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HAWKES PROCESSES ON LARGE NETWORKS

SYLVAIN DELATTRE, NICOLAS FOURNIER AND MARC HOFFMANN

Abstract. We generalise the construction of multivariate Hawkes processes to a possibly infinite
network of counting processes on a directed graph G. The process is constructed as the solution
to a system of Poisson driven stochastic differential equations, for which we prove pathwise

existence and uniqueness under some reasonable conditions.
We next investigate how to approximate a standard N -dimensional Hawkes process by a

simple inhomogeneous Poisson process in the mean-field framework where each pair of individuals
interact in the same way, in the limit N → ∞. In the so-called linear case for the interaction, we
further investigate the large time behaviour of the process. We study in particular the stability
of the central limit theorem when exchanging the limits N,T → ∞ and exhibit different possible
behaviours.

We finally consider the case G = Zd with nearest neighbour interactions. In the linear case,
we prove some (large time) laws of large numbers and exhibit different behaviours, reminiscent

of the infinite setting. Finally we study the propagation of a single impulsion started at a given
point of Zd at time 0. We compute the probability of extinction of such an impulsion and, in

some particular cases, we can accurately describe how it propagates to the whole space.

Mathematics Subject Classification (2010): 60F05, 60G55, 60G57.
Keywords: Point processes. Multivariate Hawkes processes. Stochastic differential equations.

Limit theorems. Mean-field approximations. Interacting particle systems.

1. Introduction

1.1. Motivation. In several apparently different applied fields, a growing interest has been ob-
served recently for a better understanding of stochastic interactions between multiple entities
evolving through time. These include: seismology for modelling earthquake replicas (Helmstetter-
Sornette [21], Kagan [27], Ogata [36], Bacry-Muzy [5]), neuroscience for modelling spike trains
in brain activity (Grün et al. [16], Okatan et al. [37], Pillow et al. [38], Reynaud et al.
[40, 41]), genome analysis (Reynaud-Schbath [39]), financial contagion (Ait-Sahalia et al. [1]),
high-frequency finance (order arrivals, see Bauwens-Hautsch [6], Hewlett [22], market microstruc-
ture see Bacry et al. [2] and market impact see Bacry-Muzy [4, 5]), financial price modelling across
scales (Bacry et al. [3], Jaisson-Rosenbaum [24]), social networks interactions (Blundell et al. [7],
Simma-Jordan [43], Zhou et al. [46]) and epidemiology like for instance viral diffusion on a network
(Hang-Zha [45]), to name but a few. In all these contexts, observations are often represented as
events (like spikes or features) associated to agents or nodes on a given network, and that arrive
randomly through time but that are not stochastically independent.

In practice, we observe a multivariate counting process (Z1
t , . . . , Z

N
t )t≥0, each component Zi

t

recording the number of events of the i-th component of the system during [0, t], or equivalently
the time stamps of the observed events. Under relatively weak general assumptions, a multi-
variate counting process (Z1

t , . . . , Z
N
t )t≥0 is characterised by its intensity process (λ1

t , . . . , λ
N
t )t≥0,

informally defined by

Pr
(
Zi has a jump in [t, t+ dt]

∣∣ Ft

)
= λi

tdt, i = 1, . . . , N,
1
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where Ft denotes the sigma-field generated by (Zi)1≤i≤N up to time t. For modelling the inter-
actions, a particularly attractive family of multivariate point processes is given by the class of
(mutually exciting) Hawkes processes (Hawkes [18], Hawkes-Oakes [19]), with intensity process
given by

λi
t = hi

( N∑

j=1

∫ t−

0

ϕji(t− s)dZj
s

)
,

where the causal functions ϕji : [0,∞) → R model how Zj acts on Zi by affecting its intensity
process λi. The nonnegative functions hi account for some non-linearity, but if we set hi(x) = µi+x
with µi ≥ 0, we obtain linear Hawkes processes where µi can be interpreted as a baseline Poisson
intensity. In the degenerate case ϕji = 0, we actually retrieve standard Poisson processes.

Multivariate Hawkes processes have long been studied in probability theory (see for instance the
comprehensive textbook of Daley-Vere-Jones [12] and the references therein, Brémaud-Massoulié
[9] and Massoulié [32] or the recent results of Zhu [47, 48]). Their statistical inference is relatively
well understood too, from a classical parametric angle (Ogata [34]) together with recent significant
advances in nonparametrics (Reynaud-Bouret-Schbath [39], Hansen et al. [20]). However, the fron-
tier is progressively moving to understanding the case of large N , when the number of components
may become increasingly large or possibly infinite, see Massoulié [32] and Galvez-Löcherbach [17]
for some constructions in that direction. This context is potentially of major importance for future
developments in the aforementioned applied fields. This is the topic of the present paper.

1.2. Setting. We work on a filtered probability space (Ω,F , (Ft)t≥0,Pr). We say that (Xt)t≥0

is a counting process if it is non-decreasing, càdlàg, integer-valued (and finite for all times), with
all its jumps of height 1. For (Xt)t≥0 a (Ft)t≥0-adapted counting process, there is a unique non-
decreasing predictable process (Λt)t≥0, called compensator of (Xt)t≥0, such that (Xt −Λt)t≥0 is a
(Ft)t≥0-local martingale, see Jacod-Shiryaev [25, Chapter I].

We consider a countable directed graph G =
(
S, E

)
with vertices (or nodes) i ∈ S and (directed)

edges e ∈ E . We write e = (j, i) ∈ E for the oriented edge. We also need to specify the following
parameters: a kernel ϕ = (ϕji, (j, i) ∈ E) with ϕji : [0,∞) 7→ R, and a nonlinear intensity
component h = (hi, i ∈ S) with hi : R 7→ [0,∞). The natural generalisation of finite-dimensional
Hawkes processes is the following.

Definition 1. A Hawkes process with parameters (G,ϕ,h) is a family of (Ft)t≥0-adapted counting
processes (Zi

t)i∈S,t≥0 such that

(i) almost surely, for all i 6= j, (Zi
t)t≥0 and (Zj

t )t≥0 never jump simultaneously,

(ii) for every i ∈ S, the compensator (Λi
t)t≥0 of (Zi

t)t≥0 has the form Λi
t =

∫ t

0
λi
sds, where the

intensity process (λi
t)t≥0 is given by

λi
t = hi

(∑

j→i

∫ t−

0

ϕji(t− s)dZj
s

)
,

with the notation
∑

j→i for summation over {j : (j, i) ∈ E}.

This model can be seen as a particular case of that introduced by Massoulié [32] who considers
more general sets of sites (possibly R

d) and a larger class of intensities. We say that a Hawkes
process is linear when hi(x) = µi + x for every x ∈ R, i ∈ S, with µi ≥ 0 and when ϕji ≥ 0.
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We will give some general existence, uniqueness and approximation results for nonlinear Hawkes
processes, but all the precise large-time estimates we will prove concern the linear case.

A Hawkes process (Zi
t)i∈S,t≥0 with parameters (G,ϕ,h) behaves as follows. For each i ∈ S,

the rate of jump of Zi is, at time t, λi(t) = hi(
∑

j→i

∑
k≥1 ϕji(t − T j

k )1{T j
k<t}), where (T j

k )k≥1

are the jump times of Zj . In other words, each time one of the Zj ’s has a jump, it excites its
neighbours in that it increases their rate of jump (in the natural situation where h is increasing
and ϕ is positive). If ϕ is positive and decreases to 0, the case of almost all applications we have
in mind, the influence of a jump decreases and tends to 0 as time evolves.

1.3. Main results. In the case where G is a finite graph, under some appropriate assumptions
on the parameters, the construction of (Zi

t)i∈S,t≥0 is standard. However, for an infinite graph, the
situation is more delicate: we have to check, in some sense, that the interaction does not come
from infinity.

The first part of this paper (Section 2) consists of writing a Hawkes process as the solution to a
system of Poisson-driven S.D.E.s and of finding a set of assumptions on G and on the parameters
(ϕ,h) under which we can prove the pathwise existence and uniqueness for this system of S.D.E.s.
Representing counting processes as solutions to S.D.E.s is classical, see Lewis-Shedler [31], Ogata,
[35], Brémaud-Massoulié [9], Chevallier [11]. However, the well-posedness of such S.D.E.s is not
obvious when G is an infinite graph.

In a second part (Section 3), we study the mean-field situation: we assume that we have a finite
(large) number N of particles behaving similarly, with no geometry. In other words, S = {1, . . . , N}
is endowed with the set of all possible edges E = {(i, j) : i, j ∈ S}, and there are two functions
h and ϕ such that hi = h and ϕij = N−1ϕ for all i, j ∈ S. We show that, as N → ∞, Hawkes
processes can be approximated by an i.i.d. family of inhomogeneous Poisson processes. Concerning
the large-time behaviour, we discuss, in the linear case, the possible law of large numbers and
central limit theorems as (t,N) → (∞,∞) and we observe some different situations according to
the position of

∫∞

0
ϕ(t)dt with respect to 1 (the so-called critical case).

Finally, we consider in Section 4 the case where G is Z
d, endowed with the set of edges E =

{(i, j) : |i − j| = 0 or 1}, where | · | denotes the Euclidean distance. We study the large time
behaviour, in the linear case where hi(x) = µi + x and when ϕij = (2d + 1)−1ϕ does not depend
on i, j. We first assume that µi does not depend too much on i (consider e.g. the case where the
µi are random, i.i.d. and bounded) and show that (i) if

∫∞

0
ϕ(t)dt > 1, then there is a law of

large numbers and the interaction makes everything flat, in the sense that for all i 6= j, Zi
t ∼ Zj

t

as t → ∞; (ii) if
∫∞

0
ϕ(t)dt < 1, then there is again a law of large numbers, but the limiting value

depends on i. We also explain why these results are reminiscent of the infinite setting and of the
interaction. Finally, we study the case where µi = 0 for all i but where there is an impulsion at
time 0 at i = 0. We compute the probability of extinction of such an impulsion and, in some
particular cases, we study how it propagates to the whole space (when it does not blow out).

1.4. Notation. The Laplace transform of ϕ : [0,∞) 7→ R is defined, when it exists, by

Lϕ(α) =

∫ ∞

0

e−αtϕ(t)dt.

We also introduce the convolution of h, g : [0,∞) 7→ R as (if it exists) (g ⋆ h)t =
∫ t

0
gsht−sds =∫ t

0
gt−shsds. As is well-known, when everything makes sense, Lg⋆h(α) = Lg(α)× Lh(α).
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2. Well-posedness using a Poisson S.D.E.

We will study Hawkes processes through a system of Poisson-driven stochastic differential equa-
tions. This will allow us to speak of pathwise existence and uniqueness and to prove some propa-
gation of chaos using some simple coupling arguments.

Consider, on a filtered probability space (Ω,F , (Ft)t≥0,Pr), a family (πi(ds dz), i ∈ S) of i.i.d.
(Ft)t≥0-Poisson measures with intensity measure ds dz on [0,∞)× [0,∞).

Definition 2. A family (Zi
t)i∈S,t≥0 of càdlàg (Ft)t≥0-adapted processes is called a Hawkes process

with parameters (G,ϕ,h) if a.s., for all i ∈ S, all t ≥ 0

(1) Zi
t =

∫ t

0

∫ ∞

0

1{
z ≤ hi

(∑

j→i

∫ s−

0

ϕji(s− u)dZj
u

)}π
i(ds dz).

This formulation is consistent with Definition 1.

Proposition 3. (a) A Hawkes process in the sense of Definition 2 is also a Hawkes process in the
sense of Definition 1.

(b) Consider a Hawkes process in the sense of Definition 1 (on some filtered probability space

(Ω,F , (Ft)t≥0,Pr). Then we can build, on a possibly enlarged probability space (Ω̃, F̃ , (F̃t)t≥0, P̃r),

a family (πi(ds dz), i ∈ S) of i.i.d. (F̃t)t≥0-Poisson measures with intensity measure ds dz on
[0,∞)× [0,∞) such that (Zi

t)i∈S,t≥0 is a Hawkes process in the sense of Definition 2.

Point (a) is very easy: for a Hawkes process (Zi
t)i∈S,t≥0 in the sense of Definition 2, it is clear

that for every i ∈ S, the compensator of Zi is
∫ t

0

∫∞

0
1{z≤hi(

∑
j→i

∫ s−
0

ϕji(s−u)dZj
u)}

dzds, which is

equal to
∫ t

0
hi(

∑
j→i

∫ s−

0
ϕji(s− u)dZj

u)ds. Furthermore, the independence of the Poisson random

measures (πi(ds dz), i ∈ S) guarantees that for all i 6= j, (Zi
t)t≥0 and (Zj

t )t≥0 a.s. never jump
simultaneously.

Point (b) is more delicate but standard and a very similar result was given in Brémaud-Massoulié
[9]. Their proof is based on results found in the book of Jacod [23], of which one of the main goals
is exactly this topic: prove the equivalence between martingale problems and S.D.E.s. The many
results of [23] generalize those of Grigelionis [15]. See also the pioneering work of Kerstan [28].
We also refer to Chevallier [11, Section IV] where a very complete proof is given as well as a
historical survey. Let us mention that the idea to integrate an indicator function with respect to a
Poisson measure in order to produce an inhomogeneous Poisson process with given intensity was
first introduced by Lewis-Shedler [31], and later extended by Ogata [35] in the case of a stochastic
intensity.

The following set of assumptions will guarantee the well-posedness of (1).

Assumption 4. There are some nonnegative constants (ci)i∈S , some positive weights (pi)i∈S and
a locally integrable function φ : [0,∞) 7→ [0,∞) such that

(a) for every i ∈ S, every x, y ∈ R, |hi(x)− hi(y)| ≤ ci|x− y|,
(b)

∑
i∈S hi(0)pi < ∞,

(c) for every s ∈ [0,∞), every j ∈ S, ∑i,(j,i)∈E cipi
∣∣ϕji(s)

∣∣ ≤ pjφ(s).

Let us give a few examples of parameters (G,ϕ,h) satisfying Assumption 4.
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Remark 5. (i) If S is finite, then Assumption 4 holds true, with the choice pi = 1, as soon as hi

is Lipschitz continuous for all i ∈ S and ϕji is locally integrable for all (j, i) ∈ E.
(ii) If S = Z

d is endowed with E = {(i, j) : |i − j| = 0 or 1}, then Assumption 4 holds, with
the choice pi = 2−|i|, if

∑
i∈Zd 2−|i||hi(0)| < ∞ and if there are c > 0 and ϕ ∈ L1

loc([0,∞)) such
that |hi(x)− hi(y)| ≤ c|x− y| and |ϕjk(t)| ≤ ϕ(t) for all i ∈ S, x, y ∈ R, (j, k) ∈ E and t ≥ 0.

(iii) Consider next S = Z
d endowed with the set of all possible edges E = {(i, j) : i, j ∈ Z

d}
and assume that there is c > 0 such that |hi(0)| ≤ c and |hi(x) − hi(y)| ≤ c|x − y| for all i ∈ S,
x, y ∈ R. Assume that there are ϕ ∈ L1

loc([0,∞)) and a nonincreasing a : [0,∞) 7→ [0,∞) such
that |ϕji(t)| ≤ a(|i− j|)ϕ(t) for all (i, j) ∈ E and t ≥ 0. Then if

∑
i∈Zd a(|i|) < ∞, Assumption 4

holds true.

(iv) Consider the (strongly oriented) graph Z+ endowed with the set of edges E = {(i, i + 1) :
i ∈ Z+}. Then Assumption 4 holds true as soon as there is ϕ ∈ L1

loc([0,∞)) such that for every
i ∈ Z+, there are ci > 0 and ai > 0 such that |hi(x)− hi(y)| ≤ ci|x− y| and |ϕi(i+1)| ≤ aiϕ.

Points (ii) and (iii) of course extend to other graphs. In (iv), there is no growth condition
on |hi(0)|, ci and ai. This comes from the fact that the interaction is directed: Z0 is actually
a Poisson process with rate h0(0), the intensity of Z1 is entirely determined by that of Z0, and
so on. Hence this example is not very interesting. But we can mix e.g. points (ii) and (iv):
informally, coefficients corresponding to edges directed to the origin have to be well-controlled,
while coefficients corresponding to edges directed to infinity require less assumptions.

Proof. Point (i) is obvious. To check (ii), simply note that for all j ∈ S, ∑i,(j,i)∈E c2
−|i||ϕji| ≤

cϕ2−|j|
∑

i,(j,i)∈E 2
|j|−|i| ≤ c2(2d + 1)ϕ2−|j| and define φ = c2(2d + 1)ϕ. Point (iv) holds with

(pi)i∈Z+
defined by p0 = 1 and, by induction, pi+1 = min{2−i/(1 + hi+1(0)), pi/(1 + aici+1)}.

This of course implies that
∑

i∈Z+
pi|hi(0)| < ∞ and that for all j ≥ 1,

∑
i,(j,i)∈E cipi|ϕji| =

cj+1pj+1|ϕj(j+1)| ≤ cj+1pj+1ajϕ ≤ pjϕ as desired.

To prove (iii), we work with the sup norm |i| = |(i1, . . . , id)| = max{|i1|, . . . , |id|}. The delicate
part consists in showing that there is b : N 7→ [0,∞) and a constant C > 0 such that

∑
i∈Zd b(|i|) <

∞ and, for all j ∈ Z
d,

∑
i∈Zd b(|i|)a(|i − j|) ≤ Cb(|j|). Then the result will easily follow, with

the choices pi = b(|i|) and φ = Ccϕ. We define b recursively, by b(0) = a(0) and b(k + 1) =
max{a(k + 1), [(k + 1)/(k + 2)]2db(k)}. Using that a is nonincreasing, we easily check that b is
nonincreasing. We next check that

∑
i∈Zd b(|i|) < ∞, i.e. that

∑
k≥0 k

d−1b(k) < ∞, knowing by

assumption that
∑

k≥0 k
d−1a(k) < ∞. We have, for k ≥ 0,

b(k + 1)− a(k + 1) =
(
[(k + 1)/(k + 2)]2db(k)− a(k + 1)

)
+

≤[(k + 1)/(k + 2)]2d(b(k)− a(k))+ +
(
[(k + 1)/(k + 2)]2da(k)− a(k + 1)

)
+

≤[(k + 1)/(k + 2)]2d(b(k)− a(k)) + (a(k)− a(k + 1)).
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Recalling that b(0) = a(0), one gets b(k) − a(k) ≤ ∑k
ℓ=1(a(ℓ − 1) − a(ℓ))[(ℓ + 1)/(k + 1)]2d by

iteration. Hence

∑

k≥1

kd−1(b(k)− a(k)) ≤
∑

k≥1

kd−1
k∑

ℓ=1

(a(ℓ− 1)− a(ℓ))[(ℓ+ 1)/(k + 1)]2d

=
∑

ℓ≥1

(a(ℓ− 1)− a(ℓ))(ℓ+ 1)2d
∑

k≥ℓ

kd−1(k + 1)−2d

≤C
∑

ℓ≥1

(a(ℓ− 1)− a(ℓ))ℓd.

This last quantity is nothing but C
∑

ℓ≥1 a(ℓ)[(ℓ + 1)d − ℓd] ≤ C
∑

ℓ≥1 a(ℓ)ℓ
d−1 < ∞. We have

thus checked that
∑

k≥0 k
d−1b(k) =

∑
k≥1 a(k)k

d−1 +
∑

k≥1 k
d−1(b(k)− a(k)) < ∞.

We finally prove that for all j ∈ Z
d,

∑
i∈Zd b(|i|)a(|i − j|) ≤ Cb(|j|). First, we claim that

there is C such that b(k) ≤ Cb(2k) for all k ≥ 0. This is easily checked, iterating the inequality
b(k) ≤ [(k + 2)/(k + 1)]2db(k + 1). Next we write, using that a and b are nonincreasing,

∑

i∈Zd

b(|i|)a(|i− j|) ≤
∑

|i|<|j|/2

b(|i|)a(|i− j|) +
∑

|i|≥|j|/2

b(|i|)a(|i− j|)

≤a(|j|/2)
∑

i∈Zd

b(|i|) + b(|j|/2)
∑

i∈Zd

a(|i− j|)

≤Ca(|j|/2) + Cb(|j|/2).

By definition of b, we have a(|j|/2) ≤ b(|j|/2). And we have just seen that b(|j|/2) ≤ Cb(|j|). We
finally have checked that

∑
i∈Zd b(|i|)a(|i− j|) ≤ Cb(|j|) as desired. �

Our well-posedness result is the following.

Theorem 6. Under Assumption 4, there exists a pathwise unique Hawkes process (Zi
t)i∈S,t≥0 such

that
∑

i∈S piE[Z
i
t ] < ∞ for all t ≥ 0.

Observe that this result is not completely obvious in the case of an infinite graph. In some
sense, we have to check that the interaction does not come from infinity. Let us insist on the fact
that, even in simple situations, a graphical construction is not possible: consider e.g. the case of
Z endowed with the set of edges E = {(i, j) : |i− j| = 0 or 1}, assume that hi(x) = 1 + x for all
i ∈ S and that ϕij = 1 for all (i, j) ∈ E . Then one easily gets convinced that we cannot determine
the values of (Z0

t )t∈[0,T ] by observing the Poisson measures πi in a (random) finite box.

As a second comment, let us mention that we believe it is not possible, or at least quite
difficult, to obtain the full uniqueness, i.e. uniqueness outside the class of processes satisfying∑

i∈S piE[Z
i
t ] < ∞ (or something similar). Indeed, consider again the case of Z endowed with

E = {(i, j) : |i − j| = 0 or 1}, assume that hi(x) = 1 + x for all i ∈ S and that ϕji = 1 for all
(i, j) ∈ E . One easily checks that for (Zi

t)i∈S,t≥0 a Hawkes process, for mi
t = E[Zi

t ], it holds that

mi
t = t+

∫ t

0
(mi−1

s +mi
s+mi+1

s )ds for every i. This infinite system of equations is of course closely
related to the heat equation ∂tu(t, x) = 1 + ∂xxu(t, x) on [0,∞) × R and with initial condition
u(0, x) = 0. As is well-known, uniqueness for this equation fails to hold true without imposing
some growth conditions as |x| → ∞. See e.g. Tychonov’s counterexample of uniqueness, which
can be found in John [26, Chapter 7].
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To compare Theorem 6 with the results of Massoulié [32], let us consider a very simple situation.
Let S = Z

d be endowed with E = {(i, j) : |i − j| = 0 or 1}, let hi(x) = 1 + x for all i ∈ S and
ϕij(t) = ϕ(t) > 0 for all (i, j) ∈ E . Then Theorem 6 applies as soon as ϕ ∈ L1

loc([0,∞)), see
Remark 5-(ii). Theorem 1 of [32] does not apply for two reasons: supi∈S hi is not bounded and,
more important, it does not hold true that

∑
(i,j)∈E ϕij ∈ L1

loc([0,∞)) since
∑

(i,j)∈E ϕij(t) = +∞
for all t ≥ 0. On the contrary, [32, Theorem 2] applies, but only in the subcritical case where
(2d+ 1)

∫∞

0
ϕ(t)dt < 1.

Proof. We first prove uniqueness. Let thus (Zi
t)i∈S,t≥0 and (Z̃i

t)i∈S,t≥0 be two solutions to (1)
satisfying the required condition. Set

∆i
t =

∫ t

0

∣∣d
(
Zi
s − Z̃i

s

)∣∣ for i ∈ S, t ≥ 0.

In other words, ∆i
t is the total variation norm of the signed measure d

(
Zi
s − Z̃i

s

)
on [0, t]. We also

put δit = E[∆i
t] and first prove that

(2) δit ≤ ci

∫ t

0

∑

j→i

|ϕji(t− s)|δjsds.

We have

∆i
t =

∫ t

0

∫ ∞

0

∣∣∣1{
z≤hi

(∑
j→i

∫ s−
0

ϕji(s−u)dZj
u

)} − 1{
z≤hi

(∑
j→i

∫ s−
0

ϕji(s−u)dZ̃j
u

)}
∣∣∣πi(ds dz).

Taking expectations, we deduce that

δit =

∫ t

0

E

[∣∣∣hi

(∑

j→i

∫ s−

0

ϕji(s− u)dZj
u

)
− hi

(∑

j→i

∫ s−

0

ϕji(s− u)dZ̃j
u

)∣∣∣
]
ds

≤ci
∑

j→i

E

[ ∫ t

0

∫ s−

0

∣∣ϕji(s− u)
∣∣d∆j

uds
]

(3)

by Assumption 4-(a). Using Lemma 22, we see that
∫ t

0

ds

∫ s−

0

|ϕji(s− u)|d∆j
u =

∫ t

0

∣∣ϕji(t− u)
∣∣∆j

udu

which, plugged into (3), yields (2).

Set δt =
∑

i∈S piδ
i
t, where the weights pi were introduced in Assumption 4. By assumption, δt

is well-defined and finite. We infer by (2) that

δt ≤
∫ t

0

∑

i∈S

pici
∑

j→i

∣∣ϕji(t− s)
∣∣δjsds.

By Assumption 4-(c),

δt ≤
∫ t

0

∑

j∈S

δjs
∑

i,(j,i)∈E

cipi
∣∣ϕji(t− s)

∣∣ds ≤
∫ t

0

∑

j∈S

pjδ
j
sφ(t− s)ds =

∫ t

0

φ(t− s)δsds.

Lemma 23-(i) thus implies that δt = 0 identically, from which uniqueness follows.
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We now quickly prove existence by a Picard iteration. Let Zi,0
t = 0 and, for n ≥ 0,

(4) Zi,n+1
t =

∫ t

0

∫ ∞

0

1{z≤hi(
∑

j→i

∫ s−
0

ϕji(s−u)dZj,n
u )}π

i(ds dz).

We define δi,nt = E[
∫ t

0
|dZi,n+1

s − dZi,n
s |] and δnt =

∑
i∈S piδ

i,n
t . As in the proof of uniqueness, we

obtain, for n ≥ 0,

δn+1
t ≤

∫ t

0

φ(t− s)δns ds.(5)

Next, we put mi,n
t = E[Zi,n

t ]. By Assumption 4-(a), hi(x) ≤ hi(0) + ci|x|, whence

mi,n+1
t ≤E

[∫ t

0

(
hi(0) + ci

∑

j→i

∫ s−

0

|ϕji(s− u)|dZj,n
u

)
ds
]
≤

∫ t

0

(
hi(0) + ci

∑

j→i

|ϕji(t− s)|mj,n
s

)
ds,

where we used that, by Lemma 22,
∫ t

0

∫ s−

0
|ϕji(s − u)|dZj,n

u ds =
∫ t

0
|ϕji(t − u)|Zj,n

u du. Setting

un
t =

∑
i∈S pim

i,n
t and using Assumption 4-(b)-(c),

un+1
t ≤t

∑

i∈S

hi(0)pi +

∫ t

0

∑

i∈S

pici
∑

j→i

|ϕji(s− u)|mj,n
s ds ≤ Ct+

∫ t

0

φ(t− s)un
s ds.(6)

Since u0
t = 0 and φ is locally integrable, we easily check by induction that un is locally bounded

for all n ≥ 0. Consequently, δn is also locally bounded for all n ≥ 0. Lemma 23-(ii) implies that
for all T ≥ 0,

∑
n≥1 δ

n
T < ∞. This classically implies that the Picard sequence is Cauchy and thus

converges: there exists a family (Zi
t)i∈S,t≥0 of càdlàg nonnegative adapted processes such that for

all T ≥ 0, limn

∑
i∈S piE[

∫ T

0
|dZi

s − dZi,n
s |] = 0. It is then not hard to pass to the limit in (4) to

deduce that (Zi
t)i∈S,t≥0 solves (1). Finally, Lemma 23-(iii) implies that supn u

n
t < ∞ for all t ≥ 0,

from which
∑

i∈S piE[Z
i
t ] < ∞ as desired. �

3. Mean-field limit

In this section, we work in the following setting.

Assumption 7. Let h : R 7→ [0,∞) be such that |h|lip = supx 6=y |x − y|−1|h(x) − h(y)| < ∞ and
let ϕ = [0,∞) 7→ R be a locally square integrable function.

For each N ≥ 1, we consider the complete graph GN with vertices SN = {1, . . . , N} and edges
EN = {(i, j) : i, j ∈ SN}, i.e. all pairs of points in SN are connected. We put hN

i = h for all
i ∈ SN and ϕN

ji = N−1ϕ for (i, j) ∈ EN .

Under Assumption 7, the triplet (GN ,ϕN ,hN ) satisfies Assumption 4 (the graph GN is finite)

for each N ≥ 1. Therefore, a Hawkes process (ZN,1
t , . . . , ZN,N

t )t≥0 with parameters (GN ,ϕN ,hN )
is uniquely defined by Theorem 6.

Introduce the limit equation

(7) Zt =

∫ t

0

∫ ∞

0

1{
z ≤ h

( ∫ s

0

ϕ(s− u)dE[Zu]
)}π(ds dz), for every t ≥ 0,

where π(ds dz) is a Poisson measure on [0,∞)× [0,∞) with intensity measure dsdz. Also, dE[Zu]
is the measure on [0,∞) associated to the (necessarily) non-decreasing function u 7→ E[Zu]. Note
that a solution Z = (Zt)t≥0, if it exists, is an inhomogeneous Poisson process on [0,∞) with

intensity λt = h(
∫ t

0
ϕ(t− u)dE[Zu]).
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3.1. Propagation of chaos. The main result of this section reads as follows. We denote by
D([0,∞),R) the set of càdlàg R-valued functions on [0,∞) and by P(D([0,∞),R)) the set of
probability measures on D([0,∞),R).

Theorem 8. Work under Assumption 7.

(i) There is a pathwise unique solution (Zt)t≥0 to (7) such that (E[Zt])t≥0 is locally bounded.

(ii) It is possible to build simultaneously the Hawkes process (ZN,1
t , . . . , ZN,N

t )t≥0 with parame-

ters (GN ,ϕN ,hN ) and an i.i.d. family (Z
i

t)t≥0,i=1,...,N of solutions to (7) in such a way that for
all T > 0, all i = 1, . . . , N ,

E

[
sup
[0,T ]

|ZN,i
t − Z

i

t|
]
≤ CTN

−1/2,

the constant CT depending only on h, ϕ and T (see Remark 9 below for some bounds of CT in a
few situations).

(iii) Consequently, we have the mean-field approximation

1

N

N∑

i=1

δ(ZN,i
t )t≥0

−→ L
(
(Zt)t≥0

)
in probability, as N → ∞,

where P(D([0,∞),R)) is endowed with the weak convergence topology associated with the topology
(on D([0,∞),R)) of the uniform convergence on compact time intervals.

Proof. For (Zt)t≥0 a solution to (7), the equation satisfied by mt = E[Zt] writes

(8) mt =

∫ t

0

h
( ∫ s

0

ϕ(s− u)dmu

)
ds for every t ≥ 0.

By Lemma 24, we know that this equation has a unique non-decreasing locally bounded solution,
which furthermore is of class C1 on [0,∞). We now split the proof in several steps.

Step 1. Here we prove the well-posedness of (7). For (Zt)t≥0 a solution to (7), its expectation

mt = E[Zt] solves (8) and is thus uniquely defined. Thus the right hand side of (7) is uniquely
determined, which proves uniqueness. For the existence, consider m the unique solution to (8) and

put Zt =
∫ t

0

∫∞

0
1{z≤h(

∫ s
0
ϕ(s−u)dmu)}π(ds dz). We thus only have to prove that E[Zt] = mt. But

E[Zt] =
∫ t

0
h(
∫ s

0
ϕ(s− u)dmu)ds, which is nothing but mt since m solves (8).

Step 2. We next introduce a suitable coupling. Let (πi(ds dz))i≥1 be an i.i.d. family of Poisson
measures with common intensity measure dsdz on [0,∞) × [0,∞). For each N ≥ 1, we consider

the Hawkes process (ZN,1
t , . . . , ZN,N

t )t≥0

ZN,i
t =

∫ t

0

∫ ∞

0

1{
z≤h

(
N−1

∑N
j=1

∫ s−
0

ϕ(s−u)dZN,j
u

)}πi(ds dz).

Next, still denoting by m the unique solution to (8), we put, for every i ≥ 1,

Z
i

t =

∫ t

0

∫ ∞

0

1{
z≤h

( ∫ s−
0

ϕ(s−u)dmu

)}πi(ds dz).

Clearly, ((Z
i

t)t≥0)i≥1 is an i.i.d. family of solutions to (7).
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Step 3. Here we introduce ∆i
N (t) =

∫ t

0
|d(Zi

u − ZN,i
u )| and δN (t) = E[∆i

N (t)], which obviously
does not depend on i (by exchangeability). Observe that

sup
[0,t]

|Zi

u − ZN,i
u | ≤ ∆i

N (t), whence E

[
sup
[0,t]

|Zi

u − ZN,i
u |

]
≤ δN (t).(9)

The first inequality follows from the fact that |Zi

u−ZN,i
u | ≤ |

∫ u

0
d(Z

i

r−ZN,i
r )| ≤

∫ u

0
|d(Zi

r−ZN,i
r )|.

We show in this step that for all t > 0,

δN (t) ≤ |h|lipN−1/2

∫ t

0

(∫ s

0

ϕ2(s− u)dmu

)1/2

ds+ |h|lip
∫ t

0

|ϕ(t− s)|δN (s)ds.(10)

First, ∆1
N (t) equals
∫ t

0

∫ ∞

0

∣∣∣1{
z≤h

(
N−1

∑N
j=1

∫ s−
0

ϕ(s−u)dZN,j
u

)} − 1{
z≤h

( ∫ s−
0

ϕ(s−u)dmu

)}
∣∣∣πi(ds dz).

Taking expectations, we find

δN (t) =

∫ t

0

E

[∣∣∣h
( ∫ s

0

ϕ(s− u)dmu

)
− h

(
N−1

N∑

j=1

∫ s

0

ϕ(s− u)dZN,j
u

)∣∣∣
]
ds,

whence

δN (t) ≤|h|lip
∫ t

0

E

[∣∣∣
∫ s

0

ϕ(s− u)dmu −N−1
N∑

j=1

∫ s

0

ϕ(s− u)dZ
j

u

∣∣∣
]
ds

+ |h|lip
∫ t

0

E

[∣∣∣N−1
N∑

j=1

∫ s

0

ϕ(s− u)d[Z
j

u − ZN,j
u ]

∣∣∣
]
ds

=|h|lip(A+B).(11)

Using exchangeability and Lemma 22,

B ≤
∫ t

0

E

[ ∫ s

0

|ϕ(s− u)|d∆1
N (u)

]
ds =

∫ t

0

|ϕ(t− u)|δN (u)du.(12)

Next, we use that Xj
s =

∫ s

0
ϕ(s− u)dZ

j

u are i.i.d. with mean
∫ s

0
ϕ(s− u)dmu, whence

A ≤ N−1/2

∫ t

0

(VarX1
s )

1/2ds.(13)

But it holds that

X1
s =

∫ s

0

∫ ∞

0

1{z≤h(
∫ u
0

ϕ(u−r)dmr)}ϕ(s− u)π1(du dz).

Since the integrand is deterministic, denoting by π̃1 the compensated Poisson measure,

X1
s − E[X1

s ] =

∫ s

0

∫ ∞

0

1{z≤h(
∫ u
0

ϕ(u−r)dmr)}ϕ(s− u)π̃1(du dz).

Recalling Assumption 7, we find

VarX1
s =

∫ s

0

ϕ2(s− u)h
( ∫ u

0

ϕ(u− r)dmr

)
du =

∫ s

0

ϕ2(s− u)dmu.(14)

We used (8) for the last equality. Gathering (11), (12), (13) and (14) completes the step.
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Step 4. Here we conclude that for all T ≥ 0, sup[0,T ] δN (t) ≤ CTN
−1/2. This will end the proof

of (ii) by (9). This is not hard: it suffices to start from (10), to apply Lemma 23-(i) and to observe

that
∫ t

0

( ∫ s

0
ϕ2(s − u)dmu

)1/2

ds is locally bounded (which follows from the assumption that ϕ is

locally square integrable and the fact that m is C1 on [0,∞)).

Step 5. Finally, (iii) follows from (ii): by Sznitman [42, Proposition 2.2], it suffices to check that

for each fixed ℓ ≥ 1, ((ZN,1
t )t≥0, . . . , (Z

N,ℓ
t )t≥0) goes in law, as N → ∞, to ℓ independent copies of

(Zt)t≥0 (for the uniform topology on compact time intervals). This clearly follows from (ii). �

We now want to show that the constant CT we get can be quite satisfactory.

Remark 9. Work under Assumption 7.

(a) Assume that |h|lip
∫∞

0
|ϕ(s)|ds < 1 (subcritical case) and that

∫∞

0
ϕ2(s)ds < ∞. Then (ii)

of Theorem 8 holds with CT = CT , for some constant C > 0. This is a satisfactory slow growth.

(b) Assume that h(x) = µ + x for some µ > 0 and that ϕ(t) = ae−bt for some a > b > 0
(if a < b, then point (a) applies). Then mt = E[Zt] ∼ µa(a − b)−2e(a−b)t as t → ∞ and (ii) of
Theorem 8 holds with CT = Ce(a−b)T , for some constant C > 0. This is again quite satisfactory:
the error is of order N−1/2mT .

Proof. We start with (a). Using the notation of the previous proof, it suffices (see (9)) to show
that δN (T ) ≤ CTN−1/2. Setting Λ = |h|lip

∫∞

0
|ϕ(s)|ds < 1, starting from (10) and observing

that δN is non-decreasing, we find δN (t) ≤ |h|lipN−1/2
∫ t

0
(
∫ s

0
ϕ2(s−u)dmu)

1/2ds+ΛδN (t), whence

δN (t) ≤ CN−1/2
∫ t

0
(
∫ s

0
ϕ2(s − u)dmu)

1/2ds. We thus only have to check that
∫ s

0
ϕ2(s − u)dmu is

bounded on [0,∞). Since
∫∞

0
ϕ2(s)ds < ∞, it suffices to prove that m′ is bounded on [0,∞). But

m′
t = h(

∫ t

0
ϕ(t−u)m′

udu) ≤ h(0)+|h|lip
∫ t

0
|ϕ(t−u)|m′

udu, whence sup[0,T ] m
′
t ≤ h(0)+Λ sup[0,T ] m

′
t

and thus sup[0,T ] m
′
t ≤ h(0)/(1− Λ) for any T > 0.

We next check (b). First, (8) rewrites mt = µt+ a
∫ t

0

∫ s

0
e−b(s−u)dmuds, with unique solution

mt =
−µbt

a− b
+

µa(e(a−b)t − 1)

(a− b)2
∼ µa

(a− b)2
e(a−b)t.

Next, using (10) and the explicit expressions of h, ϕ and m, we find

δN (t) ≤N−1/2

∫ t

0

(∫ s

0

ϕ2(s− u)dmu

)1/2

ds+

∫ t

0

ϕ(t− s)δN (s)ds

≤CN−1/2e(a−b)t/2 + a

∫ t

0

e−b(t−s)δN (s)ds.

Setting uN (t) = δN (t)ebt, we get uN (t) ≤ CN−1/2e(a+b)t/2 + a
∫ t

0
uN (s)ds. By Grönwall’s lemma,

uN (t) ≤ CN−1/2e(a+b)t/2 + a
∫ t

0
CN−1/2e(a+b)s/2ea(t−s)ds. On easily deduces, since a > b, that

uN (t) ≤ CN−1/2eat so that δN (t) ≤ CN−1/2e(a−b)t. The use of (9) ends the proof. �

3.2. Large time behaviour. We now address the important problem of the large time behaviour.
Since the solution (Zt)t≥0 to (7) is nothing but an inhomogeneous Poisson process, its large-time
behaviour is easily and precisely described, provided we have sufficiently information on the solution
to (8). The question is thus: can we use the large time estimates of the mean-field limit to describe
the large-time behaviour of the true Hawkes process with a large number of particles? To fix the
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ideas, we consider the linear case. For A a symmetric nonnegative matrix, we denote by N (0, A)
the centered Gaussian distribution with covariance matrix A.

We treat separately the subcritical and supercritical cases.

Theorem 10. Work under Assumption 7 with ϕ nonnegative and h(x) = µ + x for some µ >
0. Assume also that Λ =

∫∞

0
ϕ(s)ds < 1. For each N ≥ 1, consider the Hawkes process

(ZN,1
t , . . . , ZN,N

t )t≥0 with parameters (GN ,ϕN ,hN ). Consider also the unique solution (mt)t≥0

to (8).

1. We have mt ∼ a0t as t → ∞, where a0 = µ/(1− Λ).

2. For any fixed i ≥ 1, ZN,i
t /mt tends to 1 in probability as t → ∞, uniformly in N . More

precisely, E[|ZN,i
t /mt − 1|] ≤ Cm

−1/2
t for some constant C.

3. For any fixed ℓ ≥ 1 (m
1/2
t (ZN,i

t /mt − 1))i=1,...,ℓ goes in law to N (0, Iℓ) as (t,N) → (∞,∞)
(without condition on the regime).

Point 2. is of course related to the classical law of large numbers for multivariate Hawkes
processes, see e.g. Brémaud-Massoulié [9] or [3]. What we prove here is that this law of large

numbers is uniform in N . From this result, we deduce that Pr(|ZN,i
t /mt − 1| > ε) ≤ Cε−1m

−1/2
t ,

uniformly in N . In view of the papers by Bordenave-Torrisi [8] and Zhu [49, 48], which concern
one-dimensional processes, one might expect that a much more fast decay (large deviation bound)
could be proved, under a Cramér condition on ϕ. It would be interesting to decide if such a bound
is uniform in N .

Theorem 11. Work under Assumption 7 with ϕ nonnegative and h(x) = µ + x for some µ > 0.

Assume also that Λ =
∫∞

0
ϕ(s)ds ∈ (1,∞]. Assume finally that t 7→

∫ t

0
|dϕ(s)| has at most polyno-

mial growth. For each N ≥ 1, consider the Hawkes process (ZN,1
t , . . . , ZN,N

t )t≥0 with parameters

(GN ,ϕN ,hN ). Consider also the unique solution (mt)t≥0 to (8).

1. We have mt ∼ a0e
α0t as t → ∞, where α0 > 0 is determined by Lϕ(α0) = 1 and where

a0 = µα−2
0 (

∫∞

0
tϕ(t)e−α0tdt)−1.

2. For any fixed i ≥ 1, ZN,i
t /mt tends to 1 in probability as (t,N) → (∞,∞). More precisely,

there is a constant C such that E[|ZN,i
t /mt − 1|] ≤ m

−1/2
t + CN−1/2(1 +m−1

t ).

3. For any fixed ℓ ≥ 1,

(i) (m
1/2
t (ZN,i

t /mt − 1))i=1,...,ℓ goes in law to N (0, Iℓ) if t → ∞ and N → ∞ with mt/N → 0;

(ii) (N1/2(ZN,i
t /mt− 1))i=1,...,ℓ goes in law to (X, . . . ,X), if t → ∞ and N → ∞ with mt/N →

∞. Here X is a N (0, σ2)-distributed random variable, where σ2 = α2
0µ

−2
∫∞

0
e−2α0sm′

sds.

Let us summarize. At first order (law of large numbers), the mean-field approximation is always
good for large times. At second order (central limit theorem), the mean field approximation is
always good for large times in the subcritical case, but fails to be relevant for too large times
(depending on N) in the supercritical case: the independence property breaks down.

In the supercritical case, we have the technical condition that t 7→
∫ t

0
|dϕ(s)| has at most poly-

nomial growth. This is useful to have some precise estimates of the solution m to (8). This is, e.g.
always satisfied when ϕ is bounded and non-increasing, as is often the case in applications. It is
slightly restrictive however, since it forces ϕ(0) to be finite.
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It should be possible to study also the critical case, but then the situation is more intricate:
many regimes might arise. With a little more work, we could also study, in the supercritical case,
the regime where mt/N → x ∈ (0,∞).

In order to prove Theorems 10 and 11, we will use the following central limit theorem for
martingales. For two càdlàg martingales M and N , we denote by [M,N ] the quadratic covariation

defined by [M,N ]t = MtNt−
∫ t

0
Ms−dNs−

∫ t

0
Ns−dMs. When M and N are purely discontinuous,

it holds that [M,N ]t =
∑

s≤t ∆Ms∆Ns, see Jacod-Shiryaev [25, Chapter I, §4e].

Lemma 12. Let ℓ ≥ 1 be fixed. For N ≥ 1, consider a family (MN,1
t , . . . ,MN,ℓ

t )t≥0 of ℓ-

dimensional local martingales satisfying MN,i
0 = 0. Assume that all their jumps are uniformly

bounded and that [MN,i,MN,j ]t = 0 for every N ≥ 1, i 6= j and t ≥ 0. Assume also that
there is a continuous increasing function (vt)t≥0 : [0,∞) 7→ [0,∞) such that for all i = 1, . . . , ℓ,

lim(t,N)→(∞,∞) v
−2
t [MN,i,MN,i]t = 1 in probability. In the case where v∞ = limt→∞ vt < ∞, as-

sume moreover that for all i = 1, . . . , ℓ, all t0 > 0, uniformly in t ≥ t0, limN→∞[MN,i,MN,i]t = v2t
in probability.

Then v−1
t (MN,1

t , ...,MN,ℓ
t ) converges in law to the Gaussian distribution N (0, Iℓ) as (t,N) →

(∞,∞), where Iℓ is the ℓ× ℓ identity matrix.

Proof. Let (tN )N≥1 be a sequence of positive numbers such that tN → ∞. We want to prove that

v−1
tN (MN,1

tN , ...,MN,ℓ
tN ) converges in law to N (0, Iℓ). For all u ∈ [0, 1], set

τNu = inf{t ≥ 0 : v2t ≥ u v2tN }.
Since v is increasing and continuous, τN is also continuous and increasing for each N . We also
clearly have v2τN

u
= uv2tN for all u ∈ [0, 1] and τN1 = tN . Finally, for each u > 0 fixed, the sequence

τNu is increasing.

For all u ∈ (0, 1], limN v−2
τN
u
[MN,i,MN,i]τN

u
= 1 in probability. Indeed, in the case v∞ = ∞,

this follows from the facts that limN τNu = ∞ and lim(t,N)→(∞,∞) v
−2
t [MN,i,MN,i]t = 1. When

v∞ < ∞, the additional assumption (uniformity in t ≥ t0 of the convergence as N → ∞) clearly
suffices, since the sequence τNu is increasing and thus bounded from below.

We define the martingales (LN,i
u )u∈[0,1] by LN,i

u = v−1
tN MN,i

τN
u
. All their jumps are uniformly

bounded (because those of MN,i are assumed to be uniformly bounded and because supN v−1
tN < ∞

since v is increasing). We also have [LN,i, LN,j ]u = 0 for all i 6= j, all u ∈ [0, 1]. Furthermore,
using that v2τN

u
= uv2tN ,

[LN,i, LN,i]u =
[MN,i,MN,i]τN

u

v2tN
=

[MN,i,MN,i]τN
u

v2
τN
u

u → u

in probability. Therefore, according to Jacod-Shiryaev [25] (Theorem VIII-3.11), the process
(LN,1

u , . . . , LN,ℓ
u )u∈[0,1] converges in law to (B1

u, . . . , B
ℓ
u)u∈[0,1] where the Bi are independent stan-

dard Brownian motions. In particular, (LN,1
1 , . . . , LN,ℓ

1 ) goes in law to N (0, Iℓ). To conclude the

proof, it thus suffices to observe that LN,i
1 = v−1

tN MN,i

τN
1

= v−1
tN MN,i

tN . �

We can now give the

Proof of Theorem 10. In the present (linear) case, we can rewrite (8) as mt =
∫ t

0
(µ +

∫ s

0
ϕ(s −

u)dmu)ds = µt+
∫ t

0
ϕ(t− s)msds by Lemma 22. This equation is studied in details in Lemma 25:
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recalling that Λ =
∫∞

0
ϕ(s)ds < 1, we have m′

t ∼ a0 and mt ∼ a0t as t → ∞, where a0 = µ/(1−Λ),
which proves point (i). The proof is now divided in several steps. Step 1 will also be used in the
supercritical case.

Step 1. Recall that, for some i.i.d. family (πi(ds dz))i≥1 of Poisson measures on [0,∞)× [0,∞)
with intensity measure dsdz,

ZN,i
t =

∫ t

0

∫ ∞

0

1{
z≤µ+N−1

∑N
j=1

∫ s−
0

ϕ(s−u)dZN,j
u

}πi(ds dz).

We have E[ZN,i
t ] = mt. Indeed, by exchangeability, we see that E[ZN,i

t ] = E[ZN,1
t ] and that

E[ZN,1
t ] =

∫ t

0

(
µ+N−1

N∑

j=1

∫ s

0

ϕ(s− u)dE[ZN,j
u ]

)
ds =

∫ t

0

(
µ+

∫ s

0

ϕ(s− u)dE[ZN,1
u ]

)
ds,

whence (E[ZN,1
t ])t≥0 solves (8), of which the unique solution is (mt)t≥0 by Lemma 24.

We next introduce UN,i
t = ZN,i

t −mt and the martingales (here π̃i(ds dz) = πi(ds dz)− dsdz)

MN,i
t =

∫ t

0

∫ ∞

0

1{
z≤µ+N−1

∑N
j=1

∫ s−
0

ϕ(s−u)dZN,j
u

}π̃i(ds dz).

We consider the mean processes Z
N

t = N−1
∑N

1 ZN,i
t , U

N

t = N−1
∑N

1 UN,i
t and finally M

N

t =

N−1
∑N

1 MN,i
t . An easy computation using (8) and Lemma 22 shows that

UN,i
t =MN,i

t +

∫ t

0

N−1
N∑

j=1

∫ s

0

ϕ(s− u)dZN,j
u ds−mt

=MN,i
t +

∫ t

0

∫ s

0

ϕ(s− u)
(
N−1

N∑

j=1

dZN,j
u − dmu

)
ds

=MN,i
t +

∫ t

0

ϕ(t− s)
(
N−1

N∑

j=1

ZN,j
s −ms

)
ds,

so that

UN,i
t = MN,i

t +

∫ t

0

ϕ(t− s)U
N

s ds.(15)

This directly implies that

U
N

t = M
N

t +

∫ t

0

ϕ(t− s)U
N

s ds.(16)

Next, we observe that [MN,i,MN,j ]t = 0 for all i 6= j (because these martingales a.s. never jump

simultaneously) and that [MN,i,MN,i]t = ZN,i
t . Hence [M

N
,M

N
]t = N−1Z

N

t . We thus have

E[(MN,i
t )2] = E[ZN,i

t ] = mt and E[(M
N

t )2] = N−1
E[Z

N

t ] = N−1mt.

Step 2. Recalling (16) and using that Λ =
∫∞

0
ϕ(s)ds < 1, we observe that sup[0,t] |U

N

s | ≤
sup[0,t] |M

N

s |+ Λsup[0,t] |U
N

s |. Consequently,

E

[
sup
[0,t]

|UN

s |
]
≤ (1− Λ)−1

E

[
sup
[0,t]

|MN

s |
]
≤ CN−1/2m

1/2
t



HAWKES PROCESSES ON LARGE NETWORKS 15

by the Doob and Cauchy-Schwarz inequalities. We easily deduce that

E

[∫ t

0

ϕ(t− s)|UN

s |ds
]
≤ ΛE

[
sup
[0,t]

|UN

s |
]
≤ CN−1/2m

1/2
t ,

whence finally, recalling (15),

m−1
t E[|UN,i

t |] ≤ m−1
t E[|MN,i

t |] + Cm−1
t N−1/2m

1/2
t ≤ Cm

−1/2
t .

This says that E[|ZN,i
t /mt − 1|] ≤ Cm

−1/2
t and thus proves point 2.

Step 3. We then fix ℓ ≥ 1 and use (15) to write, for i = 1, . . . , ℓ,

m
1/2
t (ZN,i

t /mt − 1) = m
−1/2
t UN,i

t = m
−1/2
t MN,i

t +m
−1/2
t

∫ t

0

ϕ(t− s)U
N

s ds.

First, E[m
−1/2
t

∫ t

0
ϕ(t − s)|UN

s |ds] ≤ CN−1/2, which tends to 0 as (t,N) → (∞,∞), by the es-
timate proved in Step 2. To conclude the proof of point 3, we thus only have to prove that

(m
−1/2
t MN,i

t )i=1,...,ℓ goes in law to N (0, Iℓ) as (t,N) → (∞,∞). To this end, we apply Lemma
12. The jumps of the martingales MN,i are uniformly bounded (by 1) and we have seen that
[MN,i,MN,j ]t = 0 for all i 6= j. The function (mt)t≥0 is continuous and increases to infinity.

It thus suffices to check that, as (t,N) → (∞,∞), m−1
t [MN,i,MN,i]t → 1 in probability. Since

[MN,i,MN,i]t = ZN,i
t , this is an immediate consequence of point 2. �

We now turn to the supercritical case.

Proof of Theorem 11. We rewrite (8) as mt =
∫ t

0
(µ+

∫ s

0
ϕ(s−u)dmu)ds = µt+

∫ t

0
ϕ(t− s)msds by

Lemma 22. This equation is studied in details in Lemma 26: there is a unique α0 > 0 such that
Lϕ(α0) = 1 and, defining a0 ∈ (0,∞) as in the statement, we have mt ∼ a0e

α0t and m′
t ∼ a0α0e

α0t

as t → ∞, which proves point 1. We also know that Γ(t) =
∑

n≥1 ϕ
⋆n(t) ∼ (a0α

2
0/µ)e

α0t, that

Υ(t) =
∫ t

0
Γ(s)ds ∼ (a0α0/µ)e

α0t and further properties of m,m′,Γ,Υ are proved in Lemma 26.

Step 1. We adopt the same notation as in the proof of Theorem 10-Step 1, of which all the
results remain valid in the present case. Point 1 follows from Lemma 26-(a).

Step 2. First, (16) says exactly that U
N

= M
N
+ϕ⋆U

N
. Using Lemma 26-(e), we deduce that

U
N

= M
N
+Γ⋆M

N
(the processes U

N
and M

N
are clearly a.s. càdlàg and thus locally bounded).

Since E[(M
N

t )2] = N−1mt by Step 1,

E[|UN

t |] ≤E[|MN

t |] +
∫ t

0

Γ(t− s)E[|MN

s |]ds

≤N−1/2m
1/2
t +

∫ t

0

Γ(t− s)N−1/2m1/2
s ds

≤CN−1/2(1 +mt).

The last inequality easily follows from Lemma 26-(b).

Using (16) again, we see that
∫ t

0
ϕ(t− s)U

N

s ds = U
N

t −M
N

t , whence

E

[∣∣∣
∫ t

0

ϕ(t− s)U
N

s

∣∣∣
]
≤ E[|MN

t |] + E[|UN

t |] ≤ N−1/2m
1/2
t + CN−1/2(1 +mt) ≤ CN−1/2(1 +mt).
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On the other hand, we know from Step 1 that E[(MN,i
t )2] = mt. Using (15), we conclude that

E[|ZN,i
t /mt − 1|] = m−1

t E[|UN,i
t |] ≤ m

−1/2
t + CN−1/2(1 +m−1

t ).

which ends the proof of 2.

Step 3. We then fix ℓ ≥ 1 and write, for i = 1, . . . , ℓ, by (15),

(ZN,i
t /mt − 1) = m−1

t UN,i
t = m−1

t MN,i
t +m−1

t

∫ t

0

ϕ(t− s)U
N

s ds.

Step 3.1. We first consider the regime (t,N) → (∞,∞) with mt/N → 0 and study

m
1/2
t (ZN,i

t /mt − 1) = m
−1/2
t MN,i

t +m
−1/2
t

∫ t

0

ϕ(t− s)U
N

s ds.

The second term tends to 0 in probability, because we can bound, using Step 2, its L1-norm

by Cm
−1/2
t N−1/2(1 + mt), which tends to 0 in the present regime. We thus just have to prove

that (m
−1/2
t MN,i

t )i=1,...,ℓ goes in law to N (0, Iℓ). We use Lemma 12: the martingales MN,i have
uniformly bounded (by 1) jumps and we have seen that [MN,i,MN,j ]t = 0 for i 6= j. The function
(mt)t≥0 is continuous and increases to infinity. It only remains to check that m−1

t [MN,i,MN,i]t
tends to 1 in probability. But [MN,i,MN,i]t = ZN,i

t , so that the conclusion follows from point 2.

Step 3.2. We finally consider the regime (t,N) → (∞,∞) with mt/N → ∞ and study

N1/2(ZN,i
t /mt − 1) = N1/2m−1

t MN,i
t +N1/2m−1

t

∫ t

0

ϕ(t− s)U
N

s ds.

First, N1/2m−1
t MN,i

t → 0 in probability, because its L1-norm is bounded byN1/2m
−1/2
t (recall that

E[(MN,i
t )2] = mt), which tends to 0 in the present regime. Since V N

t := N1/2m−1
t

∫ t

0
ϕ(t− s)U

N

s ds

does not depend on i, it only remains to prove that V N
t goes in law to N (0, σ2). We write,

using (16), recalling that U
N

= M
N
+ Γ ⋆ M

N
(see Step 2) and integrating by parts (recall that

Υ(t) =
∫ t

0
Γ(s)ds)

V N
t = N1/2m−1

t (U
N

t −M
N

t ) = N1/2m−1
t

∫ t

0

Γ(t− s)M
N

s ds = N1/2m−1
t

∫ t

0

Υ(t− s)dM
N

s .

Introduce WN
t = (α0/µ)N

1/2
∫ t

0
e−α0sdM

N

s and observe that, since E[[M
N
,M

N
]t] = N−1mt,

E[(V N
t −WN

t )2] =E

[
N

∫ t

0

(m−1
t Υ(t− s)− (α0/µ)e

−α0s)2d[M
N
,M

N
]s

]

=

∫ t

0

(m−1
t Υ(t− s)− (α0/µ)e

−α0s)2m′
sds.

Lemma 26-(c) tells us that this tends to 0 as t → ∞. We thus only have to prove that WN
t goes

in law to N (0, σ2) as (t,N) → (∞,∞).

This follows again from Lemma 12 (with ℓ = 1): the jumps of the martingale (WN
t )t≥0 are

bounded by (α0/µ)N
−1/2 (because those of M

N
are bounded by N−1). The function vt =

(α0/µ)(
∫ t

0
e−2α0sm′

sds)
1/2 is continuous and increasing to the finite limit v∞ = σ (which was

defined in the statement). We thus only have to prove that (a) v−2
t [WN ,WN ]t → 1 in probability

as (t,N) → (∞,∞), (b) for all t0 > 0, uniformly in t ≥ t0, v
−2
t [WN ,WN ]t → 1 in probability as
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N → ∞. By Lemma 12, we will deduce that v−1
t WN

t goes in law to N (0, 1) as (t,N) → (∞,∞),
which of course implies that WN

t goes in law to N (0, σ2) as desired.

We have, since [M
N
,M

N
]t = N−1Z

N

t ,

[WN ,WN ]t = (α0/µ)
2N

∫ t

0

e−2α0sd[M
N
,M

N
]s = (α0/µ)

2

∫ t

0

e−2α0sdZ
N

s .

Using that Z
N

t = U
N

t +mt and performing an integration by parts, we see that

[WN ,WN ]t =v2t + (α0/µ)
2

∫ t

0

e−2α0sdU
N

s

=v2t + (α0/µ)
2e−2α0tU

N

t + 2(α3
0/µ

2)

∫ t

0

e−2α0sU
N

s ds.

Recalling that that E[|UN

t |] ≤ CN−1/2(1 +mt), we infer

E

[∣∣∣(α0/µ)
2e−2α0tU

N

t + 2(α3
0/µ

2)

∫ t

0

e−2α0sU
N

s ds
∣∣∣
]

≤ C

N1/2

(
e−2α0t(1 +mt) +

∫ t

0

e−2α0s(1 +ms)ds
)
,

which is bounded by CN−1/2 by Lemma 26. We have proved that supt≥0 E[|[WN ,WN ]t − v2t |] ≤
CN−1/2, from which points (a) and (b) above immediately follow. The proof is complete. �

4. Nearest neighbour model

We consider here the case where G is a regular grid, on which particles interact (directly) only
if they are neighbours. We will work on Z

d, endowed with the set of edges

E = {(i, j) ∈ (Zd)2 : |i− j| = 0 or 1},
where |(i1, . . . , id)| = (

∑d
r=1 i

2
r)

1/2. Thus each point has 2d + 1 neighbours (including itself).
We hesitated to include self-interaction, but this avoids some needless complications due to the
periodicity of the underlying random walk on Z

d.

Assumption 13. (i) The graph G = (S, E) is S = Z
d (for some d ≥ 1) endowed with the above

set of edges E.
(ii) There is a nonnegative locally integrable function ϕ : [0,∞) 7→ [0,∞) such that for all

(j, i) ∈ E, ϕji = (2d+ 1)−1ϕ.
(iii) For all i ∈ Z

d, there is µi ≥ 0 such that hi(x) = µi + x. The family (µi)i∈Zd is bounded.

We next introduce a few notation. In the whole section, we call vector (and write in bold) a
family of numbers indexed by Z

d. We call matrix a family indexed by Z
d×Z

d. The identity matrix
I is of course defined as I(i, j) = 1{i=j}. We will often use the product of a matrix and a vector.
The matrix A = (A(i, j))i,j∈Zd defined by

A(i, j) = (2d+ 1)−11{(i,j)∈E}(17)

will play an important role. Since A is a stochastic matrix, we can define, for any Λ ∈ (0, 1),

QΛ(i, j) =
∑

n≥0

ΛnAn(i, j).(18)
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4.1. Large-time behaviour. Under Assumption 13, we can use Theorem 6 (with pi = 2−|i|, see
Remark 5-(ii)): there is a unique Hawkes process (Zi

t)i∈Zd,t≥0 with parameters (G,ϕ,h) such that∑
i∈Zd 2−|i|

E[Zi
t ] < ∞. Let us state the first results of this section. As usual, we treat separately

the subcritical and supercritical cases.

Theorem 14. Work under Assumption 13 and assume further that Λ =
∫∞

0
ϕ(t)dt < 1. Consider

the unique Hawkes process (Zi
t)i∈Zd,t≥0 with parameters (G,ϕ,h). For all i ∈ Z

d, t−1Zi
t goes in

probability, as t → ∞, to
∑

j∈Zd QΛ(i, j)µj.

Theorem 15. Work under Assumption 13 and assume further that Λ =
∫∞

0
ϕ(t)dt ∈ (1,∞]

and that t 7→
∫ t

0
|dϕ(s)| has at most polynomial growth. Consider α0 > 0 uniquely defined by

Lϕ(α0) = 1. Assume finally that the “mean value”

µ = lim
r→∞

1

#{i ∈ Zd : |i| ≤ r}
∑

|i|≤r

µi exists and is positive.(19)

Consider the unique Hawkes process (Zi
t)i∈Zd,t≥0 with parameters (G,ϕ,h). Then for all i ∈ Z

d,

e−α0tZi
t goes in probability, as t → ∞, to a0 = µα−2

0 (
∫∞

0
tϕ(t)e−α0tdt)−1.

Let us comment on these results. In the subcritical case, the parameter µ = (µi)i∈Zd is strongly
present in the limiting behaviour: the limit of t−1Zi

t depends on a certain mean of µ around the
site i and thus depends on i. In the supercritical case, the behaviour is very different: the limit
value of e−α0tZi

t does not depend on i, and depends on µ = (µi)i∈Zd only through a global mean
value. Observe also that for a finite-dimensional (e.g. scalar) Hawkes process, there is no law of
large numbers: one can get a limit of something like e−α0tZi

t , but the limit is random, see Zhu
[49, Section 5.4] (in particular Theorem 23 and Corollary 1). In that sense, we can say that in
the supercritical case, the law of large number is reminiscent of the infinite dimension and of the
interaction.

We will need a precise approximation for An(i, j) where A is defined by (17). It is given by
the local central limit theorem, since A is the transition matrix of an aperiodic symmetric random
walk on Z

d with bounded jumps. Precisely, we infer from Lawler-Limic [29, Theorem 2.1.1 and
(2.5)] that there is a constant C such that for all n ≥ 1, all i ∈ Z

d,

|An(0, i)− pn(i)| ≤
C

n(d+2)/2
(20)

where, for t > 0 and x ∈ R
d,

(21) pt(x) =
(2d+ 1

4πt

)d/2

exp
(
− (2d+ 1)|x|2

4t

)
.

To apply [29, Theorem 2.1.1], we needed to compute the covariance matrix Γ corresponding to our
random walk, we found Γ = 2(2d+ 1)−1Id, Id being the d× d identity matrix.

Lemma 16. Consider the matrix (A(i, j))i,j∈Zd defined by (17).

(i) It holds that εn =
∑

j∈Zd(An(i, j))2 does not depend on i ∈ Z
d and tends to 0 as n → ∞.

(ii) Let µ = (µi)i∈Zd be bounded and satisfy (19). Then for all i ∈ Z
d, limn→∞(Anµ)i = µ.

Proof. In the following we denote by C a constant depending only on d.
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Point (i) is easy: since An(i, j) = An(0, j − i) and since A is stochastic, one has εn =∑
j∈Zd(An(0, j))2 ≤ supj∈Zd An(0, j). Moreover, by (20), An(0, j) ≤ pn(j)+Cn−(d+2)/2 ≤ Cn−d/2.

We conclude that εn ≤ Cn−d/2 → 0 as desired.

Now we turn to the proof of (ii). Let i ∈ Z
d. First we show that limn[(A

nµ)i−
∑

j∈Zd pn(j)µj ] =

0. Since (Anµ)i =
∑

j∈Zd An(i, j)µj =
∑

j∈Zd An(0, j − i)µj and since the family (µj)j∈Zd is

bounded, it suffices to prove that vn =
∑

j∈Zd |An(0, j − i)− pn(j)| → 0. We write

vn ≤
∑

|j|≤n1/2+1/4d

|An(0, j − i)− pn(j)|+
∑

|j|>n1/2+1/4d

(An(0, j − i) + pn(j)) = v1n + v2n.

On the one hand, using that
∑

j∈Zd |j|2An(0, j) ≤ Cn (the variance of the random walk at time n

is of order n), so that
∑

j∈Zd |j|2An(0, j − i) =
∑

k∈Zd |i+ k|2An(0, k) ≤ C(|i|2 + n) and thus
∑

|j|>n1/2+1/4d

An(0, j − i) ≤ Cn−1−1/2d
∑

j∈Zd

|j|2An(0, j − i) ≤ Cn−1−1/2d(|i|2 + n).

Similarly, we have
∑

j∈Zd |j|2pn(j) ≤ Cn and thus
∑

|j|>n1/2+1/4d

pn(j) ≤ n−1−1/2d
∑

j∈Zd

|j|2pn(j) ≤ Cn−1/2d.

Consequently limn v
2
n = 0. On the other hand,

v1n ≤
∑

|j|≤n1/2+1/4d

|An(0, j − i)− pn(j − i)|+
∑

|j|≤n1/2+1/4d

|pn(j − i)− pn(j)|.

From (20), the first sum is bounded by Cn−(d+2)/2#{j ∈ Z
d : |j| ≤ n1/2+1/4d} ≤ Cn−3/4 → 0.

For the second sum, we use that, with cd = (2d+ 1)/4,

|pn(j − i)− pn(j)| = pn(j)
∣∣∣1− exp

(
−cd

n
|i|2 + 2cd

n
i.j

)∣∣∣.

Hence for |j| ≤ n1/2+1/4d and for n large enough (e.g. so that |i|n−1/2+1/4d ≤ 1),

|pn(j − i)− pn(j)| ≤ Cpn(j)(|i|2n−1 + |i|n−1/2+1/4d) ≤ Cpn(j)(1 + |i|2)n−1/4.

Thus
∑

|j|≤n1/2+1/2d |pn(j − i)− pn(j)| ≤ C(1 + |i|2)n−1/4 and we deduce that limn v
1
n = 0.

We have shown that lim vn = 0. It only remains to check that limn

∑
j∈Zd µjpn(j) = µ. Let

(rk)k≥0 be the increasing sequence of nonnegative numbers such that {rk}k≥0 = {|j| : j ∈ Z
d}

and observe that ∑

j∈Zd

µjpn(j) =
∑

k≥0

pn(rk)
∑

|j|=rk

µj .

A discrete integration by parts shows that
∑

j∈Zd

µjpn(j) =
∑

k≥0

(pn(rk)− pn(rk+1))
∑

|j|≤rk

µj =
∑

k≥0

v(rk)(pn(rk)− pn(rk+1))
1

v(rk)

∑

|j|≤rk

µj ,

where v(r) = #{j ∈ Z
d : |j| ≤ r}. We easily conclude that limn

∑
j∈Zd µjpn(j) = µ as desired,

because

(a) limk→∞
1

v(rk)

∑
|j|≤rk

µj = µ;

(b) for all k ≥ 0 fixed, limn v(rk)(pn(rk)− pn(rk+1)) = 0;
(c) limn→∞

∑∞
k=0 v(rk)(pn(rk)− pn(rk+1)) = 1.
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Point (a) follows from our condition (19) on µ, point (b) is obvious (because |v(rk)(pn(rk) −
pn(rk+1))| ≤ v(rk) supi∈Zd pn(i) ≤ Cv(rk)n

−d/2 → 0). To check (c), we write
∑∞

k=0 v(rk)(pn(rk)−
pn(rk+1)) =

∑
j∈Zd pn(j) =

∑
j∈Zd An(0, j)+

∑
j∈Zd [pn(j)−An(0, j)] = 1+

∑
j∈Zd [pn(j)−An(0, j)].

This tends to 1, because limn

∑
j∈Zd |pn(j) − An(0, j)| = 0, as seen in the first part of the proof

(this is vn in the special case where i = 0).
�

Let us now give the

Proof of Theorem 14. We split the proof into several steps. We assume that there is at least one
i ∈ Z

d such that µi > 0, because else the result is obvious (because then Zi
t = 0 for all i ∈ Z

d, all
t ≥ 0). The first step will also be used in the supercritical case.

Step 1. We write as usual, for some i.i.d. family (πi(ds dz))i≥1 of Poisson measures on [0,∞)×
[0,∞) with intensity measure dsdz,

Zi
t =

∫ t

0

∫ ∞

0

1{
z≤µi+(2d+1)−1

∑
j→i

∫ s−
0

ϕ(s−u)dZj
u

}πi(ds dz).

Let us put mi
t = E[Zi

t ] and mt = (mi
t)i∈Zd . A simple computation (using one more time Lemma

22) gives us, for all i ∈ Z
d,

mi
t = µit+

∫ t

0

(2d+ 1)−1
∑

j→i

ϕ(t− s)mj
sds.

Using the vector formalism, this rewrites mt = µt +
∫ t

0
ϕ(t − s)(Ams)ds. We furthermore know

(from Theorem 6) that for all t ≥ 0,
∑

i∈Zd 2−|i|mi
t < ∞. Applying Lemma 27, we see that mi is

of class C1 on [0,∞) for each i ∈ Z
d, that

m′
t = µ+

∫ t

0

ϕ(t− s)Am′
sds(22)

and that

m′
t =

(
I +

∑

n≥1

An

∫ t

0

ϕ⋆n(s)ds
)
µ.(23)

Lemma 27 also tells us that ut = supi∈Zd sup[0,t](m
i
s)

′ is locally bounded, which of course implies

that supi∈Zd sup[0,t] m
i
s is also locally bounded (because mi

0 = 0 for all i ∈ Z
d), and that

ut ≤ C +

∫ t

0

ϕ(t− s)usds.(24)

We introduce the martingales, for i ∈ Z
d, (we use a tilde for compensation),

M i
t =

∫ t

0

∫ ∞

0

1{
z≤µi+(2d+1)−1

∑
j→i

∫ s−
0

ϕ(s−u)dZj
u

}π̃i(ds dz)

and observe as usual that [M i,M j ]t = 0 when i 6= j (because these martingales a.s. never jump at
the same time) while [M i,M i]t = Zi

t . We finally introduce U i
t = Zi

t−mi
t, the vectorsU t = (U i

t )i∈Zd

and M t = (M i
t )i∈Zd and observe that

U t = M t +

∫ t

0

ϕ(t− s)AU sds.(25)
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Indeed, for every i ∈ Z
d, using Lemma 22 and the equation satisfied by mi

t, we find

U i
t =M i

t +

∫ t

0

(2d+ 1)−1
∑

j→i

ϕ(t− s)(Zj
s −mj

s)ds = M i
t +

∫ t

0

ϕ(t− s)(AU s)ids.

Equation (25) can be solved as usual as

U t =
(
M t +

∑

n≥1

∫ t

0

ϕ⋆n(t− s)AnM sds
)
.(26)

Finally, we easily check that vt = supi∈Zd sup[0,t] E[|U i
s|] is locally bounded (because E[|U i

t |] ≤
E[|Zi

t |]+mi
t ≤ 2mi

t) and satisfies (start from (25), use that E[|M i
t |] ≤ E[[M i,M i]t]

1/2 = E[Zi
t ]
1/2 =

(mi
t)

1/2 ≤ (
∫ t

0
usds)

1/2) and that A is stochastic)

vt ≤
(∫ t

0

usds
)1/2

+

∫ t

0

ϕ(t− s)vsds.(27)

Step 2. Here we prove that there is a constant C such that for all i ∈ Z
d, (mi

t)
′ ≤ C (and thus

also mi
t ≤ Ct). This follows from (24), which implies that ut ≤ C + Λut, whence ut ≤ C/(1− Λ).

Step 3. For all i ∈ Z
d, (mi

t)
′ ∼ (QΛµ)i, whence also mi

t ∼ (QΛµ)it, as t → ∞. Indeed, starting
from (23), using the monotone convergence theorem and that

∫∞

0
ϕ⋆n(s)ds = (

∫∞

0
ϕ(s)ds)n = Λn,

lim
t→∞

(mi
t)

′ =
((

I +
∑

n≥1

ΛnAn
)
µ
)
i
= (QΛµ)i.

Step 4. There is a constant C such that for all i ∈ Z
d, all t ≥ 0, E[|U i

t |] ≤ Ct1/2. Indeed, this
follows from (27) and Step 2, which imply that vt ≤ Ct1/2 + Λvt, whence vt ≤ Ct1/2/(1− Λ).

Step 5. The conclusion follows immediately, writing

E

[∣∣∣Z
i
t

t
− (QΛµ)i

∣∣∣
]
≤ E

[∣∣∣U
i
t

t

∣∣∣
]
+

∣∣∣m
i
t

t
− (QΛµ)i

∣∣∣,

which tends to 0 as t → ∞ by Steps 3 and 4. �

We now turn to the supercritical case.

Proof of Theorem 15. We consider m (not to be confused with m) the unique solution to mt =

µt+
∫ t

0
ϕ(t−s)msds, where µ is the mean value defined by (19). This equation is studied in details

in Lemma 26: with α0 and a0 defined in the statement, we have mt ∼ a0e
α0t and m′

t ∼ a0α0e
α0t

as t → ∞, as well as Γ(t) =
∑

n≥1 ϕ
⋆n(t) ∼ (a0α

2
0/µ)e

α0t and Υ(t) =
∫ t

0
Γ(s)ds ∼ (a0α0/µ)e

α0t.

Step 1. We adopt the notation introduced in Step 1 of the proof of Theorem 14.

Step 2. Here we check that that there is C such that for all i ∈ Z
d, (mi

t)
′ ≤ Ceα0t (and thus

mi
t ≤ Ceα0t). This follows from (24), which tells us that ut = supi∈Zd(mi

t)
′ is locally bounded

and satisfies ut ≤ C +
∫ t

0
ϕ(t− s)usds. Setting ht = ut −

∫ t

0
ϕ(t− s)usds, we see that ht is locally

bounded (from above and from below), because u is locally bounded and ϕ is locally integrable.
We furthermore have u = h+ u ⋆ ϕ. Applying Lemma 26-(e), we deduce that u = h+ h ⋆ Γ. But
h is bounded from above by C. Consequently, u ≤ C +C ⋆ Γ = C(1 +Υ), where Υ was defined in
Lemma 26. The conclusion follows from Lemma 26-(b).

Step 3. We now show that for all i ∈ Z
d, (mi

t)
′ ∼ (mt)

′ (whence mi
t ∼ mt) as t → ∞. Let us

fix i ∈ Z
d and set rit = (mi

t)
′ − (mt)

′, which satisfies rit = µi − µ+
∑

n≥1((A
nµ)i − µ)

∫ t

0
ϕ⋆n(s)ds.
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We know from Lemma 16-(ii) that ηn = (Anµ)i − µ tends to 0 as n → ∞. Consequently, Lemma

26-(d) tells us that e−α0t
∑

n≥1((A
nµ)i − µ)

∫ t

0
ϕ⋆n(s)ds tends to 0 as t → ∞. Hence e−α0trit → 0

as t → ∞. Using finally that m′
t ∼ a0α0e

α0t as t → ∞, we conclude that (mi
t)

′/m′
t = 1 + rit/m

′
t ∼

1 + (a0α0)
−1e−α0trit → 1 as desired.

Step 4. Here we check that for every i ∈ Z
d, e−α0tE[|U i

t |] tends to 0 as t → ∞. We start from
(26) to write

|U i
t | ≤ |M i

t |+
∑

n≥1

∫ t

0

ϕ⋆n(t− s)|(AnM s)i|ds.

But E[|M i
t |] ≤ E[Zi

t ]
1/2 = (mi

t)
1/2 ≤ Ceα0t/2 by Step 2 and E[(AnM t)

2
i ] =

∑
j(A

n(i, j))2mj
s ≤

Ceα0t
∑

j(A
n(i, j))2 ≤ Ceα0tεn by Lemma 16-(i), with εn → 0 as n → ∞. Consequently,

e−α0tE[|U i
t |] ≤ Ce−α0t/2 + Ce−α0t

∑

n≥1

ε1/2n

∫ t

0

ϕ⋆n(t− s)eα0s/2ds.

Lemma 26-(d) allows us to conclude.

Step 5. The conclusion follows, writing

E

[∣∣∣ Zi
t

a0eα0t
− 1

∣∣∣
]
≤ E

[∣∣∣ U i
t

a0eα0t

∣∣∣
]
+

∣∣∣ mi
t

a0eα0t
− 1

∣∣∣,

and using Steps 3, 4, and that mt ∼ a0e
α0t by Lemma 26-(a). �

4.2. Study of an impulsion. Here we want to study how an impulsion at time 0 at i = 0
propagates. To this end, we work under Assumption 13 with µi = 0 for all i ∈ Z

d, but we assume
that Z0 has a jump at time 0. Such a study is of course important: it allows us to measure, in
some sense, the range of the interaction.

We first define precisely the process under study.

Definition 17. We work under Assumption 13-(i)-(ii) and consider a family (πi(ds dz), i ∈ Z
d)

of i.i.d. (Ft)t≥0-Poisson measures on [0,∞)× [0,∞) with intensity measure dsdz. We say that a
family (Zi

t)i∈Zd,t≥0 of (Ft)t≥0-adapted counting processes is an impulsion Hawkes process if

∀ i ∈ Z
d, Zi

t =

∫ t

0

∫ ∞

0

1{
z ≤

∑

j→i

(2d+ 1)−1[

∫ s−

0

ϕ(s− u)dZj
u + ϕ(s)1{j=0}]

}π
i(ds dz).

As said previously, the term
∑

j→i ϕ(s)1{j=0} is interpreted as an excitation due to a forced

jump of Z0 at time 0: simply rewrite it as 1{0→i}

∫ s−

0
ϕ(s− u)δu(ds).

The following proposition is easy.

Proposition 18. Adopt the assumptions and notation of Definition 17. There exists a pathwise
unique impulsion Hawkes process (Zi

t)i∈Zd,t≥0 such that
∑

i∈Zd E[Zi
t ] < ∞ for all t ≥ 0.

Exactly as Theorem 6, this result can be deduced from Massoulié [32, Theorem 2] in the sub-
critical case where

∫∞

0
ϕ(s)ds < 1.

Proof. The proof resembles much that of Theorem 6, so we only sketch it. We start with unique-
ness and thus consider two impulsion Hawkes processes (Zi

t)i∈Zd,t≥0 and (Z̃i
t)i∈Zd,t≥0 such that∑

i∈Zd E[Zi
t + Z̃i

t ] < ∞. We set ∆i
t =

∫ t

0
|d(Zi

s− Z̃i
s)|, δit = E[∆i

t] and δt =
∑

i∈Zd δit (which is locally
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bounded by assumption). We may check that δit ≤ (2d + 1)−1
∫ t

0

∑
j→i ϕ(t − s)δjsds exactly as in

the proof of Theorem 6. Summing in i and recalling that each site has 2d+ 1 neighbours, we find

δt ≤
∫ t

0
ϕ(t− s)δsds. Lemma 23-(i) tells us that δt = 0 for all t, whence pathwise uniqueness.

Existence follows from a Picard iteration. Let us only check an a priori estimate implying that∑
i∈Zd E[Zi

t ] < ∞ for all t ≥ 0. Set mi
t = E[Zi

t ] and mt =
∑

i∈Zd mi
t. A direct computation using

Lemma 22 shows that mi
t = (2d + 1)−1

∑
j→i[

∫ t

0
ϕ(t − s)mj

sds + 1{j=0}

∫ t

0
ϕ(s)ds]. Summing in i,

we find mt =
∫ t

0
ϕ(t − s)msds +

∫ t

0
ϕ(s)ds. Using Lemma 23-(i), that ϕ is locally integrable (and

that
∫ t

0
ϕ(s)ds is locally bounded), we deduce that sup[0,T ] mt ≤ C(T, ϕ) as desired. �

We next compute the probability of the extinction event. Point 1 is a noticeable property that
makes the result very easy and precise.

Theorem 19. Adopt the assumptions and notation of Definition 17 and consider the impulsion
Hawkes process (Zi

t)i,∈Zd,t≥0.

1. The process Zt =
∑

i∈Z
Zi
t is a scalar impulsion Hawkes process with excitation function ϕ.

In other words, (Zt)t≥0 is a counting process with compensator At =
∫ t

0
λsds, where

λt = ϕ(t) +

∫ t−

0

ϕ(t− s)dZs.

2. We introduce the extinction event defined by Ωe = {limt→∞

∑
i∈Zd Zi

t < ∞}. Setting Λ =∫∞

0
ϕ(s)ds, we have (i) Pr(Ωe) = 0 if Λ = ∞; (ii) Pr(Ωe) = exp(−γΛΛ) if Λ ∈ (1,∞), where

γΛ ∈ (0, 1) is characterised by γΛΛ + log(1− γΛ) = 0; (iii) Pr(Ωe) = 1 if Λ ∈ (0, 1].

Of course, we can sometimes use this theorem, by a simple comparison argument, if ϕji depends
on i, j. For example, to guarantee non-extinction with probability one, it suffices that all the ϕji

are bounded below by some (2d+ 1)−1ϕ such that
∫∞

0
ϕ(s)ds = ∞.

When Λ ∈ (0, 1), a detailed study of the tail distribution of the extinction time is handled by
Brémaud-Nappo-Torrisi [10], for a more general scalar model with marks.

Proof. Point 1 is immediate: the compensator of the counting process (Zt)t≥0 is

At =

∫ t

0

∑

i∈Zd

∑

j→i

(2d+ 1)−1[

∫ s−

0

ϕ(s− u)dZj
u + ϕ(s)1{j=0}]ds

=

∫ t

0

∑

j∈Zd

[

∫ s−

0

ϕ(s− u)dZj
u + ϕ(s)1{j=0}]ds

=

∫ t

0

[ϕ(s) +

∫ s−

0

ϕ(s− u)dZu]ds.

We next prove point 2. It is well-known Folklore that a scalar impulsion Hawkes process can
be related to a Poisson Galton-Watson process with Poisson(Λ) reproduction law, but we give a
direct proof for the sake of completeness. If Λ = ∞, it suffices to note that Pr(Ωe) = Pr(Z∞ <
∞) = Pr(A∞ < ∞) ≤ Pr(

∫∞

0
ϕ(s)ds < ∞) = 0. When Λ < ∞, we introduce the martingale, for

γ ∈ (0, 1), Nγ
t = −γ(Zt −At) = −γZt + γ

∫ t

0
ϕ(s)ds+ γ

∫ t

0
ϕ(t− s)Zsds by Lemma 22. We denote

by Mγ
t = E(Nγ)t = eγAt

∏
s≤t(1 − γ∆Zs) its Doléans-Dade exponential, see Jacod-Shiryaev [25,
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Chapter 1, Section 4f]. Since Z is a counting process, we see that

Mγ
t = exp

(
γ

∫ t

0

ϕ(s)ds+ γ

∫ t

0

ϕ(t− s)Zsds+ log(1− γ)Zt

)
.

If γΛ+log(1−γ) ≤ 0 then Mγ is bounded (because γ
∫ t

0
ϕ(s)ds+γ

∫ t

0
ϕ(t−s)Zsds+log(1−γ)Zt ≤

γΛ + (γΛ + log(1 − γ))Zt ≤ γΛ), and thus converges in L1. Consequently, E[Mγ
∞] = 1 and (one

easily verifies, using that Z is non-decreasing, that limt→∞

∫ t

0
ϕ(t− s)Zsds = ΛZ∞)

E

[
exp

(
γΛ +

(
log(1− γ) + γΛ

)
Z∞

)]
= 1.

But for all x > 0, there is a unique γ(x) ∈ (0, 1) such that γ(x)Λ + log(1− γ(x)) = −x, whence

E

[
exp

(
−xZ∞

)]
= exp(−Λγ(x)).

Consequently,

Pr(Ωe) = Pr(Z∞ < ∞) = lim
x→0+

E

[
exp

(
−xZ∞

)]
= exp(−Λγ(0+)).

If Λ ∈ (0, 1], we see that γ(0+) = 0, so that Pr(Ωe) = 1. If now Λ > 1, γ(0+) is the unique solution
in (0, 1) to γ(0+)Λ + log(1− γ(0+)) = 0. �

We next study more deeply, in the super-critical case, how the impulsion propagates. Unfortu-
nately, the computations are really tedious: we decided to restrict ourselves to a particular case
(ϕ is an exponential function) where some computations are explicit. We believe that the result
below can be extended to a general class of functions ϕ, but a difficult technical lemma is required.

Theorem 20. Work under Assumption 13-(i)-(ii), with ϕ(t) = ae−bt, for some a > b > 0.
Consider the impulsion Hawkes process (Zi

t)i∈Zd,t≥0. Since
∫∞

0
ϕ(s)ds = a/b > 1, we know from

Theorem 19 that Pr(Ωe) ∈ (0, 1). We set α0 = a− b (for which Lϕ(α0) = 1) and we recall that the
Gaussian density pt(x) is defined by (21).

(i) There are some constants C > 0 and t0 > 0 and a random variable H ≥ 0 such that for all
i ∈ Z

d, all t ≥ t0,

E
[∣∣Zi

t −Hpat(i)e
α0t

∣∣] ≤ Ceα0t

td/2+1/3
.

(ii) For all x ∈ R
d, td/2e−α0tZ

⌊xt1/2⌋
t → Hpa(x) in probability as t → ∞. Here, we define the

“integer part” ⌊y⌋ of y = (y1, . . . , yd) ∈ R
d, by ⌊y⌋ = (⌊y1⌋, . . . , ⌊yd⌋) ∈ Z

d.

(iii) The random variable H is positive on the event Ωc
e.

(iv) Actually, H = limt→∞ e−α0t
∑

i∈Zd Zi
t and H = limt→∞(4πt/(2d+ 1))d/2e−α0tZ0

t in L1.

This result describes quite precisely how an impulsion propagates. Conditional on non extinc-
tion, the process (Zi

t)i∈Zd resembles a Gaussian profile, with height t−d/2Heα0t and radius
√
t, for

some positive random variable H.

Compared to the previous result (Theorem 15), the growth is only very slightly slower: a single
impulsion at the site 0 produces a growth in t−d/2eα0t, while we have eα0t when all the sites are
regularly excited (as is e.g. the case when µi = 1 for all i).

It is important to note that, even if the growth “near 0” of the process is very fast (exponential),
the spatial propagation is quite slow (of order

√
t).
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Since H = limt→∞ e−α0tZt, where Zt :=
∑

i∈Zd Zi
t is nothing but a scalar impulsion Hawkes

process by Theorem 19, much more information on the distribution of H can be found in the
papers by Hawkes [18] and Lewis [30]. See also the work of Torrisi and Leonardi [44] for related
modelling purposes.

It is likely that these results could be proved for more general functions ϕ. Since we assume
that ϕ is an exponential function, the couple (Hawkes process, intensity process) is actually a
Markov process. See Oakes, [33] in the scalar case. But we do absolutely not use the Markov
property. What we use is that in Lemma 21 below, many explicit computations are possible, that
considerably simplifies the study.

We start with some preliminary computations.

Lemma 21. Adopt the notation and assumptions of Theorem 20. Introduce also, for i ∈ Z
d and

t ≥ 0, Γ(i, t) =
∑

n≥1 A
n(0, i)ϕ⋆n(t).

(i) For all n ≥ 1, all t ≥ 0, ϕ⋆n(t) = (at)n−1e−bt/(n− 1)!.

(ii) For all t ≥ 0,
∑

i∈Zd Γ(i, t) = eα0t.

(iii) There is C such that for all t ≥ 0,
∑

i∈Zd |i|2Γ(i, t) ≤ C(1 + t)eα0t.

(iv) There are some constants C and t0 > 0 such that for all t ≥ t0, all i ∈ Z
d,

∣∣Γ(i, t)− pat(i)e
α0t

∣∣ ≤ Ceα0t

td/2+1/3
,(28)

∣∣
∫ t

0

Γ(i, s)ds− 1

α0
pat(i)e

α0t
∣∣ ≤ Ceα0t

td/2+1/3
(29)

Proof. Point (i) is well-known and can be checked recursively. Using that An is a stochastic matrix,
we see that

∑
i∈Zd Γ(i, t) =

∑
n≥1 ϕ

⋆n(t). Hence (ii) follows from (i).

Next, we recall that A is the transition matrix of a symmetric random walk on Z
d (with bounded

jumps), so that there is a constant C such that for all n ≥ 0,
∑

i∈Zd |i|2An(0, i) ≤ Cn (its variance
at time n is of order n). Consequently,

∑

i∈Zd

|i|2Γ(i, t) ≤ C
∑

n≥1

nϕ⋆n(t) = C
∑

n≥1

n(at)n−1e−bt

(n− 1)!
= C

[∑

n≥1

(at)n−1e−bt

(n− 1)!
+

∑

n≥2

(at)n−1e−bt

(n− 2)!

]
.

This is easily computed: it gives Ceα0t[1 + at].

Point (iv) is more complicated. First, we need the Gaussian approximation of An(0, i) given by
(20). We will also need the following result, which can be found e.g. in [14, Lemma 9-(d)] (plus the
fact that for x ∈ (0, 1), (x+1) log(x+1)−x ≥ x2/4): for any λ > 0, for X a Poisson(λ)-distributed
random variable, for any x ∈ (0, 1),

Pr(|X − λ| ≥ λx) ≤ 2 exp(−λx2/4).(30)

We now turn to our problem. Observing that
∑

n≥1 ϕ
⋆n(t) = eα0t, we write

∆(i, t) =
∣∣Γ(i, t)− pat(i)e

α0t
∣∣ =

∣∣∣
∑

n≥1

ϕ⋆n(t)(An(0, i)− pat(i))
∣∣∣.
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We now assume that t is large enough so that pt/a(i) ≤ 1 for all i and we write

∆(i, t) ≤
∑

n≥1

ϕ⋆n(t)1{|(n−1)−at|>(at)2/3} +
∑

n≥1

ϕ⋆n(t)1{|(n−1)−at|≤(at)2/3}

∣∣An(0, i)− pn(i)
∣∣

+
∑

n≥1

ϕ⋆n(t)1{|(n−1)−at|≤(at)2/3}

∣∣pn(i)− pat(i)
∣∣

=∆1(i, t) + ∆2(i, t) + ∆3(i, t).

First, using point (i) and (30) (with λ = at and x = (at)−1/3), we see that (if t is large enough so
that at > 1)

∆1(i, t) ≤eα0t
∑

n≥1

e−at (at)
n−1

(n− 1)!
1{|(n−1)−at|>(at)2/3} ≤ 2eα0te−(at)1/3/4.

We next use (20) and assume that t is large enough so that |(n−1)−at| ≤ (at)2/3 implies n ≥ at/2:

∆2(i, t) ≤C
∑

n≥1

n−(d+2)/2ϕ⋆n(t)1{|(n−1)−at|≤(at)2/3} ≤ C(at)−(d+2)/2
∑

n≥1

ϕ⋆n(t) ≤ Ct−(d+2)/2eα0t.

Finally, we observe that |∂tpt(x)| ≤ Ct−d/2−1, so that, if t is sufficiently large, |(n−1)−at| ≤ (at)2/3

implies |pn(i)− pat(i)| ≤ Ct−d/2−1/3. Consequently,

∆3(i, t) ≤ Ct−d/2−1/3
∑

n≥1

ϕ⋆n(t) ≤ Ct−d/2−1/3eα0t.

We have proved that there are C and t0 such that for all t ≥ t0, all i ∈ Z
d,

∣∣Γ(i, t)− pat(i)e
α0t

∣∣ ≤ 2eα0te−(at)1/3/4 + Ct−(d+2)/2eα0t + Ct−d/2−1/3eα0t ≤ Ct−d/2−1/3eα0t,

which is (28).

It remains to deduce (29) from (28). We write

δ(t, i) =
∣∣∣
∫ t

0

Γ(i, s)ds− pat(i)e
α0t/α0

∣∣∣

≤
∫ t−t1/2

0

Γ(i, s)ds+

∫ t

t−t1/2

∣∣Γ(i, s)− pas(i)e
α0s

∣∣ds

+

∫ t

t−t1/2

∣∣pas(i)eα0s − pat(i)e
α0s

∣∣ds+ pat(i)
∣∣
∫ t

t−t1/2
eα0sds− eα0t/α0

∣∣

=δ1(t, i) + δ2(t, i) + δ3(t, i) + δ4(t, i).

First, point (ii) implies that

δ1(t, i) ≤
∫ t−t1/2

0

eα0sds ≤ Ceα0(t−t1/2).

Next, (28) tells us, if t is sufficiently large (so that t− t1/2 ≥ t0 and t− t1/2 ≥ t/2), that

δ2(t, i) ≤ C

∫ t

t−t1/2
s−d/2−1/3eα0sds ≤ Ct−d/2−1/3eα0t.

Recalling that |∂tpt(x)| ≤ Ct−d/2−1, we get (still for t large enough so that t− t1/2 ≥ t/2)

δ3(t, i) ≤ C

∫ t

t−t1/2
s−d/2−1(t− s)eα0sds ≤ Ct−d/2−1/2eα0t.
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Finally, if t is suffiently large, we can bound pat(i) by 1 (for all i), whence

δ4(t, i) ≤ α−1
0 |eα0t − eα0(t−t1/2) − eα0t| ≤ Ceα0(t−t1/2).

All in all, we have proved that for all t large enough, all i ∈ Z
d,

∣∣∣
∫ t

0

Γ(i, s)ds− pat(i)e
α0t/α0

∣∣∣ ≤ Ceα0(t−t1/2) + Ct−d/2−1/3eα0t + Ct−d/2−1/2eα0t ≤ Ct−d/2−1/3eα0t

as desired. �

We finally can give the

Proof of Theorem 20. We divide the proof in several steps.

Step 1. As usual, we write

Zi
t =

∫ t

0

∫ ∞

0

1{
z≤(2d+1)−1

∑
j→i

[ ∫ s−
0

ϕ(s−u)dZj
u+ϕ(s)1{j=0}

]}πi(ds dz),

we set mi
t = E[Zi

t ] and mt = (mi
t)i∈Zd . A simple computation, using Lemma 22, shows that

mi
t =

∫ t

0

(2d+ 1)−1
∑

j→i

ϕ(t− s)mj
sds+ 1{0→i}(2d+ 1)−1

∫ t

0

ϕ(s)ds.

Using the vector formalism and introducing δ = (δi)i∈Zd defined by δi = 1{i=0}, this rewrites

mt = (Aδ)
∫ t

0
ϕ(s)ds +

∫ t

0
ϕ(t − s)(Ams)ds. Differentiating this formula (see Lemma 27 for the

justification of a very similar differentiation), we find m′
t = (Aδ)ϕ(t) +

∫ t

0
ϕ(t − s)Am′

sds, which

can be solved as (see Lemma 27 again) m′
t =

∑
n≥1 ϕ

⋆n(t)Anδ. Hence for all i ∈ Z
d,

(mi
t)

′ =
∑

n≥1

An(0, i)ϕ⋆n(t).(31)

We introduce the martingales, for i ∈ Z
d, (we use a tilde for compensation),

M i
t =

∫ t

0

∫ ∞

0

1{
z≤(2d+1)−1

∑
j→i

[ ∫ s−
0

ϕ(s−u)dZj
u+ϕ(s)1{j=0}

]}π̃i(ds dz)

and observe as usual that [M i,M j ]t = 0 when i 6= j (because these martingales a.s. never jump
at the same time) while [M i,M i]t = Zi

t . We will use several times that for any family (αi)i∈Zd ,

E
[( ∑

i∈Zd

αiM
i
t

)2]
=

∑

i∈Zd

α2
im

i
t.(32)

We finally introduce U i
t = Zi

t −mi
t, the vectors U t = (U i

t )i∈Zd and M t = (M i
t )i∈Zd and observe,

exactly as in the proof of Theorem 14-Step 1, that U t = M t + A
∫ t

0
ϕ(t − s)U sds, whence U t =(

M t +
∑

n≥1 A
n
∫ t

0
ϕ⋆n(t− s)M sds

)
and thus, for all i ∈ Z

d,

Zi
t = mi

t +M i
t +

∑

j∈Zd

∑

n≥1

∫ t

0

ϕ⋆n(t− s)An(i, j)M j
sds = mi

t +M i
t +W i

t ,(33)

the last equality defining W i
t .
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Step 2. Here we treat the terms mi
t, M i

t , and collect a few more information. Recall that

Γ(t, i) =
∑

n≥1 A
n(0, i)ϕ⋆n(t). Starting from (31), we see that mi

t =
∫ t

0
Γ(i, s)ds and deduce from

Lemma 21-(iv) that there are C and t0 ≥ 0 such that for all i ∈ Z
d, all t ≥ t0,

∣∣mi
t −

1

α0
pat(i)e

α0t
∣∣ ≤ Ceα0t

td/2+1/3
.

Next, Lemma 21-(ii)-(iii) imply that
∑

i∈Zd mi
t =

∫ t

0
eα0sds ≤ Ceα0t and

∑
i∈Zd |i|2mi

t ≤ C
∫ t

0
(1 +

s)eα0sds ≤ C(1 + t)eα0t. Finally, we observe that

E[|M i
t |] ≤ (mi

t)
1/2 ≤

( ∑

j∈Zd

mj
t

)1/2

≤ Ceα0t/2.

Step 3. We introduce

X =
∑

j∈Zd

∫ ∞

0

e−α0sM j
sds

and show that there are C > 0 and t0 > 0 such that for all i ∈ Z
d, all t ≥ t0,

E[|W i
t − pat(i)e

α0tX|] ≤ Ceα0t

td/2+1/3
.

We observe that since An(i, j) = An(0, i − j), it holds that W i
t =

∑
j∈Zd

∫ t

0
Γ(i − j, t − s)M j

sds.
We also introduce the auxiliary processes

W
i

t =
∑

j∈Zd

∫ t1/2

0

Γ(i− j, t− s)M j
sds,

W̃ i
t =

∑

j∈Zd

∫ t1/2

0

pa(t−s)(i− j)eα0(t−s)M j
sds,

Ŵ i
t =

∑

j∈Zd

∫ t1/2

0

pat(i)e
α0(t−s)M j

sds.

Step 3.1. Here we show that E[|W i
t −W

i

t|] ≤ C exp(α0t − (α0/2)t
1/2). By definition of Γ and

using (32),

E[|W i
t −W

i

t|] ≤
∫ t

t1/2

∑

n≥1

ϕ⋆n(t− s)E
[∣∣ ∑

j∈Zd

An(i, j)M j
s

∣∣]ds

≤
∫ t

t1/2

∑

n≥1

ϕ⋆n(t− s)
( ∑

j∈Zd

(An(i, j))2mj
s

)1/2
ds.

Using that An(i, j) is bounded by 1 and that
∑

i∈Zd mi
t ≤ Ceα0t (see Step 2), we see that∑

j∈Zd(An(i, j))2mj
s ≤ Ceα0s/2. Next, the explicit expression of ϕ⋆n (see Lemma 21-(i)) gives∑

n≥1 ϕ
⋆n(t− s) = eα0(t−s). We finally find

E[|W i
t −W

i

t|] ≤ C

∫ t

t1/2
eα0(t−s)eα0s/2ds ≤ Ceα0te−α0t

1/2/2.
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Step 3.2. We next check that E[|W i

t − W̃ i
t |] ≤ Ct−d/2−1/3eα0t. Using (32), we get

E[|W i

t − W̃ i
t |] ≤

∫ t1/2

0

[ ∑

j∈Zd

mj
s

(
Γ(i− j, t− s)− pa(t−s)(i− j)eα0(t−s)

)2]1/2
ds.

Using Lemma 21-(iv), |Γ(i − j, t − s) − pa(t−s)(i − j)eα0(t−s)| ≤ C(t − s)−d/2−1/3eα0(t−s) if t − s

is large enough (which is the case for all s ∈ [0, t1/2] if t is large enough). Since furthermore∑
i∈Zd mi

t ≤ Ceα0t (see Step 2), we find

E[|W i

t − W̃ i
t |] ≤Ceα0t

∫ t1/2

0

(t− s)−d/2−1/3e−α0s/2ds.

For t large enough, we clearly have (t− s)−d/2−1/3 ≤ 2t−d/2−1/3 for all s ∈ [0, t1/2], whence

E[|W i

t − W̃ i
t |] ≤Ct−d/2−1/3eα0t

∫ t1/2

0

e−α0s/2ds ≤ Ct−d/2−1/3eα0t.

Step 3.3. We now prove that E[|W̃ i
t − Ŵ i

t |] ≤ Ct−d/2−1/2eα0t. As usual, we start with

E[|W̃ i
t − Ŵ i

t |] ≤
∫ t1/2

0

( ∑

j∈Zd

mj
s

(
pa(t−s)(i− j)− pat(i)

)2)1/2

eα0(t−s)ds.

But an easy computation (using that |∂tpt(x)| ≤ Ct−d/2−1 and |∇xpt(x)| ≤ Ct−d/2−1/2) shows
that for all t > 0, all h ∈ (0, t/2), all x, y ∈ R

d, |pt−h(x− y)− pt(x)| ≤ Cht−d/2−1 + |y|t−d/2−1/2.
Hence if t is large enough so that t− t1/2 ≥ t/2, we can write

E[|W̃ i
t − Ŵ i

t |] ≤C

∫ t1/2

0

( ∑

j∈Zd

mj
s

(
st−d/2−1 + |j|t−d/2−1/2

)2)1/2

eα0(t−s)ds

≤Ct−d/2−1/2

∫ t1/2

0

( ∑

j∈Zd

mj
s

)1/2

eα0(t−s)ds

+ Ct−d/2−1/2

∫ t1/2

0

( ∑

j∈Zd

|j|2mj
s

)1/2

eα0(t−s)ds.

Finally, we know from Step 2 that
∑

j∈Zd mj
s +

∑
j∈Zd |j|2mj

s ≤ C(1 + s)eα0s, whence

E[|W̃ i
t − Ŵ i

t |] ≤Ct−d/2−1/2

∫ t1/2

0

(1 + s)1/2eα0s/2eα0(t−s)ds ≤ Ct−d/2−1/2eα0t.

Step 3.4 We finally verify that E[|Ŵ i
t − pat(i)e

α0tX|] ≤ Ceα0t−(α0/2)t
1/2

. We note that

Ŵ i
t − pat(i)e

α0tX = pat(i)e
α0t

∑

j∈Zd

∫ t

t1/2
e−α0sM j

sds.

For t large enough (not depending on i), we can bound pat(i) by 1. Hence, we infer from (32) and
the fact that

∑
j∈Zd mj

s ≤ Ceα0s that

E[|Ŵ i
t − pat(i)e

α0tX|] ≤Ceα0t

∫ t

t1/2
e−α0s

( ∑

j∈Zd

mj
s

)1/2
ds ≤ Ceα0t

∫ ∞

t1/2
e−α0s/2ds,

from which the conclusion follows.
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Step 3.5. Gathering Steps 3.1 to 3.4, we conclude that indeed, there are C > 0 and t0 > 0 such
that for all t ≥ t0, all i ∈ Z

d, E[|W i
t − pat(i)e

α0tX|] ≤ Ceα0tt−d/2−1/3.

Step 4. Define the random variable H = α−1
0 + X. Recall (33) and write Zi

t − pat(i)e
α0tH =

[mi
t − α−1

0 pat(i)e
α0t] +M i

t + [W i
t − pat(i)e

α0tX]. Gathering Steps 2 and 3, we see that there are
C > 0 and t0 > 0 such that for all t ≥ t0, all i ∈ Z

d,

E[|Zi
t − pat(i)e

α0tH|] ≤ Ceα0t

td/2+1/3
+ Ceα0t/2 ≤ Ceα0t

td/2+1/3
.

To prove that H is nonnegative, it suffices to use the above inequality with i = 0, divided
by pat(0)e

α0t. Recalling that pat(0) = ct−d/2 for some constant c, we deduce that E[|H −
Z0
t e

−α0t/pat(0)|] ≤ Ct−1/3. Consequently, H is the limit (in L1) of Z0
t e

−α0t/pat(0), and is thus
nonnegative. This ends the proof of (i).

Step 5. We now check (ii), which follows from (i): for x ∈ R
d, and t ≥ t0,

E
[∣∣td/2e−α0tZ

⌊xt1/2⌋
t −Hpa(x)

∣∣] ≤td/2e−α0tE
[∣∣Z⌊xt1/2⌋

t −Heα0tpat(⌊xt1/2⌋)
∣∣]

+ E[H]
∣∣td/2pat(⌊xt1/2⌋)− pa(x)

∣∣.
The first term on the RHS is bounded, by (i), by Ct−1/3, which tends to 0 as t → ∞. The second
term also tends to 0, simply because

td/2pat(⌊xt1/2⌋) = pa
(
t−1/2⌊xt1/2⌋

)
→ pa(x) as t → ∞.

Step 6. It remains to prove (iii) and (iv). The fact that H = limt→∞(4πt/(2d+ 1))d/2e−α0tZ0
t

in L1 follows from point (i) with i = 0. Next note that H = limt→∞ e−α0tZt in L1, where
Zt =

∑
i∈Zd Zi

t . Indeed, recalling (33)

Zt =
∑

i∈Zd

mi
t +

∑

i∈Zd

M i
t +

∑

i∈Zd

W i
t .

We have
∑

i∈Zd mi
t =

∫ t

0
eα0sds = α−1

0 [eα0t − 1] by Step 2, (32) implies that E[(
∑

i∈Zd M i
t )

2] =∑
i∈Zd mi

t and finally
∑

i∈Zd W i
t = eα0t

∫ t

0
e−α0s

∑
i∈Zd M i

sds, therefore e
−α0tZt converges to α−1

0 +

0 +X = H as t → ∞ in L1. We also note that E[H] = α−1
0 > 0 since E[X] = 0.

Next, we recall that by Theorem 19-(i), (Zt)t≥0 is a scalar impulsion Hawkes process: its

compensator is given by At =
∫ t

0
[ϕ(s) +

∫ s−

0
ϕ(s− u)dZu]ds. We claim that (Zt)t≥0 has the same

law as (Z̃t)t≥0 built as follows:

• consider a Poisson process (Nt)t≥0 with intensity ϕ(t)dt, observe that N∞ is Poisson(Λ)-
distributed, denote by 0 < T1 < · · · < TN∞ its times of jump (we adopt the convention that
Ti = ∞ for i > N∞),

• consider an i.i.d. family (Z̃k
t )t≥0 of scalar impulsion Hawkes process with same law as (Zt)t≥0,

• put Z̃t = Nt +
∑N∞

i=1 Z̃
k
t−Tk

1{t≥Tk}.

Indeed, (Z̃t)t≥0 is a counting process with compensator
∫ t

0

[ϕ(s)+
∑

i≥1

1{s>Tk}(ϕ(s−Tk)+

∫ (s−Tk)−

0

ϕ(s−Tk−u)dZ̃k
u)]ds =

∫ t

0

[ϕ(s)+

∫ s−

0

ϕ(s−u)dZ̃u]ds.

We define H̃ = limt→∞ e−α0tZ̃t and, for each k ≥ 1, H̃k = limt→∞ e−α0tZ̃k
t . We obviously have

H̃ =
∑N∞

k=1 e
−α0TkH̃k. Denoting by p = Pr(H = 0) (which also equals Pr(H̃ = 0) and Pr(H̃k = 0)
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for all k ≥ 1), we deduce by independence of the family (H̃k)k≥1, that p =
∑

n≥1 Pr(N∞ = n)pn.

Hence p =
∑

n≥1 e
−ΛΛnpn/n! = e−Λ(1−p). Since E[H] > 0, we cannot have p = 1. Hence p is the

unique solution in (0, 1) to p = e−Λ(1−p). Recalling that Pr(Ωe) = exp(−γΛΛ) where γΛ ∈ (0, 1) is
characterised by γΛΛ + log(1− γΛ) = 0 by Theorem 19-2-(ii), we easily check that p = Pr(Ωe).

By definition of H, we have Ωe ⊂ {H = 0}. Since Pr(Ωe) = Pr(H = 0) we conclude that a.s.,
H > 0 on Ωc

e. �

5. Appendix: convolution equations

We collect here some technical results about convolution equations. We start with an identity
of constant use in the paper.

Lemma 22. Let φ : [0,∞) 7→ R be locally integrable and let α : [0,∞) 7→ R have finite variations
on compact intervals and satisfy α(0) = 0. Then for all t ≥ 0,

∫ t

0

∫ s−

0

φ(s− u)dα(u)ds =

∫ t

0

∫ s

0

φ(s− u)dα(u)ds =

∫ t

0

φ(t− s)α(s)ds.

Proof. First, we clearly have that
∫ s−

0
φ(s − u)dα(u) =

∫ s

0
φ(s − u)dα(u) for almost every s ≥ 0,

whence
∫ t

0

∫ s−

0
φ(s− u)dα(u)ds =

∫ t

0

∫ s

0
φ(s− u)dα(u)ds. Using twice the Fubini theorem,

∫ t

0

(∫ s

0

φ(s− u)dα(u)
)
ds =

∫ t

0

(∫ t

u

φ(s− u)ds
)
dα(u)

=

∫ t

0

(∫ t−u

0

φ(v)dv
)
dα(u)

=

∫ t

0

(∫ t−v

0

dα(u)
)
φ(v)dv

=

∫ t

0

α(t− v)φ(v)dv,

from which the conclusion follows, using the substitution s = t− v. �

We carry on with a generalized Grönwall-Picard lemma, which is more or less standard.

Lemma 23. Let φ : [0,∞) 7→ [0,∞) be locally integrable and g : [0,∞) 7→ [0,∞) be locally bounded.

(i) Consider a locally bounded nonnegative function u such that for all t ≥ 0, ut ≤ gt +
∫ t

0
φ(t−

s)usds for all t ≥ 0. Then sup[0,T ] ut ≤ CT sup[0,T ] gt, for some constant CT depending only on
T > 0 and φ.

(ii) Consider a sequence of locally bounded nonnegative functions un such that for all t ≥ 0, all

n ≥ 0, un+1
t ≤

∫ t

0
φ(t − s)un

s ds. Then sup[0,T ]

∑
n≥0 u

n
t ≤ CT , for some constant CT depending

only on T > 0, u0 and φ.

(iii) Consider a sequence of locally bounded nonnegative functions un such that for all t ≥ 0,

all n ≥ 0, un+1
t ≤ gt +

∫ t

0
φ(t − s)un

s ds. Then for all T ≥ 0, sup[0,T ] supn≥0 u
n
t ≤ CT , for some

constant CT depending only on T > 0, u0, g and φ.
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Proof. We start with point (i). Fix T > 0 and consider A > 0 such that
∫ T

0
φ(s)1{φ(s)≥A}ds ≤ 1/2.

Then for all t ∈ [0, T ],

ut ≤ gt +

∫ t

0

1{φ(t−s)≤A}φ(t− s)usds+

∫ t

0

1{φ(t−s)>A}φ(t− s)usds ≤ gt +A

∫ t

0

usds+ sup
[0,t]

us/2.

from which we deduce that sup[0,t] us ≤ 2 sup[0,t] gs + 2A
∫ t

0
usds. We then can apply the standard

Grönwall Lemma to get sup[0,T ] us ≤ 2(sup[0,T ] gs)e
2AT .

To check point (iii), put vnt = supk=0,...,n u
k
t . One easily checks that for all n ≥ 0, vnt ≤

u0
t + gt +

∫ t

0
φ(t − s)vns ds. By point (i), sup[0,T ] v

n
t ≤ CT sup[0,T ](gt + u0

t ). Letting n increase to
infinity concludes the proof.

Point (ii) follows from point (iii), since vnt =
∑n

k=0 u
k
t satisfies vn+1

t ≤ u0
t +

∫ t

0
φ(t− s)vns ds. �

We next prove an easy well-posedness result for a general convolution equation.

Lemma 24. Let h : R 7→ [0,∞) be Lipschitz-continuous and ϕ : [0,∞) 7→ R be locally integrable.
The equation

(34) mt =

∫ t

0

h
( ∫ s

0

ϕ(s− u)dmu

)
ds

has a unique non-decreasing locally bounded solution. Furthermore, m is of class C1 on [0,∞).

If h(x) = µ+ x for some µ > 0 and if ϕ is nonnegative, Equation (34) rewrites as

(35) mt = µt+

∫ t

0

ϕ(t− s)msds.

Proof. Let m and m̃ be two such solutions. Since h is Lipschitz-continuous,

vt =

∫ t

0

∣∣d(mu − m̃u)
∣∣ ≤ C

∫ t

0

ds

∫ s

0

|ϕ(s− u)|
∣∣d(mu − m̃u)

∣∣ = C

∫ t

0

|ϕ(t− u)|vudu.

The last inequality follows from Lemma 22. Lemma 23-(i) allows us to conclude that vt = 0 for all
t ≥ 0 (because vt ≤ mt + m̃t is locally bounded), whence mt = m̃t for all t ≥ 0. For the existence,

we consider the sequence of non-decreasing functions m0
t = 0 and mn+1

t =
∫ t

0
h
( ∫ s

0
ϕ(s−u)dmn

u

)
ds

for every n ≥ 0. We easily check that mn+1
t ≤ h(0)t+ |h|lip

∫ t

0
|ϕ(t− u)|mn

udu, so that supn≥0 m
n
t

is locally bounded by Lemma 23-(iii). Setting, for n ≥ 0, δnt =
∫ t

0
|d(mn+1

u −mn
u)|, one readily gets

δn+1
t ≤ |h|lip

∫ t

0
|ϕ(s − u)|δnudu for all n ≥ 0. Lemma 23-(ii) thus implies that

∑
n≥0 δ

n
t < ∞. All

this classically implies the existence of a locally bounded non-decreasing m such that for all t ≥ 0,

limn

∫ t

0
|d(mu −mn

u)| = 0. Checking that m solves (34) is routine.

To prove that m is C1, we use the previous Picard Iteration. One easily sees, by induction, that

mn is C1 for all n ≥ 0 and that (mn+1
t )′ = h(

∫ t

0
ϕ(t−u)(mn

u)
′du) (indeed, t 7→

∫ t

0
ϕ(t−u)(mn

u)
′du =∫ t

0
ϕ(u)(mn

t−u)
′du is continuous because ϕ is locally integrable and because (mn

t )
′ is continuous by

the inductive assumption). Next, a direct computation shows that |(mn+1
t )′ − (mn

t )
′| ≤ C

∫ t

0
|ϕ(t−

u)||(mn
u)

′ − (mn−1
u )′|du. Using Lemma 23-(ii), we deduce that the sequence (mn)′ is Cauchy (for

the uniform convergence on compact time intervals). The conclusion classically follows.

The equivalence between (34) and (35) in the linear case directly follows from Lemma 22. �
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We now investigate the large-time behaviour of mt in the linear case. We start with the sub-
critical case.

Lemma 25. Consider µ > 0 and a function ϕ : (0,∞) 7→ [0,∞) such that Λ =
∫∞

0
ϕ(s)ds < 1. By

Lemma 24, (35) has a unique non-decreasing locally bounded solution (mt)t≥0, which is furthermore
of class C1. It holds that m′

t ∼ a0 and mt ∼ a0t as t → ∞, where a0 = µ/(1− Λ) > 0.

Proof. We rather use (34), which writes mt = µt +
∫ t

0

∫ s

0
ϕ(s − u)m′

ududs. Differentiating this

expression, we find m′
t = µ +

∫ t

0
ϕ(t − s)m′

sds. We first introduce ut = sup[0,t] m
′
s. We have

ut ≤ µ + Λut, whence ut ≤ µ/(1 − Λ) for all t ≥ 0 and thus lim supt→∞ m′
t ≤ µ/(1 − Λ). We

next introduce vt = infs≥t m
′
s, which is non-decreasing and thus has a limit ℓ ∈ (0,∞]. We have

vt ≥ µ+ vt/2
∫ t/2

0
ϕ(s)ds → µ+Λℓ as t → ∞. Consequently ℓ ≥ µ+Λℓ, whence ℓ ≥ µ/(1−Λ) and

finally lim inft→∞ m′
t ≥ µ/(1−Λ). All this proves that m′

t ∼ a0 and this implies that mt ∼ a0t. �

We now turn to the supercritical case.

Lemma 26. Consider µ > 0 and a function ϕ : [0,∞) 7→ [0,∞) such that Λ =
∫∞

0
ϕ(s)ds ∈

(1,∞]. By Lemma 24, (35) has a unique non-decreasing locally bounded solution (mt)t≥0, which

is of class C1. Assume furthermore that t 7→
∫ t

0
|dϕ(s)| has at most polynomial growth. Let

Γ(t) =
∑

n≥1 ϕ
⋆n(t) and Υ(t) =

∫ t

0
Γ(s)ds.

(a) There is a unique α0 > 0 such that Lϕ(α0) = 1. The function Γ is locally bounded. Setting

a0 = µα−2
0 (

∫∞

0
tϕ(t)e−α0tdt)−1, we have, as t → ∞,

Γ(t) ∼ (a0α
2
0/µ)e

α0t, Υ(t) ∼ (a0α0/µ)e
α0t, mt ∼ a0e

α0t, m′
t ∼ a0α0e

α0t.

(b) There are some constants 0 < c < C such that for all t ≥ 0, ceα0t ≤ Γ(t) + 1 ≤ Ceα0t,
ceα0t ≤ Υ(t) + 1 ≤ Ceα0t, ceα0t ≤ mt + 1 ≤ Ceα0t and ceα0t ≤ m′

t + 1 ≤ Ceα0t.

(c) We also have

lim
t→∞

∫ t

0

(Υ(t− s)

mt
− α0

µ
e−α0s

)2

m′
sds = 0.

(d) Consider a real sequence (ηn)n≥1 such that limn→∞ ηn = 0. Then we have the property that

limt→∞ e−α0t
∑

n≥1 ηn
∫ t

0
ϕ⋆n(t− s)eα0s/2ds = 0.

(e) For any pair of locally bounded functions u, h : (0,∞) 7→ R such that u = h + u ⋆ ϕ, there
holds u = h+ h ⋆ Γ.

Proof. We easily deduce from our assumptions on ϕ that there is some constants C > 0, p > 0
such that for all t ≥ 0, ϕ(t) ≤ C(1 + t)p (in particular, ϕ is locally bounded). Hence its Laplace
transform is clearly well-defined on (0,∞), of class C∞, and limα→∞ Lϕ(α) = 0. Furthermore,
Lϕ(0) =

∫∞

0
ϕ(t)dt ∈ (1,∞]. Hence, there indeed exists a unique α0 > 0 such that Lϕ(α0) = 1.

We now divide the proof into several steps.

Step 1. We first prove that Γ is locally bounded. To this end, we introduce Γn =
∑n

k=1 ϕ
⋆k(t)

and observe that Γn+1 = ϕ + Γn ⋆ ϕ. Since ϕ is locally bounded, Lemma 23-(iii) allows us to
conclude that supn Γn is locally bounded, whence the result.

Step 2. Here we prove (e). Since h is locally bounded and since ϕ is locally integrable, we easily
deduce from Lemma 23-(i) that the equation v = h + v ⋆ ϕ (with unknown v) has at most one
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locally bounded solution. Since both u and h+ h ⋆Γ are locally bounded solutions, the conclusion
follows.

Step 3. The aim of this step is to verify that Γ(t) ∼ (a0α
2
0/µ)e

α0t as t → ∞. Observe that Γ
solves Γ = ϕ+Γ ⋆ ϕ and introduce u(t) = Γ(t)e−α0t and f(t) = ϕ(t)e−α0t. One easily checks that
u = f + u ⋆ f . We now apply Theorem 4 of Feller [13]. We have

∫∞

0
f(t)dt = 1 by definition of

α0. We set b1 =
∫∞

0
tf(t)dt =

∫∞

0
tϕ(t)e−α0tdt and b2 =

∫∞

0
t2f(t)dt =

∫∞

0
t2ϕ(t)e−α0tdt, which

clearly both converge, since ϕ(t) ≤ C(1 + t)p. Finally, it is not difficult to check that f(t), tf(t)

and t2f(t) have a bounded total variation on [0,∞) since we have assumed that t 7→
∫ t

0
|dϕ(s)|

has at most polynomial growth. Thus Feller [13, Theorem 4] tells us that u(t) → 1/b1 as t → ∞,
which gives Γ(t) ∼ eα0t/b1. This ends the proof, since 1/b1 = a0α

2
0/µ by definition of a0.

Step 4. We now conclude the proof of (a) and (b). Recall that mt = µt+
∫ t

0

∫ s

0
ϕ(s−u)m′

ududs,
so that m′ = µ + ϕ ⋆ m′. Applying (e), we deduce that m′ = µ + µ ⋆ Γ = µ(1 + Υ). By Step 3,
we know that Γ(t) ∼ (a0α

2
0/µ)e

α0t as t → ∞. This obviously implies that Υ(t) ∼ (a0α0/µ)e
α0t,

whence m′
t ∼ a0α0e

α0t and finally mt =
∫ t

0
m′

sds ∼ a0e
α0t. Finally, (b) directly follows from (a)

and the facts that Γ, Υ, m and m′ are nonnegative and locally bounded.

Step 5. Point (d) is not very difficult: using that ϕ(t) ≤ C(1 + t)p, we see that ϕ⋆n(t) ≤
Cn(1 + t)pn for some constants Cn > 0 and pn > 0. We next introduce εk = supn≥k |ηn|, which
decreases to 0 as k → ∞, and write, for any k ≥ 1,

lim sup
t→∞

e−α0t
∑

n≥1

|ηn|
∫ t

0

ϕ⋆n(t− s)eα0s/2ds ≤ lim sup
t→∞

e−α0t
k∑

n=1

|ηn|
∫ t

0

Cn(t− s)pneα0s/2ds

+ εk lim sup
t→∞

e−α0t
∞∑

n=k+1

∫ t

0

ϕ⋆n(t− s)eα0s/2ds.

The first term on the RHS is of course 0 (for any fixed k). We can bound the second one, using
(b), by

εk lim sup
t→∞

e−α0t

∫ t

0

Γ(t− s)eα0s/2ds ≤ Cεk lim sup
t→∞

e−α0t

∫ t

0

eα0(t−s)eα0s/2ds ≤ Cεk.

Letting k tend to infinity concludes the proof.

Step 6. It only remains to check point (c). We use the Lebesgue dominated convergence theorem.
Define ht

s = (Υ(t − s)/mt − α0e
−α0s/µ)2m′

s1{s≤t}. We have to prove that limt→∞

∫∞

0
ht
sds = 0.

First, it is obvious from (a) that for s > 0 fixed, limt→∞ ht
s = 0. Next, we use (b) to write (for t

large enough so that mt ≥ ceα0t) ht
s ≤ C(e−α0s)2eα0s ≤ Ce−α0s, which does not depend on t and

is integrable on (0,∞). �

We next consider briefly a vector convolution equation.

Lemma 27. Consider a family µ = (µi)i∈Zd of real numbers such that 0 ≤ µi ≤ C for all
i ∈ Z

d, the stochastic matrix (A(i, j))i,j∈Zd defined by (17), and a locally integrable function ϕ :

(0,∞) 7→ [0,∞). The equation mt = µt +
∫ t

0
ϕ(t − s)Amsds with unknown m = (mi

t)t≥0,i∈Zd

has a unique solution such that for all t ≥ 0,
∑

i∈Zd 2−|i| sup[0,t] m
i
s < ∞. Furthermore, mi is

of class C1 on [0,∞) for all i ∈ Z
d, and it holds that m′

t = µ +
∫ t

0
ϕ(t − s)Am′

sds and m′
t =(

I +
∑

n≥1 A
n
∫ t

0
ϕ⋆n(s)ds

)
µ. Finally, ut = supi∈Zd sup[0,t](m

i
s)

′ is finite for all t ≥ 0 and it holds

that ut ≤ C +
∫ t

0
ϕ(t− s)usds.
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Proof. We proceed in a few steps.

Step 1. We first note that for any vector x = (xi)i∈Zd , it holds that
∑

i∈Zd 2−|i||(Ax)i| ≤
2
∑

i∈Zd 2−|i||xi|. This easily follows from the explicit form of A.

Step 2. We next check uniqueness. Consider two solutions m and m̃ satisfying the required

condition and put ht =
∑

i∈Zd 2−|i| sup[0,t] |mi
t−m̃i

t|. We have ht ≤
∑

i∈Zd 2−|i|
∫ t

0
ϕ(t−s)|(A(ms−

m̃s)i|ds. Using Step 1, we deduce that ht ≤ 2
∫ t

0
ϕ(t− s)hsds and thus ht = 0 by Lemma 23-(i).

Step 3. We define m′
t =

(
I +

∑
n≥1 A

n
∫ t

0
ϕ⋆n(s)ds

)
µ. Using that A is stochastic and that µ

is bounded (by C), we easily deduce that for all i ∈ Z
d, (mi

t)
′ ≤ C(1 +

∑
n≥1

∫ t

0
ϕ⋆n(s)ds). This

function is locally bounded because ϕ is locally integrable: use that Υk(t) =
∑k

n=1

∫ t

0
ϕ⋆n(s)ds

satisfies Υk(t) ≤
∫ t

0
ϕ(s)ds+

∫ t

0
ϕ(t− s)Υk(s)ds and use Lemma 23-(iii), which provides a uniform

(in k) bound. Consequently, ut = supi∈Zd sup[0,t](m
i
s)

′ is finite for all t ≥ 0. Similar arguments

show that (mi
t)

′ is continuous on [0,∞), because |(mi
t+h)

′ − (mi
t)| ≤ C

∑
n≥1

∫ t+h

t
ϕ⋆n(s)ds.

Step 4. A straightforward consequence of the definition of m′
t is that it solves m′

t = µ +∫ t

0
ϕ(t− s)Am′

sds. Using that A is stochastic and that µ is bounded, we immediately deduce that

ut ≤ C +
∫ t

0
ϕ(t − s)usds. We finally define, for each i ∈ Z

d, mi
t =

∫ t

0
(mi

s)
′ds. Integrating the

equation satisfied by m′ and using Lemma 22, we find that m = (mi
t)i∈Zd,t≥0 is indeed a solution

to mt = µt+
∫ t

0
ϕ(t− s)Amsds. It only remains to check that

∑
i∈Zd 2−|i| sup[0,t] m

i
t < ∞ for all

t ≥ 0, but this obviously follows from the facts that ut is locally bounded and that m0 = 0. �

References

[1] Y. Ait-Sahalia, J. Cacho-Diaz, R.J.A.Laeven, Modeling financial contagion using mutually exciting jump pro-

cesses, working paper, 2013.
[2] E. Bacry, S. Delattre, M. Hoffmann, J.F. Muzy, Modelling microstructure noise with mutually exciting point

processes, Quantitative Finance 13 (2013), 65–77.
[3] E. Bacry, S. Delattre, M. Hoffmann, J.F. Muzy, Some limit theorems for Hawkes processes and applications to

financial statistics, Stoch. Processes Appl. 123 (2013), 2475–2499.
[4] E. Bacry and J.F. Muzy, Hawkes model for price and trades high-frequency dynamics, arXiv:1301.1135.
[5] E. Bacry and J.F. Muzy, Second order statistics characterization of Hawkes processes and non-parametric

estimation, arXiv:1401.0903.
[6] L. Bauwens, N. Hautsch, Modelling financial high frequency data using point processes, ser. In T. Mikosch,

J-P. Kreiss, R. A. Davis, and T. G. Andersen, editors, Handbook of Financial Time Series. Springer Berlin
Heidelberg, 2009.

[7] C. Blundell, K.A. Heller, J.F. Beck, Modelling reciprocating relationships with Hawkes processes, Neural Infor-
mation Processing Systems (NIPS) 2012.

[8] C. Bordenave, G.L. Torrisi, Large deviations of Poisson cluster processes, Stoch. Models 23 (2007), 593–625.
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[32] L. Massoulié, Stability results for a general class of interacting point processes dynamics, and applications,

Stochastic Process. Appl. 75 (1998), 1–30.
[33] S. Oakes, The Markovian Self-Exciting Process, J. Appl. Probab. 12 (1975), 69–77.
[34] Y. Ogata, The asymptotic behaviour of maximum likelihood estimators for stationary point processes, Ann.

Instit. Math. Statist. 30 (1978), 243–261.
[35] Y. Ogata, On Lewis simulation method for point processes, IEEE Transactions on Information Theory 27

(1981), 23–30.
[36] Y. Ogata, Seismicity analysis through point-process modeling: A review, Pure and Applied Geophysics 155

(1999), 471–507.
[37] M. Okatan, M.A. Wilson, E.N. Brown, analyzing functional connectivity using a network likelihood model of

ensemble neural spiking activity, Neural Computation 17 (2005), 1927-1961.
[38] J.W. Pillow, J. Shlens, L. Paninski, A. Scher, A.M. Litke, E.J. Chichilnisky, E.P. Simoncelli, Spatio-temporal

correlations and visual signalling in a complete neuronal population, Nature 454 (2008), 995–999.
[39] P. Reynaud-Bouret and S. Schbath, Adaptive estimation for Hawkes processes: application to genome analysis,

Ann. Statist. 38 (2010), 2781–2822.
[40] P. Reynaud-Bouret, V. Rivoirard, F. Grammont, C. Tuleau-Malot, Goodness-of-fit tests and nonparametric

adaptive estimation for spike train analysis, Journal of Math. Neuroscience, to appear. hal-00789127

[41] P. Reynaud-Bouret, V. Rivoirard, C. Tuleau-Malot, Inference of functional connectivity in Neurosciences via

Hawkes processes, 1st IEEE Global Conference on Signal and Information Processing, 2013.

[42] A.S. Sznitman, Topics in propagation of chaos, Ecole d’Été de Probabilités de Saint-Flour XIX-1989, Vol. 1464
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Diderot, Case courrier 7012, avenue de France, 75205 Paris Cedex 13, France.

E-mail address: sylvain.delattre@univ-paris-diderot.fr

Nicolas Fournier, Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Pierre-
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