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Abstract. Due to non-associativity of floating-point operations and dynamic

scheduling on parallel architectures, getting a bitwise reproducible floating-point

result for multiple executions of the same code on different or even similar parallel

architectures is challenging. In this paper, we address the problem of reproducibil-

ity in the context of matrix multiplication and propose an algorithm that yields

both reproducible and accurate results. This algorithm is composed of two main

stages: a filtering stage that uses fast vectorized floating-point expansions in con-

junction with error-free transformations; an accumulation stage based on Kulisch

long accumulators in a high-radix carry-save representation. Finally, we provide

implementations and performance results in parallel environments like GPUs.

Keywords: Matrix multiplication, reproducibility, accuracy, Kulisch long accumulator,

error-free transformation, floating-point expansion, rounding-to-nearest, GPU accelera-
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1 Introduction

In many fields of science and engineering, the process of finding the solution for a specific

problem requires to solve a system of linear equations, or a least squares problem, or

eigenvalue problem. The common approach is to develop solvers for those tasks alone

and then spend tremendous amount of time on tuning them. However, the best practice

suggests to use already optimized solution-routines contained in linear algebra libraries.

The development of linear algebra libraries has its beginning in the early 1970s.

From that time many libraries have been released. With the influence of common HPC

computers, which were based on vector processors, in 1979 a first set of Basic Linear

Algebra Subprograms (BLAS-1) [1] was designed as a set of basic vector operations. In

1988 the idea of BLAS was developed further yielding to a second set of routines for

matrix-vector operations (BLAS-2) [2]. For those routines the amount of data required

and floating point operations (Flops) performed have quadratic complexity.



When architectures with multiple layers of cache memory appeared, the performance

for both BLAS-1 and BLAS-2 operations became an issue: for these routines the ratio

between the numbers of Flops and memory accesses is only O(1). In order to attain

high performance on architectures with a hierarchical memory system, in 1990 the third

level of BLAS (BLAS-3) [3] with matrix-matrix operations was defined. These routines

perform O(n3) Flops over O(n2) data, giving the opportunity to hide the memory

latency and offer performance close to the achievable peak.

A generic implementation of the BLAS specification is provided since the announce-

ment of the library in 1979. This reference implementation is equipped with the complete

functionality, but it is not optimized for any architecture. Thus, processor manufacturers

as well as scientists developed tuned implementations of the BLAS for each architecture.

Prominent examples of these implementations are Intel MKL, AMD ACML, IBM ESSL,

ATLAS, and GotoBLAS (now OpenBLAS). ATLAS [4] is based on an auto-tuned empir-

ical approach while GotoBLAS [5,6] is a hand-tuned machine-specific implementation

of the BLAS. Due to the raising popularity of GPUs for high-performance computing,

NVIDIA provided a GPU-version of the BLAS (cuBLAS).

The core of the BLAS library is xGEMM5, which is a BLAS-3 routine, that computes

the matrix-matrix products as

C := αop(A)op(B) + βC, (1)

where α and β are scalars; op(A), op(B), and C are general matrices with op(A) a

m× k matrix, op(B) a k × n matrix, and C a m× n matrix; op(X) represents either a

non-transposed X or a transposed XT matrix. xGEMM performs 2mnk floating-point

operations over mk+ kn+mn data. When m = n = k the ratio between floating-point

operations (Flops) and memory accesses is 2n
3

. This means that most memory accesses

can be hidden in the background while the processor performs the computation. All the

other BLAS-3 routines can be expressed in terms of xGEMM. Moreover, when different

implementations of BLAS are compared, the first criteria used for this comparison is the

performance of xGEMM.

The profitable ratio between the computation and the memory references of the

BLAS-3 routines has a strong impact on the design and automatic generation of linear

algebra algorithms. For instance, in order to exploit the optimized BLAS implementa-

tions, the Linear Algebra PACKage (LAPACK) builds its blocked algorithms on top of

the BLAS-3 operations. Furthermore, scientists either try to generate algorithms relying

more on the BLAS-3 routines, in particular xGEMM, or try to rewrite their algorithms

in order to benefit from the performance provided by the BLAS-3 routines [7,8].

In general, matrix-matrix products relies on optimized version of parallel reduction

and dot-product involving floating-point additions and multiplications which are non-

associative operations. Hence, as the order of operations may vary from one parallel

machine to another or even from one run to another [9], reproducibility of results is

not guaranteed. These discrepancies worsen on heterogeneous architectures – such as

clusters composed of standard CPUs in conjunction with GPUs and/or accelerators like

Intel Xeon Phi – which combine together different programming environments that

5 In general, x stands for four different formats, but in the scope of this article we consider x to

correspond to single (S) or double (D) precision.



may obey various floating-point models and offer different intermediate precision or

different operators [10,11]. In some cases, such non-reproducibility of floating-point

computations on parallel machines causes validation and debugging issues, and may

even lead to deadlocks [12].

By reproducibility, we mean getting a bitwise identical floating-point result from

multiple runs of the same code on the same data. Numerical reproducibility can be

addressed by targeting either the order of operations or the error resulting from finite

arithmetic. One solution consists in providing the deterministic control over rounding

errors by, for example, enforcing the execution order for each operation. However, these

approach is not portable and/or does not scale well with the number of processing

cores. The other solution aims at avoiding cancellation and rounding errors by using, for

instance, a long accumulator such as the one proposed by Kulisch [13]. This solution

increases the accuracy at the price of more operations and memory transfers per output

data. Because of that, for a long time, it was considered too expensive for the little benefit

it was providing.

Recently, we introduced in [14] an approach to compute deterministic sums of

floating-point numbers. Our approach is based on a multi-level algorithm that combines

efficiently floating-point expansions and long accumulators. The proposed implementa-

tions on recent Intel desktop and server processors, on Intel Xeon Phi accelerator, and on

both AMD and NVIDIA GPUs, showed that the numerical reproducibility and bit-perfect

accuracy can be achieved at no additional cost for large sums that have dynamic ranges

of up to 90 orders of magnitude. This speed-up is possible thanks to arithmetic units that

are left underused by the standard reduction algorithms.

In this article, we propose an approach to ensure both the reproducibility and the

accuracy (rounding-to-nearest) of the product of two matrices composed of floating-point

numbers. The derived algorithm is based on the standard non-deterministic xGEMM and

our deterministic summation algorithm. Moreover, we provide implementations of this

algorithm on GPU accelerators. To our knowledge, this is the first work on reproducible

matrix-matrix multiplication.

The paper is organized as follows. Section 2 reviews related aspects of floating-point

arithmetic in particular floating-point expansions and long accumulators. Section 3

presents our approach to derive exact, meaning both reproducible and accurate, matrix-

matrix product. In Section 4, we expose implementations and performance results on

GPU accelerators. Finally, we discuss related works and draw conclusions in Sections 5

and 6, respectively.

2 Background

Without loss of generality, in the rest of this article, we will consider double precision

format (binary64) from the IEEE-754 standard [15]. Floating-point representation of

numbers allows to cover a wide dynamic range. Dynamic range refers to the absolute

ratio between the number with the largest magnitude and the number with the smallest

non-zero magnitude in a set. For instance, binary64 can represent positive numbers

from 4.9× 10−324 to 1.8× 10308, so it covers a dynamic range of 3.7× 10631.



Non-associativity of floating-point addition implies that the result depends on the

order of the operations. For example in double precision (−1⊕ 1)⊕ 2−100 is different

from −1⊕ (1⊕ 2−100) where ⊕ denotes the result of a floating-point addition. Thus,

the accuracy of a floating-point summation depends on the order of evaluation. More

details about this phenomenon can be found in the main references [16,17].

Two approaches exist to execute one floating-point addition without introducing

rounding error. The first solution aims at computing the error which occurred during

rounding using floating-point expansions in conjunction with error-free transformations,

see Section 2.1. The second solution exploits the finite range of representable floating-

point numbers by storing every bit in a very long vector of bits, see Section 2.2.

2.1 Floating-Point Expansion

Floating-point expansions represent the result as an unevaluated sum of floating-point

numbers, whose components are ordered in magnitude with minimal overlap to cover

a wide range of exponents. Floating-point expansions of sizes 2 and 4 are described

in [18] and [19], accordingly. They are based on error-free transformation. Indeed, when

working with rounding-to-nearest, the rounding error in addition or multiplication can

be represented as a floating-point number and can also be computed in floating-point

arithmetic. The traditional error-free transformation for the addition is TwoSum [20],

Alg. 1, and for the multiplication is TwoProduct, Alg. 2. For TwoSum, it means

that r + s = a + b with r = a ⊕ b and s, which is a floating-point number that

corresponds to rounding error. For TwoProduct, we use the fused multiply and add

(FMA) instruction that is widely available on modern architectures. FMA(a, b, c) makes

it possible to compute a×b+c with only one rounding. Thus, we have r+s = a×b with

r = a⊗ b and s = FMA(a, b,−r), where ⊗ stands for the floating-point multiplication.

Algorithm 1: Error-free transformation for the sum of two floating-point numbers.

Function [r, s] = TwoSum(a, b)
r ← a+ b
z ← r − a
s← (a− (r − z)) + (b− z)

Algorithm 2: Error-free transformation for the product of two floating-point num-

bers.

Function [r, s] = TwoProduct(a, b)
r ← a× b
s← FMA(a, b,−r)

Adding one floating-point number to an expansion is an iterative operation. The

floating-point number is first added to the head of the expansion and the rounding error is

recovered as a floating-point number using an error-free transformation such as TwoSum.

The error is then recursively accumulated to the remainder of the expansion.



With expansions of size n – that correspond to the unevaluated sum of n floating-

point numbers – it is possible to accumulate floating-point numbers without losing

accuracy as long as every intermediate result can be represented exactly as a sum of

n floating-point numbers. This situation occurs when the dynamic range of the sum is

lower than 253·n (for binary64).

The main advantage of this solution is that expansions can be placed in registers

during the whole computation. However, the accuracy is insufficient for the summation

of numerous floating-point numbers or sums with a large dynamic range. Moreover, the

complexity of this algorithm grows linearly with the size of expansion.

2.2 Long accumulator

An alternative algorithm to floating-point expansions uses very long fixed-point accu-

mulators. The length of the accumulator is selected in such a way that it represents

every bit of information of the input format, e.g. binary64; this covers the range

from the smallest representable floating-point value to the largest one, independently

of the sign. For instance, Kulisch [13] proposed to use an accumulator of 4288 bits to

handle the dot product of two vectors composed of binary64 values. The summation

is performed without loss of information by accumulating every floating-point input

numbers in the long accumulator, see Fig. 1. The long accumulator is the perfect solution

to produce the exact result of a very large amount of floating-point numbers of arbitrary

magnitude. However, for a long period this approach was considered impractical as

it induces a very large memory overhead. Furthermore, without dedicated hardware

support, its performance is limited by indirect memory accesses that makes vectorization

challenging.

Fig. 1: Kulisch long accumulator.

3 Exact Matrix-Matrix Multiplication

In order to achieve best performance for linear algebra kernels, machine-specific hand

tuning of those kernels is often applied; a good example is the Goto’s implementation of

xGEMM. Scientists aim at optimizing this process for existing and upcoming architec-

tures through the automatic generation of linear algebra kernels. As the matrix-matrix

multiplication is the core of the BLAS library, in several works [4,21] the problem of

optimizing this routine for a given architecture was tackled by applying the automatic

generation approach. For instance, the ATLAS project [4] provides a very good imple-

mentation of BLAS by tuning routines for various architectures; those are centralized



around a highly tuned matrix-matrix product that is automatically optimized for different

levels of memory hierarchy. The idea of auto-tuning was extended to GPUs architectures

applying different programming models such as CUDA and OpenCL. Apart from both

code generation and heuristic search in conjunction with OpenCL, Matsumoto et. al. [21]

proposed to store data in memory not only in a standard row-/column-major order, but

also in a block-major order. We revise these ideas and employ it with modifications in

our implementations of exact xGEMM, which is described in Section 4.1. Therefore, we

combine together two approaches: auto-tuning for standard non-deterministic xGEMM

and machine-specific hand tuning for our reproducible approach.

3.1 Hierarchical Approach for Matrix-Matrix Multiplication

We introduced in [14] a hierarchical superaccumulation scheme for the summation of

floating-point numbers (parallel reduction) that relies on floating-point expansions with

error-free transformations and long accumulators as described in Section 2. Thanks to the

latter, this approach guarantees both reproducible and accurate results. This allows us to

propose a reproducible and accurate matrix-matrix multiplication scheme which divides

computations into three stages: filtering, private superaccumulation, and rounding. This

decomposition is suitable for the nested parallelism of modern architectures and it makes

a full use of SIMD and multi-threads.

In the first stage, each partial product is computed using error-free transformation.

In order to ensure accuracy, this steps generates two floating-point numbers, see Alg. 2.

Both resulting floating-point numbers are accumulated using algorithm Alg. 1 in an

expansion of size n(n ≥ 3) that is stored in registers or private memory for each threads.

This step benefits from vectorization and pipelining by maintaining one expansion per

GPU thread.

In case the accuracy provided by floating-point expansions for product and/or sum-

mation is not enough, a non-zero residue x remains after this first accumulation. Each

residue x is added to a long accumulator. We also propose an optimized version of

floating-point expansions of size n that relies on the stopping criteria (x ≡ 0) in the

accumulation loop. This technique is called early-exit and exhibits performance which

depends on the distribution of input numbers and the ability of the architecture to handle

irregular branches.

A trade-off between speed and usage of the hardware resources lies in the proper

choice of the size n of the floating-point expansion. A small value of n will lead to

numerous transfers from the expansion towards the long accumulators, which will slow

down the computation. A large value of n will lead to the overuse of registers and

ultimately the register spilling.

Once all the input number are accumulated, each floating-point expansion is flushed

to long accumulators, independently of the parameter n. Hence, the second stage is based

on superaccumulation, meaning summation to long accumulators, and it is involved

either when the accuracy provided by expansions is not enough or at the end of the

computation. Depending on the amount of memory available, long accumulators are

stored in either fast local memory, e.g. cache or shared memory, or global memory.

In the third stage, the rounding of the private long accumulator back to the desired

floating-point format is performed in order to obtain the correctly rounded results.



4 Implementations and Experimental Results

This section presents our implementations of the multi-level reproducible matrix multipli-

cation and their evaluation on both NVIDIA and AMD GPUs, see Tab. 1 for the detailed

description of these GPU architectures. We compared the accuracy of our implementa-

tions with results produced by the multiple precision library MPFR on CPUs. We should

mention that this library is not multi-threaded and does not support GPUs. In case of

binary64, we used 4196 bits (2× (emin + emax + mantissa) = 2×(1022+1023+53))
within MPFR in order to guarantee the bit-wise reproducibility as well as the accuracy

of the results independently of rounding errors and dynamic ranges.

Table 1: Hardware platforms used for the experiments.

A NVIDIA Tesla K20c 13 SMs × 192 CUDA cores 0.705 GHz

B AMD Radeon HD 7970 32 CUs × 64 units 0.925 GHz

4.1 Implementations

We follow the strategy proposed by Matsumoto et al. [21] regarding their matrix partition-

ing technique in order to exploit multi-level memory hierarchies on GPU architectures,

see Fig. 2. An adequate matrix partitioning improves significantly the reuse of data and

keeps the computational units busy while performing memory transfers.

Our solution is different from Matsumoto’s one, as we divide memory space among

matrices, floating-point expansions, and superaccumulators. The latter may requires 78
times more storage than the matrix C in the non-optimized case (when superaccumula-

tors are not reused). Thus, we use two levels of blocking in our matrix multiplication

algorithms to amortize the cost of data accesses to the three levels of memory on GPUs,

namely private (registers), local or data caches, and global. The first level focuses on

enhancing the access latency between the global and local memories for each group

of threads (or warp or work-group on GPUs). Suppose that ml, nl, and kl are three

block size multiple of m,n, and k respectively. Fig. 2a represents the partitioning of the

matrices C,A, and B into blocks of sizes ml × nl,ml × kl, and kl × nl, accordingly.

Each ml × nl block of C is computed by a work-group that involves ml × k blocks of

A and k × nl blocks of B.

This panel-panel multiplication iterates k/kl times in the outermost loop of our

xGEMM algorithm using the block-block multiplication. Thus, on each iteration the

work-group updates each resulting ml × nl block of C with the product of an ml × kl
block of A by a kl × nl block of B. This second level of blocking optimizes the use of

private memory for each thread (work-item on GPUs). Fig. 2b shows further partitioning

of matrices within their blocks in such a way that each work-item in the work-group is

responsible for updating an ms × ns sub-block of C through the multiplication of an

ms × kl sub-panel of A by a kl × ns sub-panel of B.

In order to ensure both reproducibility and accuracy of xGEMM, we use one floating-

point expansion with error-free transformation per thread. When the accuracy provided

by floating-point expansions is not enough, we switch to long accumulators that are

allocated for each thread of a given work-group. However, this induces pressure on

the memory hierarchy due to the required storage. So, we reuse both floating-point
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Fig. 2: Partitioning of matrix-matrix multiplication.

expansions and superaccumulators and aim at computing multiple elements of the

resulting matrix with the same thread.

Our implementations attempt to get the maximum performance by using all resources

of the considered GPU architectures: SIMD instructions, fused multiply-add, private and

local memory as well as atomic instructions. We developed both unique and hand-tuned

OpenCL implementations for NVIDIA and AMD GPUs.

We use a long accumulator of finite length that corresponds to the whole range of

double precision floating-point numbers (4196 bits in case of binary64). We use such

a long accumulator to avoid partial over/underflow that may occurs while accumulating

partial product of the same sign. For instance, for matrices of size n× n, only n partial-

products need to be summed per resulting element leading to only log2(n) carry bits.

With matrix size of 220 × 220 that requires 8 Terabytes, only 20 extra bits are necessary

to ensure that this phenomena will not occur.

4.2 Performance Results

As a baseline we consider the vectorized and parallelized non-deterministic double

precision matrix multiplication. Figs. 3a and 3b present the measured time achieved by

the matrix multiplication algorithms as a function of the matrix size n on two GPUs,

see Tab. 1. Apart from “DGEMM”, all implementations are ours: “Superaccumulator” is

an implementation that relies solely on long accumulators and it is the slowest due to its

extensive memory usage; “Expansions n” stand for implementations with floating-point

expansions of various sizes; “Expansion 4 early-exit” is an optimized version of the

expansion of size 4. The implementations with expansions deliver better performance

than with superaccumulators only. Due to switching to the superaccumulator at the final

stage of computing each resulting element as well as when the accuracy of expansions

is not enough, the performance of implementations with expansions is bounded and

it is at most 12 and 16 times off the DGEMM’s performance on NVIDIA and AMD

GPUs, respectively. We think that there is a possibility to improve these preliminary

implementations in order to be within 10 times slower. Nevertheless, the computed

results by our matrix multiplication algorithm are both reproducible and accurate.
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Fig. 3: The matrix-matrix multiplication performance results on NVIDIA and AMD

GPUs, see Tab. 1.

5 Related Works

To enhance reproducibility – defined as getting a bitwise identical floating-point re-

sult from multiple runs of the same code – Intel proposed a “Conditional Numerical

Reproducibility” (CNR) in its MKL (Math Kernel Library). However, CNR is slow

and does not give any guarantees on the accuracy of the result. Demmel and Nguyen

recently introduced a family of algorithms for reproducible summation in floating-point

arithmetic [22]. These algorithms always returns the same answer. They first compute

an absolute bound of the sum and then round all numbers to a fraction of this bound.

So, the addition of the rounded quantities is exact. Since the computed sum may be

less accurate than the non-deterministic one, this solution offers no guarantees on the

accuracy. It also induces a twofold slowdown as data transfers and reductions need

to be performed twice: for computing the bound and the sum. As Section 4 shows,

our algorithm is faster in the bandwidth-constrained scenarios with moderate dynamic

ranges. Demmel and Nguyen have also improved the previous results [23] by using

one single reduction step among nodes. Such an improvement yielded roughly 15%

overhead on 2048 processors compared to the Intel MKl’s dasum(), but it shows 4.5
times slowdown on 32 processors. Demmel and Nguyen have extended their concept to

reproducible BLAS routines, distributed in their ReproBLAS library6. For the moment

of writing, the ReproBLAS library does not contain reproducible matrix multiplication.

6 Conclusions and Future Work

xGEMM is the core of the BLAS library and all the other BLAS-3 routines are virtually

built on top of xGEMM. Furthermore, the development and automatic generation of

linear algebra algorithms are driven by the goal of achieving best performance on various

architectures. One step towards this goal is made by using blocked versions of algorithms

6 http://bebop.cs.berkeley.edu/reproblas/

http://bebop.cs.berkeley.edu/reproblas/


that are capable to obtain much higher performance compared to non-blocked algorithmic

variants. This is achieved thanks to the usage of BLAS-3 routines, in particular xGEMM.

Understanding such importance of the matrix multiplication routine, we target xGEMM

and for the first time deliver both a multi-level reproducible and accurate approach as

well as implementations of the same. Even though the performance can be argued (we

think that a 10 times overhead at most for reproducible compute-bound algorithms is

reasonable), the output of xGEMM is consistently reproducible and accurate, in terms of

rounding-to-nearest, independently of threads scheduling and data partitioning.

Our ultimate goal is to apply the multi-level approach to derive reproducible, accurate,

and fast library for fundamental linear algebra operations – like those included in

the BLAS library – on new parallel architectures such as Intel Xeon Phi many-core

processors and GPU accelerators. Moreover, we plan to conduct a priori error analysis of

the derived ExBLAS (Exact BLAS) routines. More information on the ExBLAS project

as well as its sources can be found in [24].
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