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THRESHOLDING RULES AND ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM:
A CONVERGENCE STUDY

Matthieu Kowalski

L2S, CNRS-SUPELEC-Univ Paris-Sud, Gif-sur-Yvette, France

ABSTRACT

Imaging inverse problems can be formulated as an optimization

problem and solved thanks to algorithms such as forward-backward

or ISTA (Iterative Shrinkage/Thresholding Algorithm) for which

non smooth functionals with sparsity constraints can be minimized

efficiently. However, the soft thresholding operator involved in this

algorithm leads to a biased estimation of large coefficients. That

is why a step allowing to reduce this bias is introduced in practice.

Indeed, in the statistical community, a large variety of thresholding

operators have been studied to avoid the biased estimation of large

coefficients; for instance, the non negative Garrote or the the SCAD

thresholding. One can associate a non convex penalty to these opera-

tors. We study the convergence properties of ISTA, possibly relaxed,

with any thresholding rule and show that they correspond to a semi-

convex penalty. The effectiveness of this approach is illustrated on

image inverse problems.

Index Terms— Sparse approximation, semi convex optimiza-

tion, nonnegative garrote, relaxed ISTA

1. INTRODUCTION: MATHEMATICAL FRAMEWORK

AND STATE OF THE ART

Wavelet thresholding Before the expansion of the sparse princi-

ple in signal and image processing and statistics, wavelet threshold-

ing [1] has been intensively studied and has provided nice results

for image denoising [2]. The survey of A. Antoniadis on wavelet de-

composition in [3] rigorously defines the notion of the “thresholding

rule” and presents various thresholding operators. A major results

of [3], is that one can explicitly compute a (non necessarily unique)

penalty to a given thresholding rule.

The two most popular thresholding rules are probably the Soft

and the Hard Thresholding. However, these two rules suffers from

two different shortcomings: the Hard thresholding induces a dis-

continuity, but preserves an unbiased estimation of large coefficients

when the Soft thresholding is continuous but induces a biased esti-

mation of large coefficients. To circumvent these drawbacks, various

thresholding rules were introduced, such as Non Negative Garotte,

SCAD, Firm thresholding and many others (see [3]).

Iterative Shrinkage/Thresholding Algorithm Wavelet thresh-

olding is well defined in the context of orthogonal transformations,

but its “natural” extension to inverse problems or redundant trans-

formations is done thanks to the Basis-Pursuit/Lasso [4, 5]. This

connection was nicely stressed in [6] with the following statement:

“simple shrinkage could be interpreted as the first iteration of an
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algorithm that solves the basis pursuit denoising (BPDN) problem”.

Indeed, it is now widely known that ℓ1 regularized problems can

be minimized thanks to the forward-backward [7], or ISTA [8],

algorithm.

By extension, this algorithm – restated in Alg.1, can handle the

following convex problem, where SP (.;λ) stands for the proximity

operator of λP 1:

min
x∈RN

f(x) + λP (x) (1)

where

• f : R
N → R is a proper convex lower semi-continuous

function, L-Lipschitz differentiable, called the “Loss”.

• P : R
N → R is a non-smooth proper convex lower semi-

continuous function, called the “Penalty”.

• f + λP , λ ≥ 0 is a coercive finite function.

An appropriate choice of the relaxation parameters γ(k) ensures

fast convergence to a minimum of the functional in O(1/k2) itera-

tions. For a constant choice 0 ≤ γ < 1, the convergence toward a

minimum is guaranteed in O(1/k) iterations.

Algorithm 1: relaxed ISTA

Input: x(0),z(0) ∈ R
N , µ < 1

L
repeat

x(k+1) = SµP

(

z(k) − µ∇f(z(k));λ
)

;

z(k+1) = x(k+1) + γ(k)(x(k+1) − x(k));

until convergence;

However, if the ℓ1 minimization takes benefit from the convex

optimization framework, the problem of biased estimation of large

coefficients remains. That is why in practice, one can use a “debias-

ing step” [9]. The Iterative Hard-Thresholding [10] can also reduce

this bias.

In [11], the authors study the convergence of a general forward-

backward scheme, under the assumption that the function satisfies

the Kurdyka-Lojasiewicz inequality. While the authors claim that

this condition is satisfied by a wide range of functions, it can be

difficult to check it in practice. In [12], the convergence of ISTA

(whithout relaxation) in a non-convex setting is performed for an

ℓ2 loss, using a classical bounded curvature condition (BBC) on the

penalty term. It is shown that this condition is verified by the penalty

associated to some classical thresholding rules, such as Hard/Soft-

thresholding or SCAD thresholding. The author extends his results

to group-Thresholding with a loss belonging to the natural exponen-

tial family in [13]. In [14], the authors study the ISTA algorithm

with a line search, when f is L-Lipschitz differentiable (possibly

non convex) and P can be written as a difference of two convex

functions.

1SP (x;λ) = proxλP (x) = argmin
α∈RN

1
2
‖x− α‖2 + λP (α)



Contributions and outline In this article, we widely extend the

results of [12, 13] by studying the convergence of Alg. 1 with any

thresholding rules, for any L-Lipschitz differentiable Loss, with a

possible relaxation parameter. The link with non convex optimiza-

tion that we establish thanks to the notion of semi-convex functions

allows to provide a convergence result (Theorem 5) on ISTA, where

the hypotheses are made directly on the thresholding rule instead of

the functional to optimize. Section 2 is a reminder of some important

definitions and establishes some important properties of thresholding

rule and semi-convex function. As it can be convenient in practice

to use a constant step size in the algorithm, as well as to relax it, we

cannot use directly the results given in [14]. Main convergence re-

sults are proven in Section 3. Finally, Section 4 provides numerical

experiments on image deconvolution and inpainting.

2. THRESHOLDING RULE AND SEMI-CONVEXITY

2.1. Semi-convex functions

An important tool for proving the convergence results is the notion of

semi-convex function (see for example [15] and references therein),

which is reminded here.

Definition 1 (c-semi-convex functions). A function f : RN → R is

said c-semi-convex if there exists a finite constant c ≥ 0 such that

f̃(x) := f(x) +
c

2
‖x‖2

defines a convex function.

Remark 1. When c = 0, f is actually a convex function. The case

c < 0 could be included in the definition, f being then c-strongly

convex.

One can remark that on R
N , semi-convex functions are continu-

ous. We can define the subdifferential of a semi-convex function, as

for convex functions, which is simply given thanks to the subdiffer-

ential of f̃ by

∂f (x) = ∂f̃ (x)− cx .

We also extend the notion of proximity operator for f by:

proxf (y) = argmin
x∈RN

1

2
‖y − x‖2 + f(x) .

In [12], the main hypothesis to ensure the convergence of ISTA

relies on the fact that the penalty term satisfies the BCC:

Definition 2 (Bounded curvature condition). A function f : RN →
R verifies the bounded curvature condition (BCC) if there exists a

symmetric matrix H such that

f(x+ y) ≥ f(x) + 〈y, s〉 − 1

2
yTHy , ∀y ∈ R

N

where s = z − prox(z), with z is such that x = prox(z).

For semi-convex functions, we have that s ∈ ∂f (x) in the previ-

ous definition. Next proposition links semi-convexity and the BCC.

Proposition 1. Semi-convexity is a sufficient condition for BCC to

hold.

Proof. Let x ∈ R
N , and f be a c-semi-convex function. Let f̃

defined as in Def. 1. Then, for any s ∈ ∂f̃ (x) we have f̃(x + h) −
f̃(x) ≥ 〈s, h〉 . Then

f(x+ h)− f(x) ≥ 〈s− cx, h〉 − c

2
‖h‖2

with s− cx ∈ ∂f (x) so that f satisfies the BCC.

2.2. Thresholding rules

We first recall the definition of a thresholding rule that allows to

establish the link with a semi-convex penalty.

Definition 3 (Thresholding rule). S(.;λ) is a thresholding rule iff

1. S(.;λ) is an odd function. S+(.;λ) denotes its restriction to

R+

2. 0 ≤ S+(x;λ) ≤ x, ∀x ∈ R+

3. S+ is nondecreasing on R+, and lim
x→+∞

S+(x;λ) = +∞

Following [3], we can associate a penalty P to any thresholding

rule, such that S = proxP with

P (x;λ) =

∫ |x|

0

S
−1
+ (t;λ)− t d t .

where S
−1(t;λ) = sup{x; S(x;λ) ≤ t} and S

−1(−t;λ) =
−S

−1(t;λ). We can now show that such a penalty is semi-convex

thanks to the following theorem.

Theorem 1. The penalty P (.;λ) associated to a thresholding rule

S(.;λ) is at least 1−semi-convex. Moreover, if S is continuous and

the difference quotient is bounded by a, then P is at least 1 − 1
a

semi-convex. In addition, P is ℓ−strongly convex iff a ≤ 1
1+ℓ

.

Proof. P is differentiable almost everywhere, with derivative (for

x > 0): P ′(x;λ) = S
−1
+ (x) − x. Then, one can check that x 7→

P (x;λ) + 1
2
‖x‖2 admits a right derivative which is nondecreasing.

Then, P is 1−semi-convex.

Suppose S is continuous with a difference quotient bounded by

a. Let 0 < t1 < t2, we have that S−1
+ (t1) ≤ S

−1
+ (t1)− t2−t1

a
, then

x 7→ P (x;λ) + (1− 1
a
)‖x‖2 is convex, hence the conclusion.

2.3. Examples of thresholding rules

We give here three well-known examples of thresholding rules:

Hard, SCAD and NonNegative Garotte (NNG) thresholdings, with

their associated Penalties. These thresholding rules are plotted on

Fig. 2.3. One can see that the SCAD and NNG thresholdings can

be viewed as two different kinds of “compromise” between the Soft

and Hard thresholdings.
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Fig. 1. Some thresholding rules

Hard-thresholding: S(x;λ) =

{

0 if |x| ≤ λ

1 if |x| > λ

P ′(x, λ) =

{

−x+ λsgn(x)

0
P (x, λ) =

{

−x2

2
+ λ|x| if |x| ≤ λ

λ2

2
if |x| > λ

As P is not continuous, P is 1-semi-convex.



SCAD: S(x;λ) =











x
(

1− λ
x

)+
if |x| ≤ 2λ

x
a−2

(

a− 1− aλ
|x|

)

if 2λ < |x| ≤ aλ

x if |x| > aλ
with a > 2.

P ′(x) =











λ
(aλ−x)
a−1

0

P (x;λ) =











λx if x ≤ λ
(aλx−x2/2)

a−1
if λ < x ≤ aλ

aλ if x > aλ

Looking at P ′, the SCAD penalty is semi-convex with c = 1
a−1

.

Nonnegative Garrote: S(x;λ) = x
(

1− λ2

x2

)+

P ′(x) =
2λ2

√
x2 + 4λ2 + |x|

sgn(x)

P (x;λ) = λ2 + asinh

(

|x|
2λ

)

+ λ2 |x|√
x2 + 4λ2 + |x|

Looking at P ′, the NNG penalty is semi-convex with c = 1
2

.

3. ISTA WITH ANY THRESHOLDING RULE

We are now ready to show the convergence of ISTA when S is not

necessarily a proximity operator anymore but a thresholding rules

as defined in Def. 3. From an optimization point of view, one can

consider the problem of minimizing

F (x) = f(x) + P (x;λ) (2)

with f being a L-Lipschitz differentiable function and P a c-semi-

convex function. Then, one can state

Theorem 2. If µ < 2
L+c

, then any convergent subsequences of

{x(k)} generated by Alg. 1 ISTA, with γ(k) = 0 for all k, converges

to a critical point of F .

Proof. The proof classically relies on the global convergent theo-

rem [16]. We only prove that we have a “descent function”, the two

other points being straightforward thanks to the continuity of the

functional.

Let My(x) =
1
2
‖y−x‖2+µP (x;λ) and x∗ = argmin

x
My(x).

Then, one has thanks to the semi-convexity of P

My(x
∗ + h)−My(x

∗) =

1

2
‖y − x∗ − h‖2 + µP (x∗ + h;λ)− 1

2
‖y − x∗‖2 − µP (x∗;λ)

=
1

2
‖h‖2 − 〈y − x∗, h〉+ µP (x∗ + h;λ)− µP (x∗;λ)

≥ 1− µc

2
‖h‖2

Let ℓF (x; y) = f(y) + 〈∇f(y), x− y〉+ P (x;λ), then

x(k+1) = argmin
x

1

2µ
‖xk − x‖2 + ℓF (x;x

k)

= argmin
x

1

2
‖x(k) − µ∇f(x(k))− x‖2 + µP (x;λ)

and

ℓF (x
(k+1)+h;xk)−ℓF (x

(k+1);xk) ≥ − c

2
‖h‖2+〈x(k)−x(k+1), h〉

(3)

As f is L-Lipschitz differentiable, we have

F (x(k+1)) ≤ ℓF (x
(k+1);x(k)) +

L

2
‖x(k+1) − x(k)‖2. (4)

Then, using Eq.(3) and (4), with h = x(k) − x(k+1) we have

F (x(k+1)) ≤ F (x(k))− 2/µ− c− L

2
‖x(k+1) − x(k)‖2

Then, as soon as 2/µ > L+ c, one can apply the global conver-

gence theorem, hence the conclusion.

Theorem 3. Suppose f is ℓ-strongly convex. Then, if c ≤ ℓ, any

accumulation point of {x(k)} is a global minimizer of F .

Proof. If f is ℓ-strongly convex and P is c-semi-convex, then F is

c − ℓ-semi-convex. Then, as soon as ℓ ≥ c, F is convex, hence the

conclusion.

Theorem 4. Let the step size µ = 1/L. If f is convex and γ <
√

1− c/L, then any convergent sub-sequence of {x(k)} generated

by relaxed ISTA converges to a critical point of F .

Proof. Let z(k) = x(k) + γ(x(k) − x(k−1)) with

x(k+1) = argmin
1

2L
‖zk − x‖2 + ℓF (x; z

k)

we have

F (x(k+1)) ≤ ℓF (x
(k+1) + h; z(k)) +

L

2
‖x(k+1) − z(k)‖2+

c

2
‖h‖2 − L〈z(k) − x(k+1), h〉 .

Wich, with h = x(k) − x(k+1), gives

F (x(k+1))+
L− c

2
‖x(k+1)−x(k)‖2 ≤ ℓF (x

(k); z(k))+
Lγ2

2
‖x(k)−x(k−1)‖2 .

If f is convex, then ℓF (x
(k); z(k)) ≤ F (x(k)), then, if γ <

√

1− c/L one can apply the global convergence theorem [16],

hence the conclusion.

However, it is much more easier to choose the appropriate

thresholding rules instead of its associated non-convex penalty. As a

corollary of the previous Theorems, one can state

Theorem 5. Let S being a threshloding rule, and f a convex L-

Lipschitz differentiable function. Then ISTA, ie. Alg.1 with γ = 0,

converges. Moreover, if S′ ≤ a, then relaxed ISTA, ie Alg.1, with

γ < 1
a

converges.

Remark 2. With the hard-thresholding rule, one must choose the

step size µ < 1/L, and the convergence result on the relaxed algo-

rithm does not apply.



4. NUMERICAL ILLUSTRATION

We provide here two numerical illustrations on image restoration

(debluring + denoising) and inpainting. The aim of this section is

not to demonstrate that the choice of a thresholding operator is better

than others, but to show that soft and hard thresholding are not the

only possible choices.

The two problems can be formulated as a linear inverse problem.

Using a sparse synthesis model in a undecimated wavelet frame, it

can be formulated as:

y = Ωs0 + n = ΩΨα+ n

where s0 is the original image, Ω is linear operator corresponding to

the bluring kernel (for the image restoration problem) or the mask

of random pixel locations (for inpating problem). Ψ corresponds to

a linear undecimated wavelet transform and α are synthesis coeffi-

cients of s0. n is a white gaussian noise. The chosen image for the

two experiments is a part of the boat image of size 256× 256.

For the two experiments, ISTA was run with various threshold-

ing operators, with 10 decreasing values of λ on a logarithmic scale

between ‖Ψ∗Ω∗y‖∞/L and 10−2/L, with L = ‖Ψ‖2. The choice

of ∇f(α) is the canonical choice −Ψ∗Ω(y−Ω∗Ψα) corresponding

to a ℓ2 data term between the observed image y, and the synthesis

coefficients α. 500 iterations of ISTA are run for each λ, with warm

start. The relaxation parameter is 0.9 for Soft-Thresholding, 0.49
for NNG and 0 for Hard-Thresholding.

4.1. Image restoration

Here Ω corresponds to a Gaussian blur kernel with variance 1.2. n is

a white Gaussian noise with variance 0.1. The resulting output SNR

is 14.90. The restored images are displayed on Fig. 2, λ is such that

the empirical variance of the residual is close to 0.1 (known as the

Morozov’s discrepancy principle [17]).

(a) (b)

(c) (d)

Fig. 2. (a) degraded image (b) Soft (SNR = 20 dB). (c) NNG (SNR

= 19.3 dB). (d) Hard (SNR = 19.6 dB).

On these experiments, one can see that the performances of all

the thresholding operators are sensibly equivalent with a slight ad-

vantage for the Soft-Thresholding. SCAD and Firm obtain similar

results (not shown here).

4.2. Image inpainting

Here Ω corresponds to a mask of random pixel locations. The re-

sulting image has 90% missing pixels, with no additional noise. The

restored images are displayed on Fig. 3, for λ → 0. The given SNR

are computed on the missing pixels only.

(a) (b)

(c) (d)

Fig. 3. (a) Degraded Image (b) Soft (SNR = 12.9 dB). (c) NNG

(SNR = 14.6 dB). (d) Hard (SNR = 14.3 dB).

For this problem, the performances are inverted compared to

the previous one: NNG and Hard-Thresholding give the bests SNR,

while Soft gives the less satisfactory reconstruction. SCAD and Firm

obtain similar results than NNG (not shown here).

5. DISCUSSION AND CONCLUSION

The results obtained to the previous toy problem confirm that good

performances can be achieved with various thresholding rules, and

the choice between Soft or Hard thresholding depends of the consid-

ered problem. The choice of NNG (or SCAD, or Firm) thresholding

rules appears to be a good compromise between this two operators.

However, the results are not as impressive as in [18], where NNG

was heuristically used inside ISTA for declipping audio signal, or

in [18] where NNG was compared to other thresholding rules on au-

dio denoising. In these two papers, NNG outperforms both Hard and

Soft Thresholdings.

Still, the main objective of this article is to provide theoretical

guarantee for using (relaxed)-ISTA with thresholding rules. One

can notice that in [19], it was shown that an algorithm similar to

relaxed-ISTA can be used in the context of nonconvex optimization.

The main difference being that the algorithm studied in [19] involves

several hyper-parameters when Alg. 1 has no parameter except the

relaxation parameter.

The study made here can be extended straightforward to inde-

pendant group shrinkage, following [13] which extends the approach

of Antoniadis [3]. Generalization to data term f which is not Lips-

chitz differentiable seems also possible, using an adaptive step size

instead of the constant step size equal to 1/L, following the analysis

made by Tseng and Yun for block-coordinate descent in [20].

Finally, convergence analysis of ISTA with “thresholding” op-

erators with overlap, as the windowed-group-Lasso [21] remains an

open problem.
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