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Abstract. High Frequency finance has recently evolved from statistical modeling and analysis of
financial data – where the initial goal was to reproduce stylized facts and develop appropriate inference
tools – toward trading optimization, where an agent seeks to execute an order (or a series of orders)
in a stochastic environment that may react to the trading algorithm of the agent (market impact,
invoentory). This context poses new scientific challenges addressed by the minisymposium OPSTAHF.

Introduction

High Frequency Finance requires increasingly sophisticated algorithms in order to manage a series of orders
from the point of view of an agent (a trader) that wishes to execute his or her orders in a limited amount of
time, under various trading objectives and market constraints, possibly at very fine temporal scales. Section
1 (contributed by M. Labadie) gives a general framework for operating such a task, by means of a stochastic
control program (using HJB equations) in order to deal with inventory constrainsts. Section 2 (contributed by
Gilles Pagès) proposes a new on-line optimisation algorithm for posting passive orders in a limit order book.
Section 3 (contributed by H. Pham) proposes a tick-by-tick price model that incoporates microstructure effects
at fine scales and that diffuses at coarse scales and for which a stochastic control algorithm for executing orders
is developed. Finally, Section 4 (contributed by C.A. Lehalle) offers a wider view for order book dynamics
reviewing some recent approaches and suggesting an opening in the direction of the recent and attractive
mean-field game theory.

1. HF trading under inventory and directional risk constraints

1.1. High-frequency trading and market-makers.

The high-frequency traders (HFTs) are trading algorithms, with the fastest response or lowest latency, that
buys and sells assets in electronic and listed markets, trying to capitalise ephemeral arbitrage opportunities.
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One special kind of HFTs are market-makers. HFTs offer liquidity to the market, i.e. they place both a buying
and a selling limit order on the Limit Order Book (LOB). Since they are offering liquidity, their buying price
(bid price) is smaller than their selling price (ask price); therefore, each time they buy and sell they earn the
spread (difference between ask and bid prices). However, market-makers suffer execution risks since they cannot
control when and how their orders will be executed.

1.2. Stochastic model and Hamilton-Jacobi-Bellman equation (HJB)

The optimisation programme for a market-maker is thus to maximise the profit by trading the spread over
and over throughout the day whilst minimising both the execution and inventory risks. We extend the model of
Avellaneda and Stoikov [3], where the only state variable is the mid-price S(t), to a general Markovian setting
with several continuous state variables Y (t) = (S(t),Σ(t), Z(t), . . . ). In our case Z(t) is the half-spread of the
market and Σ(t) the volatility of the mid-price. We use the convention of small letters for the values of the state
variables at time t, e.g. y = Y (t). The market-maker places two limit orders of one share on each side of the
LOB: a selling limit order at S(t) + δ+ and buying limit order at S(t)− δ−. The arrival of buying and selling
market orders to the LOB is assumed to be Poisson and independent; the distribution of how many levels in
the LOB are comsumed by a single market order is exponential (see Avellaneda and Stoikov [3] for details).

Assume the utility function is the PNL (profit and loss) X(t) + S(t)Q(t). Since the only variables the
market-maker can control is where to place her quotes, i.e. (δ+, δ−), then her value function is (see Fodra and
Labadie [7, 8])

u(t, y, q, x) = max
(δ+,δ−)

Et,y,q,x[X(T ) +Q(T )S(T )] , (1)

where Et,y[ · ] := E[ · |Y (t) = y]. The associated HJB equation of (1) is

(∂t + L)u+ max
δ+∈A

Ae−k[z+δ
+]
[
u(t, y, q − 1, x+ (s+ δ+))− u(t, y, q, x)

]
(2)

+ max
δ−∈A

Ae−k[z+δ
−]
[
u(t, y, q + 1, x− (s− δ−))− u(t, y, q, x)

]
= 0 ,

u(T, y, q, x) = x+ qs ,

where L is the infinitesimal operator associated to the continuous state variables Y (t). The jump part of the
equation ( i.e. the max terms) corresponds to the infinitesimal operator for the discrete state variable Q(t). In
the presence of inventory-risk aversion ε and transaction costs α, the HJB equation takes the form (see Fodra
and Labadie [7, 8])

(∂t + L)u+ max
δ+∈A

Ae−k[z+δ
+]
[
u(t, y, q − 1, x+ (s+ δ+)− α)− u(t, y, q, x)

]
(3)

+ max
δ−∈A

Ae−k[z+δ
−]
[
u(t, y, q + 1, x− (s− δ−)− α)− u(t, y, q, x)

]
= ενσ2q2 ,

u(T, y, q, x) = x+ sq − εηzq2 .

There are similar models in the literature, where the controls are formally explicit in terms of a certain ODE
system, but they can only be computed numerically. For more details see e.g. Cartea and Jaimungal [5] and
Géant et al [11].
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1.3. Exact solution without inventory penalty

When there is no inventory penalty, the exact solution of the HJB equation (2) is (see Fodra and Labadie [7,8])

u(t, y, q, x) = uhold(t, y, q, x) + umm(t, y) , (4)

uhold := x+ q(s+ ∆) , ∆ := Et,y[S(T )]− s

umm :=
2

e
Et,y

[∫ T

t

A

K
e−KZ cosh(K∆) dξ

]
,

ψ∗ := δ+∗ + δ−∗ =
2

k
(market-maker’s spread) ,

r∗ :=
p+ + p−

2
= s+ ∆ (centre of spread) .

From (4) we get the following observations. (i) The solution u has two strategies: one buy-and-hold uhold, which
is the expected value of the portfolio if the trader keeps the position until the end, and one market-maker umm,
which is the gain from trading the spread very fast and frequently (hence the integral). (ii) Since umm > 0, the
market-maker gets a better PNL by trading the spread than a buy-and-hold investor. (iii) The market-marker’s
spread ψ∗ is constant and inveresly proportional to k: when k increases, the market orders are less likely to
consume several levels of the LOB, hence the market-maker needs to offer better prices to get executed, which
means a smaller spread. (iv) The centre r∗ of the spread is not the current mid-price s but Et,y[S(T )], i.e. the
conditional expectation of the value of the mid-price. This means that the market-maker plays a price arbitrage:
she tilts her quotes, accepting an inventory risk, in order to capitalise the current mispricing in the long run.

1.4. Asymptotic solution with inventory penalty

In the case of inventory penalty ε and transaction costs α, the solution and controls are not explicit. However,
using perturbation methods on ε we can find the explicit expresion of the controls up to first-order (see Fodra
and Labadie [8]):

ψα∗ =
2

k
+ 2α+ 2επ̃ +O

(
ε2
)

(market-maker’s spread), (5)

rα∗ = s+ ∆− ε

{
Et,y

[∫ T

t

H(α)π̃dξ

]
+ 2qπ̃

}
+O

(
ε2
)

(centre of spread) ,

∆ := Et,y [S(T )]− s ,

H(α) :=
4

e
Ae−K(Z+α) sinh(K∆) ,

π̃ := ηEt,y [Z(T )] + νEt,y

[∫ T

t

Σ2 dξ

]
.

From (5) we get the following observations. (i) The spread ψα∗ has a linear correction via the unitary transaction
cost α and the unitary inventory risk π̃. (ii) The current inventory q affects the centre rα∗ of the spread,
compensating the directional bet via ∆. (iii) The transaction cost α makes the spread wider, but the total
gain for trading the spread is constant and independent of α. (iv) If α > 0 then the market-maker will be less
executed due to a wider spread. If everyone in the market have the same behaviour then the market spread
widens, i.e. the available liquidity diminishes and the trading costs for market orders increases. (v) If α < 0 (as
in the case of rebates in certain alternative stock markets) then the market-maker reduces her spread. If the
rebate is big enough then the market-maker can have a zero-width spread, i.e. she trades one leg with a market
order. With this strategy, called rebate arbitrage, all the profit comes from the rebate −α.
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2. Optimal posting price of limit orders : learning by trading

2.1. Introduction

Our aim is to propose an on-line optimization posting method of passive orders in a limit order book, without
specifying the limit order book dynamics. We consider an agent who wants to buy during a short period [0, T ] a
quantity QT of traded assets and we look for the optimal distance to the “fair” price (usually mid-, possibly best
bid) where he has to post his limit order to minimize the execution cost (the case of a sell limit order may be
obtained by symmetry). We assume the agent is a learning trader: he searches for the optimal posting distance
(the price that balances adverse selection and non execution risk) by successive trials, errors and corrections.
The derived recursive optimization procedure yields the best price adjustment to apply to an order for a given
stopping time (reassessment dates) given past market observations.

We model the execution process of orders by a Poisson process (N
(δ)
t )0≤t≤T with intensity ΛT (δ, S) depending

on the fair price (St)t≥0 and the distance of order submission δ. The execution cost results from the sum of the
price of the executed quantity and a penalty function depending on the remaining quantity to be executed at
the end of the period [0, T ]. This penalty κΦ(Q) models the excess cost induced by crossing the spread and the
resulting market impact of this execution. An optimal distance δ∗ is defined as a minimizer of the execution
cost. This leads to an optimization problem under constraints which we solve by using a recursive stochastic
procedure with projection (see [14] and [15]). We prove the a.s. convergence of the constrained algorithm
under additional assumptions on the execution cost function (and light assumptions on the fair price dynamics
(St)t∈[0,T ]). From a practical viewpoint, we give criteria on the model parameters that ensure the viability of
the algorithm and the existence of a cost minimizer) relying on a functional co-monotony principle presumably
satisfied by the fair price process.

2.2. Modeling and design of the algorithm

We focus our work on the problem of optimal trading with limit buy orders on one security. We only model
the execution flow which reaches the price where the limit order is posted on a short period T with a Poisson
process, namely

N
(δ)
T with intensity ΛT (δ, S) :=

∫ T

0

λ(St − (S0 − δ))dt, (6)

where 0 ≤ δ ≤ δmax (δmax ∈ (0, S0) is the depth of the order book), λ : [−S0,+∞) → R+ is a finite non-
increasing convex function and (St)t≥0 is a càdlàg stochastic process modeling the dynamics of the the best
opposite price of a security stock.

Over the period [0, T ], we aim to execute a portfolio of size QT ∈ N invested in the asset S. The execution

cost for a distance δ is E
[
(S0− δ)

(
QT ∧N (δ)

T

)]
. We add to this execution cost a market impact penalty function

Φ : R 7→ R+, non-decreasing and convex, with Φ(0) = 0, to model the impact effect (additional cost )induced

by the execution of the remaining quantity
(
QT −N (δ)

T

)
+

. The resulting cost function reads

C(δ) := E
[
(S0 − δ)

(
QT ∧N (δ)

T

)
+ κST Φ

((
QT −N (δ)

T

)
+

)]
, δ ∈ [0, δmax] (7)

(where κ > 0 is a free tuning parameter). Prior to solving min0≤δ≤δmax
C(δ) by implementing a stochastic

gradient descent numerically, we show that under natural assumptions on QT and κ, the function C is twice
differentiable and strictly convex on [0, δmax] with C ′(0) < 0 and that the derivatives C(k), k = 0, 1, 2, have a
representation as an expectation. Consequently,

argminδ∈[0,δmax]C(δ) = {δ∗}, δ∗ ∈ (0, δmax] and δ∗ = δmax iff C is non-increasing on [0, δmax].



ESAIM: PROCEEDINGS AND SURVEYS 223

The representation of C ′ as an expectation means that there exists a Borel functionalH : [0, δmax]×D ([0, T ],R)→
R such that C ′(δ) = E

[
H
(
δ, (St)t∈[0,T ]

)]
, δ ∈ [0, δmax] where D ([0, T ],R) → R denotes the set of càdlàg func-

tions from [0, T ] to R (see [18] for an explicit form for H). In practice to implement numerically the recursive
procedure, we have to replace the “copies” S(n) by copies S̄(n) of a time discretization S̄ = (S̄ti)0≤i≤m, typically
an Euler scheme of a Brownian diffusion process. Then, with an obvious abuse of notation for the function H,
we can write the implementable procedure as follows:

δn+1 = Proj[0,δmax]

(
δn − γn+1H

(
δn,
(
S̄
(n+1)
ti

)
0≤i≤m

))
, n ≥ 0, δ0 ∈ [0, δmax], (8)

where
(
S̄
(n)
ti

)
0≤i≤m are copies of (S̄ti

)
0≤i≤m either independent or sharing “ergodic” properties, namely some

averaging properties in the sense of [19]. In the first case, one will think about simulated data after a calibration
process and in the second case to a direct implementation using a historical high frequency database of best
opposite prices of the asset S.

Several a.s. convergence results are established in [18] under various types of assumptions on the sequences

(S̄
(n)
ti )0≤i≤m: a first setting is to assume that the (S̄(n)) are i.i.d. which correspond in the real world to the

Monte Carlo simulation of a formerly calibrated model for the dynamics of S; in a second setting we assume that
we work with a historical high frequency dataset of prices of the asset assumed to share rather light averaging
properties. In both cases we show that

δn
a.s.−→ δ∗.

Several numerical experiments on a true dataset ar reproduced and analyzed in [18].

2.3. Criteria for the convexity and monotony at the origin

In this section, we look for simple criteria involving the parameter κ, that imply the requested assumption
on the execution cost function C (or C̄) without never needing to really specify the process S. The original
form of the criteria implying that C ′(0) < 0 and C ′′ ≥ 0 cannot really be used in practice since they involve
ratios of expectations of functionals combining both the dynamics of the asset S and the execution parameters
in a highly nonlinear way. The key establishing the criteria is the functional co-monotony principle established
in [18,29] for a wide class of diffusions and their associated time discretization schemes.

Definition 2.1 (Co-monotony). A Borel functional F : D([0, T ],R) → R is non-decreasing (resp. non-
increasing) if

∀α, β ∈ D([0, T ],R), (∀t ∈ [0, T ], α(t) ≤ β(t)) =⇒ F (α) ≤ F (β) (resp. F (α) ≥ F (β)).

Two functionals F and G on D([0, T ],R) are co-monotonic if they have the same monotony. A functional F has
polynomial growth if

∃ r > 0 s.t. ∀α ∈ D([0, T ],R), |F (α)| ≤ K (1 + ‖α‖r∞) .

Definition 2.2 (Functional co-monotony principle). A càdlàg (resp. continuous) process (St)t∈[0,T ] satisfies a
functional co-monotony principle if for every pair F, G : D([0, T ],R) → R of co-monotonic PS-a.s. continuous
Borel functionals (for the sup-norm over [0, T ]) with polynomial growth such that F (S), G(S) and F (S)G(S) ∈
L1, one has

E
[
F
(

(St)t∈[0,T ]

)
G
(

(St)t∈[0,T ]

)]
≥ E

[
F
(

(St)t∈[0,T ]

)]
E
[
G
(

(St)t∈[0,T ]

)]
. (9)

Among processes satisfying such a functional monotony principle, the (fractional) Brownian motion, Brownian
one-dimensional diffusions, Liouville processes Lévy processes, etc (see [29]).

Theorem 2.3. Assume that (St)t∈[0,T ] satisfies a functional co-monotony principle. Assume that λ(x) =

Ae−kx, x ∈ R, A, k ∈ (0,+∞). Then the following monotony and convexity criteria hold true.
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(a) Monotony at the origin:

C ′(0) < 0 as soon as QT ≥ 2Tλ(−S0) and κ ≤ 1 + kS0

kE [ST ] (Φ(QT )− Φ(QT − 1))
.

(b) Convexity. Let ρQ ∈
(

0, 1− P(Nµ=QT−1)
P(Nµ≤QT−1) |µ=Tλ(−S0)

)
. If Φ 6= id, assume that Φ satisfies

∀x ∈ [1, QT − 1], Φ(x)− Φ(x− 1) ≤ ρQ(Φ(x+ 1)− Φ(x)).

If QT ≥ 2Tλ(−S0) and κ ≤ 2

kE [ST ] Φ′`(QT )
, then C ′′(δ) ≥ 0, δ ∈ [0, δmax], so that C is convex on [0, δmax] or

for the Euler scheme of (St)t∈[0,T ] with step T
m , for m ≥ mb,σ of a diffusion with constant diffusion coefficient.

(c) The same inequalities hold for tany Rm+1-time discretization sequence (Sti)0≤i≤m which satisfies a co-
monotony principle.

3. Semi Markov model for market microstructure and HF trading

3.1. Markov renewal model for stock price

The dynamics of the mid-price are given by the càd-làg piecewise constant process:

Pt = P0 + 2δ

Nt∑
n=1

Jn,

where P0 is the opening mid-price, 2δ > 0 is the tick size, Nt is the point process associated to the tick times
(Tn)n (i.e. the price jump times), and (Jn)n is the marks sequence valued in {+1,−1} indicating whether
the price jumped upwards (Jn = +1) or downwards (Jn = −1) at time Tn, called price direction. We use a
Markov renewal approach to model the marked point process (Tn, Jn). (Jn) is an irreducible Markov chain with
symmetric transition matrix of diagonal terms 1+α

2 , and antidiagonal terms 1−α
2 , where α ∈ [−1, 1) represents

the correlation between two consecutive price returns. Estimation on real data leads to a negative value of α,
meaning that the stock price exhibits a short-term mean-reversion, which is a well-known stylized fact about
high-frequency data, also called microstructure noise. Denoting by Sn = Tn−Tn−1 the sequence of inter-arrival
times associated to (Nt), we assume that conditionally on the sign JnJn+1 = ±1 of two consecutive price
directions, (Sn)n is an independent sequence with distribution: F±(s) = P[Sn+1 ≤ s|JnJn+1 = ±1], and density
f±(s). The distinction between F+ and F− models the clustering of trading activity, that is the irregular spacing
of tick times according to the mean-reverting or trend period of price jumps. We denote by F = 1+α

2 F+ +
1−α
2 F− the unconditional distribution of (Sn). The intensity function of price jump in the same (resp. opposite)

direction is then given by: h+ = 1+α
2

f+
1−F (resp. h− = 1−α

2
f−
1−F ).

Markov embedding. Let us define the last price jump direction: It = JNt , and the elapsed time since the last
jump: St = t − sup{Tn : Tn ≤ t}. Then, the price process (Pt) is embedded into a Markov system (Pt, It, St)
with three observable state variables.

Diffusive behavior at macroscopic scale. The scaled price process P
(T )
t = PtT√

T
, t ∈ [0, 1], exhibits a diffusive

behavior given by the following functional central limit theorem:

lim
T→∞

P (T ) (d)
= σ∞W,

where W is a Brownian motion, and σ2
∞

= 1∫∞
0
tdF (t)

(
1+α
1−α

)
is the macroscopic variance. Estimation, simulation

and more properties of this Markov renewal model are studied in [28].
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3.2. Market order flow modeling

We model the market order flow of the Limit Order Book (LOB) by a marked point process (θk, Zk)k, where
(θk)k represents the arrival times of the market order, and (Zk)k, valued in {±1} is the side of the exchange
in the LOB: Zk = +1 (resp. −1) means that the trade is exchanged at the best bid (resp. ask) price, thus
associated to a market sell (resp. buy) order. The existing dependence between the market order flow and
the stock price is modeled as follows. The counting process (Mt)t associated to (θk)k is a Cox process with
conditional intensity λ(St), where λ(s) is a decreasing function, representing the fact that trade arrivals should
occur less often in a period of price stability, i.e. when St is large. The dependency between market order trade
and stock price is modeled through the relation: Zk = ΓkIθk−, where (Γk)k is an i.i.d. sequence on {±1} with
mean ρ ∈ [−1, 1]. This means that ρ = Corr(Zk, Iθ−k

), with the interpretation that when ρ > 0 (resp ρ < 0)

most of the trades arrive on the strong (resp. weak) side +Iθk− (resp. −Iθk−) of the LOB. Estimation on real
data usually leads to negative value of ρ, which formalizes the observed fact that most of the trades arrive in
the unfavorable side of the LOB for the market maker, inducing the so-called adverse selection risk.

3.3. The market making application

The agent strategy consists in placing continuously limit orders of small size L at the best available price,
while respecting an inventory constraint: her control is described by a process (`±t )t valued in {0, 1} with the
convention that when `±t = 1, a limit order of size L is posted at time t on the side ±It−. When a market order
arrives, she is executed on the side ±It− of the LOB, of `±t times a random variable distributed as ϑ±L (dk), with
support on {0, . . . , L}. The objective of the market maker is to maximize over her limit orders strategies the
expected gain:

E
[
PNLT − CLOSE(YT )− η ·RISK0,T

]
, (10)

where PNLT = XT +YTPT is the portfolio value at terminal date T , evaluated at the mid price P , with X the
cash holdings, and Y the inventory constrained to lie in a given bounded set Y, CLOSE(YT ) = −(δ + ε)|YT |,
is the liquidated value of the inventory at terminal date with ε ≥ 0 a fixed fee paid at each transaction, and

RISK0,T =
∫ T
0
Y 2
t · d[P ]t represents the market risk by holding the inventory during the whole trading period,

weighted by the penalization parameter η ≥ 0. The value function v to this Markovian stochastic control on
finite horizon (10), involving the state variables (t, Pt, It, St, Xt, Yt), can be written in the reduced-form:

v(t, p, i, s, x, y) = x+ yp+ ω(t, s, yi),

where ω(t, s, q) is the unique bounded viscosity solution to:[
∂t + ∂s

]
ω + 2δ(h+ − h−)q − 4δ2η(h+ + h−)q2

+ max
q−`L∈Y

(
N+
trd[`] +N+

jmp[`]
)
ω + max

q+`L∈Y

(
N−trd[`] +N−jmp[`]

)
ω = 0,

ω(T, s, q) = −|q|(δ + ε),

and the operators N ’s are given by:

N±trd[`]ω :=
1± ρ

2
λ(s)

∫
[ω(t, s, q ∓ k`)− ω(t, s, q) + k`(+δ − ε)]ϑ±L (dk)

N±jmp[`]ω := h±(s) [ω(t, 0,±q − L`)− ω(t, s, q) + L` (−δ − ε)] .

The solution (value function and optimal control) of the market making problem is then completely characterized
in terms of an integro-ordinary differential equation involving three observable state variables; current time t,
elapsed time s from last jump, and strong inventory q = yi. We provide a convergent numerical scheme for
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solving this IODE, and illustrate our results with some computational tests displaying the shape of the optimal
policies, see [27].

4. Dynamical models for orderbook dynamics: which ones and what for

This work is mainly based on the paper Efficiency of the Price Formation Process in Presence of High
Frequency Participants: a Mean Field Game analysis, a joint work with PL Lions, JM Lasry and A Lachapelle
[16].

4.1. The emergence of a need in orderbook dynamics modelling

To manage the increase of complexity following the multiplication of venues and dispersion of liquidity across
all trading venues available, market participants more intensively used electronic trading and quantitative
(i.e. optimal) slicing of large orders [1]. Besides, the need for cross-venue arbitrage of latency and liquidity
increased, giving birth to a new kind of middle-men: the High Frequency traders [26]. A better understanding
of the orderbook dynamics improves: the understanding by regulators and policy makers of the contribution
of each market participant to the efficiency of the PFP (Price Formation Process); the existing market impact
models ( [10] [2] [21] [24]), a key component of the PFP dynamics; and the capability to use more sophisticated
optimal execution schemes ( [4] [30] [13] [12]).

Recently, some papers focused on this topic: a Dynamic Model of the Limit Order Book [31]; a Fokker-Planck
description for the queue dynamics of large tick stocks [9]; Price Dynamics in a Markovian Limit Order Book
Market [6]; Measuring the resiliency of an electronic limit order book – [17]; State-Dependent Model of Order
Book Dynamics (forthcoming, by Huang, Rosenbaum, Lehalle).

4.2. The Mean Field Game approach as a synthesis

MFG (Mean Field Games) are designed to model this type of dynamics [20]. An MFG model of endogenous
volatility has been proposed in “Large investor trading impacts on volatility” [25]. An MFG-based model has
already been designed at a larger time scale in “High Frequency Simulations of an Order Book: a Two-Scales
Approach” [22]. We wanted to provide a framework at the smallest one. In this paper we model participant
behaviours in the orderbook; obtain “master equations” describing the emerging dynamics; use them to describe
the outcome of the mixing of HFT and Institutional Investors in the same orderbook.

4.2.1. One queue modelling

Sellers only, they arrive in the “game” according to a Poisson process of intensity λ, they compare their value
function u(x) (where x is the size of the queue) to zero to choose to wait in the queue (when u(x) > 0) or not,
the queue is consumed by a Poisson process of intensity µ(x), in case of transaction, a “pro-rata” scheme is
used (“equivalent” to infinitesimal possibility to modify orders): q/x of the order is part of it; relaxed for FIFO
in few slides.
Dynamics. The value function evolves following these four main possible events (we have price impact P (x) and
waiting cost proportional to c q):

u(x) = (1− λ1u(x)>0dt− µ(x)dt) · u(x) ← nothing happens

+ λ1{u(x)>0}dt · u(x+ q) ← new entrance

+ µ(x)dt ·
( q
x
P (x) + (1− q

x
)u(x− q)

)
← transaction

− c q dt ← waiting cost
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To solve it at the kth order, we will perform a Taylor expansion of u(x+ q) and u(x− q) for small q at the
kth order). At the second order, we obtain:

0 =
µ(x)

x
(P (x)− u)− c+ (λ1{u>0} − µ(x))u′+ q

(1

2
(λ1{u>0} − µ(x))u′′ +

µ(x)

x
u′
)
.

This corresponds to a (trivial) shared risk Mean Field Game monotone system with N = 1. The mean field
aspect does not come from the continuum of agents (for every instant, the number of players is finite), but
rather from the stochastic continuous structure of entries and exits of players.
Solution for a specific form of µ(x). At queue sizes x∗ such that x∗ = µ(x∗)P (x∗)/c, u sign changes. Moreover,
for the specific case µ(x) = µ11x<S +µ21x≥S : There is a point strictly before S where u switches from negative
to positive. It means that participants anticipate service improvement.

Figure 1. All the components of the one queue model.

4.2.2. Going further

In the paper [16], a model with two coupled queues is developed and analysis in a first step, and then extended
to more than one class of trading agents. We then use this model to understand the mechanism of liquidity
dynamics in a limit orderbook when traditional investors are mixed with high frequency traders. Such results
can help regulators and policy makers to understand the stakes and the potential consequences of their decisions
to adjust the market microstructure (see [23] for more details about practical aspects).
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