fact that great efforts have been done to im-
prove fluid flow estimation, most of the approaches applied
a spatial regularization term by assuming thesmoothness
of the velocity field over a small zone (Becker et al2012;
Dérian et al2012; Kadri-Harouna et al2013; Yuan et al
2007). However, as Corpetti et al (2006) demonstrated, the
minimization of this term is equivalent to the penalization
of the magnitude of divergence and vorticity field, which
is critical in a context of fluid mechanics. They proposed a
new formulation based on continuity equation with a second-
order div-curl regularizer able to keep the divergence and the

vorticity of the flow for turbulent flows. For incompressible
flows, the former should be zero, but the latter is related to
the dissipation, which is not of the same magnitude with
the first one. Interestingly, Guichard and Rudin (1996) pro-
posed to minimize aL1 norm of divergence instead of the
gradient but one should notice that the aim of this strategy
is for discontinuity detection of 2D rigid motions, which is
not based on the principles of fluid dynamics. In this work,
we propose to develop a physics-based regularizer for 2D
incompressible turbulent flows.

In addition, although numerous researches have been
done over the variational optical flow formulations for flow
estimation, the problem of turbulence has not been given
enough attention. The turbulent flow is known as highly
chaotic, and different physical processes may occur on vari-
ous scales (Pope2000). In optical flow, the image sequence
is limited by the spatial resolution. More precisely, the con-
centration field characterized by image intensity is repre-
sented till the scale of pixel. The missing information un-
der this scale may be negligible for rigid motion. However,
when it comes to turbulent flow, the interaction between sub-
pixel scales (unresolved scales) and resolved ones plays an
important role in energy transport, which should be taken
into account. Recently, Cassisa et al (2011) and Zille et al
(2014) introduced the concept of Large Eddy Simulation
(LES), by considering the motions under pixel as subgrid tur-
bulent dissipation. However, the coefficient of turbulent dis-
sipation is computeda priori from velocity spectrum, which
is not practically accessible since the velocity field is un-
known neither in physical space nor in spectral one. To cope
with this issue, we suggest in this study to apply physical-
space subgrid models and to compute systematically the sub-
grid scale term embedded in OFCE.

The objective of this paper thus is to propose a new for-
mulation for 2D turbulent flows estimation. It is based on the
prototypical method proposed by Horn and Schunck (1981),
which consists of the minimization of an objective function
where we modified the observation and regularization terms:
the observation models the SubGrid Scale (SGS) fluxes so
as to predict them as accurately as possible; the regulariza-
tion one eliminates constraints on the vorticity and is dedi-
cated to incompressible flows. The evaluation of this formu-
lation is done over synthetic and experimental images, and
improvement of estimation is shown. The rest of the paper
is organized as follows. In section2, we present our physics-
based improved regularizer for 2D incompressible turbulent
flows. Then in section3, we propose a novel observation
term based on the filtered transport equation with a physical-
space subgrid model. We describe the optimization strategy
based on multiresolution and discretization scheme in sec-
tion 4. The experimental evaluation of our method is de-
scribed in section5 and we compare the result with other ap-
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proaches in the literature. Finally, a conclusion is proposed
in section6.

2 A regularization term dedicated to turbulence

To deal with the aperture problem, the seminal work of Horn
and Schunck (1981) proposed to introduce an additional con-
straint based on the assumption on thesmoothness of veloc-
ity field. The smoothness constraint, which is called the reg-
ularization term in optical flow community, is expressed as
the module of the velocity gradient:
∫

Ω
‖∇u(x, t)‖2dx (3)

This constraint is particularly suited for stable object move-
ment or rigid motion. However, it is less appropriate when
it comes to the fluid motion estimation. It can be indeed
demonstrated that the penalization of the magnitude of the
gradient of the velocity is equivalent to the penalization of
the magnitude of divergence and vorticity (Corpetti et al
2006):
∫

Ω

(

‖∇ ·u(x, t)‖2+ ‖∇×u(x, t)‖2)dx (4)

Therefore such a penalization term does not seem adapted
because the vorticity, directly related to the dissipationrate
of fluid, plays an important role in the energy cascade. Al-
though other higher-order regularizers have been proposed,
most of them minimize more or less the magnitude of vortic-
ity or its gradient (Su and Dahm1996; Corpetti et al2002).
The key information contained in the vorticity field is then
erased and the underestimation of vortices may become a
source of error for velocity estimation. A new regularizer
dedicated to flow estimation is then required in order to esti-
mate accurately turbulent flows.

For 2D incompressible flows, the material density in the
fluid remains constant and the divergence of velocity is zero:

∇ ·u(x, t) = 0 (5)

In addition, if we compare the OFCE in (1) to the transport
equation of a passive scalarθ :

∂θ
∂ t

(x, t)+∇ · (u(x, t)θ (x, t)) = κ∆θ (x, t) (6)

(∆ being the Laplace operator), we notice that two equations
are equivalent when the divergence free constraint (5) is sat-
isfied and the molecular diffusivity is neglected (κ ≪ 1).
This means that the classical OFCE has already implicitly
taken into account the divergence free condition. Therefore,
we propose to use asimpler regularization term by penaliz-
ing the divergence ofL2 norm:

J′R (u(x, t)) =
∫

Ω
‖∇ ·u(x, t)‖2dx (7)

Fig. 1 A symbolic illustration of the kinetic energy spectrum (dashed
line) and scalar variance spectrum (solide line) forSc < 1 (Pope2000).
kθ andkη represent respectively the wave number of Obukhov-Corrin
and Kolmogorov.

Similar to the classical first-order regularization term, the
proposed one constrains the global distribution of velocity
field as well, since it is a gradient-based regularizer that en-
ables estimation in regions where the spatial brightness gra-
dient is weak. Besides, the new regularizer is much more
physically meaningful since the key information in vorticity
field is preserved.

3 Observation term based on subgrid modeling

The classical observation term, namely OFCE, links the ve-
locity field u(x, t) to the observed image sequenceI(x, t).
For scalar images, the gray-levelI is related to the passive
scalar concentration fieldθ . Corpetti et al (2002) proposed
thatI ∝

∫

θdz, wherez denotes the observation depth. Fig.1
shows the scalar variance spectrum along with the kinetic
energy spectrum for small Schmidt number (Sc < 1), from
which one can notice that there exists two inertial ranges
for scalar spectrum: the inertial-convective range (k ≪ kθ ),
in which the scalar fluctuation is driven by that of velocity;
and the inertial-diffusive range (kθ ≪ k ≪ kη ), where the
scalar fluctuation is mainly influenced by the molecular dif-
fusivity. The smallest scales (k ≥ kη , diffusive range) are
governed by the molecular viscosity, characterized by a ex-
ponential decay. In order to extract the total velocity field,
the scalar concentration field must contain information till
the Kolmogorov scalekη (Kolmogorov1941).

In optical flow, however, due to the limitation of acquisi-
tion period and the spatial resolution of the image, it is rarely
possible to extract the scalar concentration field till the dif-
fusive range. Information represented by the gray-levelI
contains only the scalar concentrationθ till the scale of
pixel, which corresponds to the large scale motions (inertial-
convective range) in most cases. The smaller ones (sub-
pixel) are eliminated by a filter during image acquisition
step. Nevertheless, for fluid flows, these small scale motions,
contributing to the energy transfer in the wavenumber space,
have an effect on the large scales. The interaction between
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Fig. 2 Decomposition of energy spectrum in LES (Pope2000): the exact solution splits into the resolved scale and the subgrid scale (should be
modeled) in spectral space.kc is the cutoff wave number associated with grid size in physical space.

the unresolved scales and resolved ones cannot be neglected,
especially in the case of turbulent flows. Unfortunately the
classical OFCE in (1) neglects such interactions. It is then of
prime importance to rely on alternative models.

As a matter of fact, these sub-pixel motions correspond
in essence to the unresolved scale motions in LES. This lat-
ter consists in calculating directly the low-frequency modes
in space, while modeling the subgrid scale motions. A sym-
bolic representation of the concept of LES is shown in Fig.2.
In optical flow, the cutoff wave numberkc is related to the
pixel scale∆ of image sequence:

kc =
π
∆

(8)

Applying a cutoff filter to the transport equation ofθ and
rewriting in dimensionless form, we obtain:

∂θ
∂ t

+∇ ·
(

uθ
)

=
1

ReSc
∆θ (9)

Here,θ and u denote respectively the scalar and velocity
field in pixel grid. Re and Sc are Reynolds number and
Schmidt number. We divide the filtered non-linear termuθ
into the resolved part and residual part, then we have:

∂θ
∂ t

+∇ ·
(

uθ
)

+∇ · τθ =
1

ReSc
∆θ (10)

whereτθ is the subgrid scalar flux (Sagaut2000), defined as:

τθ = uθ −uθ (11)

Cassisa et al (2011) proposed that this subgrid termτθ is
related to the turbulent viscosity which can be expressed as:

τθ =−DT ∇θ (12)

with DT a turbulent diffusion coefficient, which is a statisti-
cal constant calculated according to the formulation of Dear-
dorff (1970):

DT = ∆ × (
3

2Csgs

∫ ∞

kc

Euu(K)dK)
1
2 (13)

Despite of the performance of this SGS modeling (Cas-
sisa et al2011), the main drawback lies in the fact that the

power spectrumEuu cannot be obtained explicitly if the ve-
locity field is unknown. Consequently, the value ofDT re-
mains indeterminable. Besides, the SGS viscous models is
purely dissipative, thebackscatter effect in energy cascade
has not been taken into account (Bertoglio1985). To avoid
this ambiguity, we propose to determine the value of SGS
flux termτθ by using the Mixed model proposed by Bardina
et al (1980):

τθ = cr

(

u θ −u θ
)

− νsgs

Prsgs
∇θ (14)

with cr a global constant andPrsgs subgrid Prandtl number,
ranging from 0.1 to 1 (Pope2000). In fact, the Mixed model
(14) is a linear combination of a structural model and a vis-
cosity model in LES.

The structural model is based on the hypothesis of scale
similarity that the statistical structures of the flow at differ-
ent scales are locally auto-similar. Bardina et al (1980) as-
sumed that the residual stress tensor is similar to that eval-
uated on the basis of the smallest resolved scales, since the
subgrid motion shares a common local scaling law with the
smallest resolved one. Later on, in Bardina et al (1983), they
proposed to apply the analytical filter twice for the simula-
tion of subgrid tensor. It is known that the original Bardina
model,i.e., the structural model without an eddy viscosity,
is not purely dissipative, but thebackscatter effect has been
taken into account (Shao et al1999). In practice, to avoid
the time integration instability, the Mixed model,i.e., the
structural model with an eddy viscosity, is widely used in
computational fluid community (Sagaut2000).

The viscosity model is based on the hypothesis that the
interaction between subgrid and resolved scales is essen-
tially an energy cascade from large scales to smaller ones,
and the effect of which is analogous to molecule diffusion
and can be considered as a turbulent dissipation. By intro-
ducing the concept of turbulent subgrid eddy viscosityνsgs,
Smagorinsky (1963) developed the first SGS model:

νsgs =
(

cs∆
)2(

2Si jSi j
)

1
2 (15)

where∆ denotes grid size (pixel) andcs a universal constant
between 0.1 and 0.2. Si j is called the filtered rate-of strain
tensor, defined as:

Si j =
1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

(16)
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Therefore, the Mixed model (14) is simply a combination of
a subgrid viscosity model for the representation of the en-
ergy cascade mechanism, with a scale similarity model for
the prediction of the subgrid tensor structure. It should be
mentioned that the turbulence in the third direction is sup-
posed to be zero since we focus on 2D incompressible tur-
bulence within the scope of this paper.

Based on this modeling, we may end up with the defini-
tion of our novel observation term by representing all physi-
cal mechanism of full field:

J′O(u,θ ) =
∫

Ω

(

∂θ
∂ t

+u ·∇θ +∇ · τθ −
1

ReSc
∆θ

)2

dx

(17)

with the assumption thatθ is proportional to the image
brightness. In practice, for particle or scalar images of which
the concentration field is fully resolved (till the diffusive
range), no subgrid modeling is needed. In these cases, the
observation term will be written as:

J′O(u,θ ) =
∫

Ω

(

∂θ
∂ t

+u ·∇θ − 1
ReSc

∆θ
)2

dx (18)

In previous sections, we have defined our novel regular-
izer and the observation term for 2D incompressible fluid
flow. The estimation of fluid velocity field is conducted by
minimizing the sum of the two terms:

min
u

J′(u,θ ) = J′O(u,θ )+β J′R(u) (19)

Here,β is a weighting coefficient andJ′O(u,θ ) is expressed
in (17) for non-fully-resolved scalar image, and in (18) for
particle image and fully-resolved scalar image. The assump-
tion thatθ ∝ I has been made in this paper. Let us now turn
to some practical issues related to images, optimization and
discretization.

4 Discretization and Multiresolution technique

It should be mentioned that the input images have to be pre-
processed before computation since the artifact and noise

may lead to a misestimation of fluid velocity. A recursive
Gaussian filter (Deriche et al1993) is used to remove these
noises. Moreover, in order to reserve more information in
images, it is preferred to use the convolution property for
spatial gradients calculation:

∂
∂xi

(G∗θ) =
∂G
∂xi

∗θ (20)

Thus, the spatial derivative is firstly computed on the filter
and then convolved with the scalar concentration field.
4.1 Discretization scheme

The discretization process of the minimization of (19) could
be conducted by resolving the associated Euler-Lagrange
equations:

∂J′

∂ui
− ∂

∂x j

∂J′

∂ui, j
= 0 (21)

whereui, j =
∂ui
∂x j

. It should be noted that the SGS flux termτθ

in the observation term (17) could be considered practically
homogeneous at pixel level, so that its dependency on local
velocityui and its gradientui, j is weak. For the simplicity of
minimization scheme, we suppose that:

∂τθ
∂ui

= 0 (22)

∂τθ
∂ui, j

= 0 (23)

Based on these assumptions, we obtain:

∂θ
∂xi

(
∂θ
∂ t

+u j
∂θ
∂x j

+
∂τθ j

∂x j
− 1

ReSc
∂ 2θ

∂x j∂x j
) = β

∂
∂xi

u j, j (24)

We denoteu by (u,v), then by neglecting higher order
terms, ∂

∂xi
u j, j can approximatively be discretized as (25)

and (26), whereh represents the pixel length and(m,n)
is the spatial coordinate. (24) can be solved iteratively
by using (27), in which we use the value ofτθ at iter-
ation p to compute the velocity field at iterationp + 1.

∂
∂x

(

∂u
∂x

+
∂v
∂y

)

≈ (um+1,n + um−1,n −2um,n)/h2+(vm+1,n+1− vm−1,n+1− vm+1,n−1+ vm−1,n−1)/(4h2) (25)

∂
∂y

(

∂u
∂x

+
∂v
∂y

)

≈ (vm,n+1+ vm,n−1−2vm,n)/h2+(um+1,n+1− um−1,n+1− um+1,n−1+ um−1,n−1)/(4h2) (26)

(

up+1

vp+1

)

= β







(

∂θ
∂x

)2
+ 2β

h2
∂θ
∂x

∂θ
∂y

∂θ
∂x

∂θ
∂y

(

∂θ
∂y

)2
+ 2β

h2







−1



2
h2 up + ∂

∂x

(

∂up

∂x + ∂vp

∂y

)

− 1
β

∂θ
∂x

(

∂θ
∂ t −

1
ReSc ∆θ +∇ · τ p

θ

)

2
h2 vp + ∂

∂y

(

∂up

∂x + ∂vp

∂y

)

− 1
β

∂θ
∂y

(

∂θ
∂ t −

1
ReSc ∆θ +∇ · τ p

θ

)



 (27)
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(a)

(b)

Fig. 3 A symbolic representation of the multiresolution pyramid (a)
and the minimization process (b) with coarse-to-fine strategy (Bergen
et al1992).

(a) scalar image (b) partical image

Fig. 4 Synthetic scalar image (a) and the particle image (b).

4.2 Multiresolution

Generally, optical flow has proven to be high-performance
for estimation of apparent motions of small magnitude.
However, for large displacements between two images, the
discordance between the temporal derivation and spatial gra-
dient in (1) may lead to a poor estimation. To get rid of
this issue, multiresolution technique is introduced (Bergen

10-3 10-2 10-1 100

k/2π

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

E
θ

Slope
(−5

3

)

∆filter ∆pixel

Original

Filtered

Fig. 5 Scalar variance spectra of the original image and the filtered one
with varianceσ = 0.9.

et al 1992), which consists of a incremental coarse-to-fine
strategy. The image pyramid structure is built by a series of
low-pass filters, such that image resolution is reduced suc-
cessively by subsampling process (Fig.3(a)).

More precisely, letk denote of the current pyramid level,
thus k + 1 is the upper level with a coarser pixel grid. At
Level k, we firstly warp the second image to the first one
with the estimation of Levelk+1 by using the bicubic inter-
polation:

θw
k (x, t +1) = θ k(x+uk+1, t +1) (28)

Then, we compute the increment velocity fieldδuk based on
θ k(x, t) andθ w

k (x, t+1) at Levelk with (24). The estimation
at Levelk is finally updated by:

uk = uk+1+ δuk (29)

Fig.3(b) illustrates briefly this coarse-to-fine strategy. One
may refer to (Burt1988; Brox et al2004; Mallat 1989) for
more details. Let us now present our experiments.

5 Experimental validation

5.1 Synthetic images

5.1.1 Data description

The sequence is downloadable from the internet1 and has
been generated by Cemagref team (Carlier and Wieneke
2005) in Rennes, France. They aim at evolving the exact
solution of flow with a large scale range in the energy spec-
trum. The vorticity equation is solved with incompressible
condition in Fourier space. A pseudo-spectral code was used
to reduce the computation time. Each of the producing im-
ages has a size of 256× 256 pixels, and the time inter-
val of two successive images is 10 times of that in DNS

1 http://fluid.irisa.fr/data-eng.htm

http://fluid.irisa.fr/data-eng.htm
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(a) DNS
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(b) H&S
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(c) Cassisa
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(d) Proposed

Fig. 6 Instantaneous vorticity field on scalar sequence att = 50 : exact DNS vorticity field (a), result of H&S (b), result of Cassisa et al (2011) (c),
estimation with proposed formulation (d).

computation. The homogeneous and isotropic turbulent flow
represented in the image sequence, with Reynolds number
Re = 3000 and Schmidt numberSc= 0.7, has an average ve-
locity around 3.5 pixels for each time interval. Both of scalar
and particle sequence are composed by 100 successive im-
ages, as shown in Fig.4(a)and in Fig.4(b), respectively.

5.1.2 Parameters setting

- Scalar images
To remove the noise and artifacts, we firstly filtered the im-
ages with a gaussian filter. At the same time, some small
scale structures have also been filtered during this process,
as shown in Fig.5. From the point of view of LES, these
small scales correspond to the filter width∆ f ilter that is
larger than the pixel size∆ pixel. A subgrid model based on
the filter width ∆ = ∆ f ilter(σ) is therefore needed for the
estimation of motion within these scales. To ensure the per-
tinence of the subgrid model, the varianceσ is need to be
chosen in such a way that the corresponding filter width∆

lays in the inertial subrange. In practice, we use a Gaus-
sian filter of varianceσ = 0.9. ∆ can then be computed
with ∆ = 2

√
3σ ≈ 3.2 (Pope2000), and is set to be 4 ap-

proximatively. This choice leads to a small∆
Lθ

≈ 4
62.4 < 0.1

(Lθ = π
2θ2

∫ ∞
0

Eθ (k)
k dk, is the integral length scale), indicating

that the energy-containing large scales is not altered by the
gaussian filtering process.

The multiresolution technique is not used in this case
since the magnitude of displacements is small. As for the
subgrid model, the global constantcr andPrsgs are set to be
1.1 and 0.6 (Bardina et al1983; Sagaut2000), respectively.
In addition the valuecs = 0.19 is assumed and the weighting
coefficientβ in (19) is set to be 150 in this case. The velocity
field estimated is filtered with a varianceσ = 1 to remove the
noise. Lastly the subgrid viscosityνsgs is averaged within
the whole image for a better estimation, since the flow is
homogeneous and isotropic. In order to introduce a temporal
consistency, at each time step, the velocity field is initialized
by the previous one.
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Fig. 7 Spectra of velocity and vorticity with log-log and semi-logrepresentation: results of DNS (black), H&S (green), Cassisa et al (2011) (blue)
and proposed formulation (red).

- Particle images
We use a 2-level pyramidal decomposition for coarse-to-fine
estimation. PIV images are filtered by a recursive Gaussian
filter of varianceσ = 0.6 at each level and the velocity field
estimated is equally filtered with a varianceσ = 1.25 in or-
der to remove the noise. The weighting coefficientβ in (19)
is set to be 4000. Compared to the scalar images, the value
of β is greater in this case in order to compensate the dif-
ferences in term of gray-level between these two sequences.
Therefore in both cases the observation term and regulariza-
tion term have the same order of magnitude.

5.1.3 Validation criteria

In order to evaluate statistically the performance of our
proposed approach, we calculate the Average Angle Error
(AAE) and Root Mean Square Error (RMSE) as evaluation
criteria, which are commonly used in optical field commu-
nity (Baker et al2011):

AAE(t) =
1
N ∑

x∈Ω
arccos

(

uc(x, t)ue(x, t)
‖uc(x, t)‖‖ue(x, t)‖

)

(30)

RMSE(t) =

√

1
N ∑

x∈Ω
‖uc(x, t)−ue(x, t)‖2 (31)

Here,N represents the total number of pixels anduc(x, t)
andue(x, t) are respectively the exact and the estimated ve-
locity field.

5.1.4 Results

- Scalar images
We present in Fig.6 the vorticity map for a given instanta-
neous velocity field (at timet = 50) obtained by different
methods. The associated velocity field is superimposed to
each map and the results share a common color legend. We
can clearly observe that the proposed formulation enables
to improve the estimation. The vortex structures of different
scales, which are comparatively blurred with H&S and are
slightly detected by Cassisa et al (2011), are much more ac-
curately estimated with the subgrid modeling, such that the
vortices have a similar behavior to that of DNS .

To go into more details, Fig.7 presents the the spectra
of velocity field and vorticity field in log-log and semi-log
representation. Compared to the classical H&S (green), the
formulation of Cassisa et al (2011) (blue) and the proposed
one (red) lead to a better recovery of the field of small scales,
since both of the two approaches have introduced subgrid
models that manage to predict small scale motion effects
with resolved scales information. Furthermore, the proposed
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Fig. 8 AAE (a) and RMSE (b) errors of estimation for synthetic scalar
images.

method exhibits a better performance for large scale motion
(see semi-log representation in Fig.7(b,d)). It is due to the
new regularization term that maintains the rotational struc-
ture, and to the Mixed modeling that predicts the behavior
of small scales (Shao et al1999).

In terms of quantitative values, the evaluation criteria
AAE and RSME are shown in Fig.8. Results of the proposed
formulation (solid line) are compared to H&S (dotted line)
and Cassisa et al (2011) (dashed line). It is visible that the in-
troduction of sub-pixel motion modeling (Cassisa et al2011)
has already improved the precision of estimation by 40% for
AAE and 34% for RMSE. However, even compared to this
high-performance method, our new formulation leads to a
further improvement by 50% approximatively for both cri-
teria. This significant improvement may be due to the per-
formance of the Mixed modeling (14), that better predicts
the interaction between resolved scale motions and those
under pixel. Whereas the proposed regularizer that avoids
penalizing vortex structures of the flow, helps additionally
to improve the precision of the estimation. This first series
of experiments in synthetic scalar images demonstrates the
ability of the proposed method to properly recover turbulent
velocity fields. Let us now turn to particle data.

- Particle images
In Fig.9, we depicted our velocity vector maps over a zoom

area (10×10 pixels) of PIV image (Fig.4(b)), obtained by
our methods (red), H&S (blue) and compared to the ground
truth (black). It is obvious that the velocity field from the

DNS

H&S

Proposed

36 38 40 42 44 46 48
96

98

100

102

104

106

Fig. 9 The velocity vector map over a zoomed area in Fig.4(b): DNS
result (black), estimation with proposed formulation (red) and H&S
(blue).
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Fig. 10 AAE (a) and RMSE (b) errors of estimation for synthetic par-
ticle images.

proposed formulation is more closer to the exact one than
the classical optical flow method, which highlights the per-
formance of the novel regularizer for 2D incompressible
flow estimation. The first order regularization term of the
H&S method prevents from a proper recovery of the vortic-
ity which is clearly underestimated.

This improvement can be illustrated statistically in
Fig.10, where AAE and RSME are calculated for particle
sequence. Compared to H&S, the proposed formulation al-
lows an improvement of 22% for AAE and 24% for RSME.
This improvement is not as great as in scalar case, since the
spatial gradient of the images, based on which the velocity
is calculated, is better formulated for particle sequence.And
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Fig. 11 AAE and RMSE errors for particle (above) and scalar (below) images of different methods. The data are taken form Héas et al (2012).

the classical optical flow method, along with the multireso-
lution technique, has already allowed an estimation with a
satisfactory precision. The novel regularization term, even
in this case, manages to increase the precision by more than
20% by amending the spatial distribution of velocity field,
which highlights the performance of the proposed regular-
izer for 2D incompressible flows.

- Comparison with other methods
In order to show the performance of the proposed formula-
tion, we compare our results with other state-of-the-art meth-
ods in Fig.11. We plot AAE and RSME errors for both par-
ticle (above) and scalar (below) sequences. Error values are
taken from Héas et al (2012).

For scalar images, the proposed estimation outperforms
other state-of-the-art methods in optical flow community.
This gap is mainly due to the introduction of subgrid model
into the observation term, which takes into account the role
of sub-pixel motions of turbulent flows.

As for particle images, it is shown that the proposed regu-
larizer outperforms some of the high-accuracy algorithms in
the literature (compared to Becker et al (2012) and Yuan et al
(2007), the estimation improved by 43.5% and by 9.6% re-
spectively). The proposed formulation is comparable to the
regularizer based on the scale invariance property (Héas et al
2012), while higher-order regularizers (Dérian et al2012;
Kadri-Harouna et al2013) lead to estimations with best ac-
curacy (with an improvement of 13% in comparison with
our formulation). A further research dedicated to particleim-
ages is needed to find a better formulated observation term

Fig. 12 A symbolic representation of Batchelor regime

and regularizer. From these experiments, one concludes that
our technique is vey well adapted to the estimation of tur-
bulence motions. In the next section we show some experi-
ments on real data.

5.2 Experimental scalar image

5.2.1 Data description

An experimental study of the dispersion of passive scalar
in a 2D turbulence at high Péclet number is reported in Jul-
lien et al (2000). The Batchelor regime, characterized byk−1

spectrum, is observed. In this regime, only one velocity scale
is active in dispersion process. Batchelor et al (1959) derived
a diffusive cutoff wave number, namely the Batchelor wave
number, for scalar field with a very-high Schmidt number
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Fig. 13 Scalar variance spectrum of experimental image (t = 94).

(Sc ≫ 1):

kB =
( ε

νκ2

)1/4
(32)

whereε, ν andκ represent respectively turbulent dissipation,
kinematic viscosity and molecular diffusivity. Fig.12 is a
symbolic representation of the scalar variance spectrum with
the kinetic energy spectrum. Compared to Fig.1, a viscous-
convective range (Sagaut2000) is observed, where the scalar
fluctuations are influenced mainly by the viscous effect of
velocity field.

The scalar concentration field is visualized by using a
512× 512 CCD camera with 0.2mm overall spatial reso-
lution (Fig.14(a)and Fig.14(b)). The Péclet number (Pe =

UL/κ = ReSc) is approximatively equal to 107. One may
refer to Paret and Tabeling (1998) for details of experiment
setup.

5.2.2 Parameters setting

Fig.13shows the scalar variance spectrum of the experimen-
tal image. Thek−1 law is fairly observed, and the spectrum
drops rapidly beyond these scales, indicating an effective
dissipation region (Jullien et al2000). Since the wave num-
ber associated with pixel is within the diffusive range, the
subgrid-scale model is unnecessary for flow estimation. But
this case is still of interest to test the new regularizationterm.
We use a 2-Level multiresolution pyramid andβ is set to be
100. For the purpose of noise removing, we filter the image
with σ = 4 at finer grid level and withσ = 2 at coarser grid
level. Test with H&S has also been conducted for compari-
son.

5.2.3 Results

Fig.14(c)and Fig.14(d)show respectively the vorticity field
estimated based on H&S and the proposed formulation. It is
visible that the novel formulation extracts more preciselythe

vortex structure of various scales. The gradient-based regu-
larizer (3) constrains the velocity field to be oversmoothed
in order to satisfy the continuity condition. The proposed
regularization scheme, as expected, enables to estimate vor-
tex structures more clearly and more distinguishably, while
allowing a sufficient smoothness for the velocity field. This
is to our opinion a very good behavior and once again, this
proves the great efficiency of the proposed technique.

6 Conclusion

In this paper, we have proposed a new formulation in the
framework of optical flow for turbulence motion estimation.
The formulation is based on the minimization of an objective
function constituted by original observation and regulariza-
tion terms: the observation is based on the transport equation
of the passive scalar field, where we proposed to determine
the value of SGS flux termτθ by using the Mixed model
for non-fully resolved scalar images; the regularization term
is based on the continuity equation of 2D incompressible
flows, which penalizes exclusively the divergence of the ve-
locity field without any constraint on the vorticity field.

Tests on particle images and experimental images have
proven the performance of the novel regularizer, results have
shown that it allows a better prediction of the vortex struc-
tures compared to Horn and Schunck (1981). As for the
synthetic scalar sequence, the Mixed model along with the
novel regularizer, estimates precisely the behavior of sub-
grid scale motion and its effect to the resolved one (as shown
in velocity spectra). The proposed formulation leads to in-
crease the precision by 50% in comparison with Cassisa
et al (2011) and outperforms other state-of-the-art optical
flow methods in the literature.
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