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STATISTICAL INFERENCE FOR PARTIAL DIFFERENTIAL EQUATIONS ∗

Emmanuel Grenier1, Marc Hoffmann2, Tony Lelièvre3, Violaine Louvet4,
Clémentine Prieur5, Nabil Rachdi6 and Paul Vigneaux1

Abstract. Many physical phenomena are modeled by parametrized PDEs. The poor knowledge on
the involved parameters is often one of the numerous sources of uncertainties on these models. Some of
these parameters can be estimated, with the use of real world data. The aim of this mini-symposium is
to introduce some of the various tools from both statistical and numerical communities to deal with this
issue. Parametric and non-parametric approaches are developed in this paper. Some of the estimation
procedures require many evaluations of the initial model. Some interpolation tools and some greedy
algorithms for model reduction are therefore also presented, in order to reduce time needed for running
the model.

Introduction

Many physical phenomena are modeled by parametrized PDEs. The involved parameters are often unknown
and have to be estimated. This mini-symposium focuses on this challenging issue. The first two sections are
based on statistical estimation tools. Section 1 is interested in transport-fragmentation equations, and the
aim is a non parametric estimation of the division rate of a given cell. Section 2 deals with an industrial
application in thermal regulation of an aircraft cabin, and one is interested in estimating parameters appearing
in boundary conditions of Navier-Stokes equations. As parameter estimation often requires many computations
of the underlying model, one is also interested in speeding the computation time. It is the aim of Sections 3 and
4. Section 3 couples a SAEM algorithm with an interpolation approach to speed up the estimation procedure
of parameters involved in KPP equations used to model the evolution of a tumor extracted from MRI images.
Section 4 presents greedy algorithms dedicated to solve high-dimensional PDEs. Parametric (see Sections 2,3,4)
and non-parametric (see Section 1) approaches are presented.
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1. Statistical inference in transport-fragmentation equations

1.1. Context

We consider (simple) particle systems that serve as toy models for the evolution of cells or bacteria: Each
particle grows by ingesting a common nutrient. After some time, each particle gives rise to two offsprings by cell
division. We structure the model by state variables like size, growth rate and so on. Deterministically, the density
of structured state variables evolves according to a transport-fragmentation PDE. Stochastically, the particles
evolve according to a PDMP (piecewise deterministic Markov process) that evolves along a branching tree.
Growth-fragmentation type equations provide a natural framework for the study of size-structured populations:
Let n(t, x) denote the density of cells of size x at time t. The parameter of interest is the division rate B(x).
At division, a cell of size x gives birth to two cells of size x/2. The growth of the cell size by nutrient uptake
is given by a growth rate g(x) = τx (for simplicity). The temporal evolution of n is governed by the transport-
fragmentation equation

∂tn(t, x) + ∂x
(
τxn(t, x)

)
+B(x)n(t, x) = 4B(2x)n(t, 2x)

with n(t, x = 0) = 0, t > 0 and n(0, x) = n(0)(x), x ≥ 0. It is obtained by mass conservation law: the LHS
term is obtained by density evolution plus growth by nutrient plus division of cells of size x, while the RHS is
obtained by division of cells of size 2x.

1.2. Objectives

Our main goal is to estimate non-parametrically B(x) from genealogical data of a cell population of size
N living on a binary tree. We also want to avoid solving an inverse problem as it is the case for alternative
approaches (see e.g., [11,12] ) for estimating B(x), thanks to richer data set provided by genealogical data (i.e.
observed along a genealogical tree). Finally, we wish to reconcile the deterministic approach with a rigorous
statistical analysis (relaxing the steady-state implicit approximation of deterministic approaches).

Our strategy to reach this goal is: 1) Construct a stochastic model accounting for the stochastic dependence
structure on a tree for which the (mean) empirical measure of N particles solves the fragmentation-transport
equation (in a weak sense). 2) Develop appropriate statistical tools to estimate B(x). 3) Incorporate the
additional difficulty of growth variability: each cell has a stochastic growth rate inherited from its parent.

1.3. Results

We construct a Markov process on a binary tree (Xt, Vt) ∈
( ⋃
k≥0

[0,∞)k
)2
, where Xt denotes the size and Vt

the growth rate of living cells at time t, inherited from their parent according to a kernel ρ.

Result 1: We prove in [10] that the function n(t, ·) := E
[∑∞

i=1 δXi(t),Vi(t)

]
is a (weak)-solution of an extension

of the transport-fragmentation equation:

∂tn(t, x, v) + v ∂x
(
xn(t, x, v)

)
+B(x)n(t, x, v) = 4B(2x)

∫
ρ(v′, v)n(t, 2x, dv′).

The initial framework g(x) = τx is retrieved as soon as ρ(v′, dv) = δτ (dv).

Result 2: We assume that we are given genealogical data of the form (ξu, τu)u∈UN , where UN is a (connected)
subset of size N of the binary tree U = ∪k≥0{0, 1}k. This means that we observe the size ξu and the variability
τu of the cell for each node u ∈ UN . This means that during its lifetime, at time t, the cell u has size ξu exp(τut)
and the variability τu thus denotes the growth rate attached to each cell and that may vary from one individual
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Figure 1. Simulated data: for N = 2047
we see the quality of B̂n over 50 Monte-Carlo
simulations. The true B is in solid blue, and
the Monte-Carlo reconstructions are in green.
The reconstruction is fairly good in the region
where the density νB (in solid black) is not too
small, and it consistently deteriorates beyond
x ≈ 3, where almost no data of size x ≥ 3
were observed. Note however the dramatic ef-
fect of ignoring variability (the Monte-Carlo
estimators in red) beyond x ≈ 2.5.

to another. This is a reasonable assumption that we have been able to implement in practice. We can construct

an estimator (B̂N (x), x > 0) of the s-regular division rate B(x) s.t.

E
[
‖B̂N −B‖2L2

loc

]1/2 ≤ C(logN)N−s/(2s+1).

Construction of B̂: Let νB(y) denote the (asymptotic or invariant) density distribution of the size of a cell

at division. The construction of B̂ is based on the key representation formula proved in [10]

B(y) =
y

2

νB(y/2)

EνB
[

1
τu−

1{ξ−u ≤y, ξu≥y/2}

] . (1)

Introduce a kernel function K : [0,∞)→ R,
∫

[0,∞)
K(y)dy = 1. and set Kh(y) = h−1K

(
h−1y

)
for y ∈ [0,∞)

and h > 0. We construct the following estimator based on an empirical regularisation of (1):

B̂n(y) =
y

2

n−1
∑
u∈Un Kh(ξu − y/2)

n−1
∑
u∈Un

1
τu−

1{ξu− ≤ y, ξu ≥ y/2}
∨
$
,

specified by the kernel K, the bandwidth h and the threshold $ > 0 (that guarantees that B̂ is well defined).
This approach avoids the implementation of an inverse problem where only the estimation rate N−s/(2s+3) is
achievable ( [11], [12]). It also matches both deterministic and stochastic approaches rigorously.

2. Calibration of a PDE system for thermal regulation of an aircraft cabin

2.1. Context

Thermal energy management onboard modern commercial aircraft has become an important challenge for
aircraft manufacturers so as to propose competitive solutions to new markets demands. Modern aircraft use
more and more new and highly dissipative heat sources (electrical packs, power electrics, etc.) and thus the
integration of such equipment needs a careful understanding of the thermal behaviour of this new environment.
Therefore, new requirements have to be satisfied in order to improve passenger thermal comfort and to ensure
the thermal control of equipment in the avionic bay.

This work aims at presenting the thermal regulation problem inside a commercial aircraft and some scientific
challenges inherent to this study.
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The thermal exchanges in the cabin and bay of an aircraft are modelled thanks to Navier-Stokes equations that
are implemented into a software. The resolution of such equations induces very often parameters with unknown
exact value. There are two kinds of unknown parameters: first, the ones subjected to lack of knowledge or
variability (e.g turbulence rate, equipment temperature, etc.), and second, the parameters that have to be
estimated (e.g thermal contact resistance, thermal conductivity, heat dissipation, etc.). The latter parameters
involve additional information which is in practice composed of datasets provided from former aircrafts, real
experiments, trials, etc.

2.2. Problem

To illustrate our purpose, let us consider a simplified thermal exchange modelling given by Navier-Stokes
equations : 

∂ρ

∂t
+∇.(ρ u) = 0

∂(ρCpT )

∂t
+∇.(u.ρCpT ) = ∇.(k∇T )

∂(ρu)

∂t
+ (u.∇)u+∇p = µ∆u+ ρg

+ Set of turbulence model

(2)

with boundary conditions :

 u(M) = u0(M) for M = {x1, · · · , xM} ⊂ Γ (boundary)∫
k∇T · n = φ

turbulence model RANS(τ) + specific conditions

where ρ= air density, u=air speed, k= air conductivity, T=temperature, µ=viscosity , τ=turb. rate.

In this application, we consider that the turbulence rate τ and the air speed condition u0(M) are uncertain
(for simplicity, for x ∈ M write u0(x) = u∗0(x) + ε(x) where u∗0(x) is the deterministic part of the boudary
condition, and ε(x) is a random variable which models the uncertainties). Then, the heat dissipation coefficient
φ should be estimated. The observable of interest we consider is the temperature around the equipment given
from a post-processing after resolution of the system above. Thus, a simulated temperature can be seen as a
real-valued function (x, θ) 7→ h(x, θ), where x = (τ, ε) with ε = (ε(x1), · · · , ε(xM )), and θ = φ.
As the variables x = (τ, ε) are uncertain, we can choose to model this uncertainty by a random vector X = (τ, ε)
where τ and ε are seen as random variables drawn from some given distributions.
Besides this modelling, in order to characterize the parameter θ = φ, one needs a database of temperatures of
the equipment which can be obtained from sensors placed on it. Let us denote such database by Y1, ..., Yn.
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Finally, the estimation problem consists in estimating θ = φ from the (stochastic) simulation model (X, θ) 7→
h(X, θ).

2.3. Estimation method

The method we present is taken from N. Rachdi et al. [21]. The principle consists in estimating a parameter
θ ∈ Θ ⊂ Rk which minimizes ”a distance” between the empirical distribution of the Yi’s (measurements) and
the simulated distribution of the random variable h(X, θ) based on a sample h(X1, θ), ..., h(Xm, θ) provided
from numerical simulations, where X1, ...,Xm are m simulations of the random variable X ∈ (X ,PX). Indeed,
assume that the random simulation outputs {h(X, θ), θ ∈ Θ} induce a (Lebesgue) density family {fθ, θ ∈ Θ}
where fθ is the density of h(X, θ) . Hence, a maximum-likelihood based method would provide the following
estimator

θ̂n = argmin
θ∈Θ

−
n∑
i=1

log (fθ(Yi)) . (3)

But, in our framework we do not know explicitly the density functions fθ as it is the result of complex sim-
ulations. Unlike classical maximum-likelihood methods, we do not form a parametric ”density model” for the
measurements (Gaussian, Beta, etc.) but this density model is provided from simulations of the random variable
h(X, θ). In this case, fθ in (3) would be the density of h(X, θ) which does not have necessarily an analytical

form. We then propose to replace fθ by a kernel estimator fmθ (among others) fmθ =
1

m

m∑
j=1

Kb(Yi − h(Xj , θ))

where for instance Kb(y) = 1√
2π b

e−y
2/2b2 . Then, replacing fθ by fmθ in (3) provides the computable estimator

θ̂n,m = argmin
θ∈Θ

−
n∑
i=1

log

 m∑
j=1

Kb(Yi − h(Xj , θ))

 . (4)

Under mild conditions, Theorem 3.1 in [21] proves the consistency in a general case when considering other
contrast functions than log, and Theorem 6.2 in [20] shows the consistency in the special case of the log-contrast
function. In such estimation procedure, we need a lot of system runs providing the desired observable h which
can be CPU time expensive. To avoid this difficulty, surrogate model techniques may be considered, which aim

at replacing the costly model h by a mathematical approximation h̃ in (4), very cheap to evaluate.

3. Coupling with SAEM algorithm: population parametrization for reaction
diffusion equations

3.1. Context

A crucial step in the validation of a model is of course to compare it with real world data. This is usually
done by using nonlinear regression techniques in the case of individual data, or by statistical approaches (for
instance using a SAEM algorithm [14], [7]), which is a maximum likelihood estimation method, in the case of
population data. In both cases, this requires a large number of evaluations of the model, for a large number of
different sets of parameters. The evaluation time for a single set of parameters may be very long, in particular
when partial differential equations are involved (it may go up to a few minutes, or a few hours, or even days). In
this case, nonlinear regression algorithms or population approaches can not be done within a reasonable time.
It is therefore crucial to find methods to accelerate them.
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The application we have in mind is the study of the evolution of the volume of a tumour extracted from MRI
images. In that case, the PDE model can be the classical KPP equation, and the tumour volume is the integral
of the tumoral concentration.

3.2. SAEM coupled with model precomputation

Our strategy is to speed up the computation associated to the evaluation of the scalar time series associated
to the solution of the full PDE. We couple a SAEM algorithm with evaluation of the model through interpolation
on a precomputed mesh of the parameters domain.

The idea is the following: to compute quickly a function, we interpolate it from precomputed values, on a
grid. The main issue is to construct a grid in an efficient way:
- Interpolation should be easy on the mesh. Here we choose a mesh composed of cubes (tree of cubes) to ensure
construction simplicity and high interpolation speed
- Mesh should be refined in areas where the function changes rapidly (speed of variation may be measured in
various ways, see below).

Let us describe the algorithm in dimension N . We consider J fixed probabilities 0 < qj < 1 with
∑J
j=1 qj = 1

and J positive functions ψj(x) (required precisions, as a simple example, take ψj(x) = 1 for every x). We start

with a cube (or more precisely hyper-rectangle) Cinit = ΠN
i=1[xmin,i, xmax,i] to prescribe the area of search. The

algorithm is iterative. At step n, we have 1 + 2Nn cubes Ci with 1 ≤ i ≤ 1 + 2Nn, organized in a tree. To each
cube we attach J different weights ωji (where 1 ≤ j ≤ J , see below for examples of weights), and the 2N values
on its 2N summits.
- First we choose j between 1 and J with probability qj .

- Then we choose, amongst the leaves of the tree, the smallest index i such that ωji / sup
x∈Ci

ψj(x) is maximum.

- We then split the cube Ci in 2N small cubes of equal sizes, which become 2N new leaves of our tree, the
original Ci becoming a node. To each new cube we attach J weights ωji .

Then we iterate the procedure at convenience. We stop the algorithm when a criterion is satisfied or after
a fixed number of iterations. We then have a decomposition of the initial cube in a finite number of cubes,
organized in a tree (each node having exactly 2N leaves), with the values of f on each summit. It is interesting
to notice that this approach can be easily parallelized to ensure an optimal use of the processors.

If we want to evaluate f at some point x, as during a SAEM computation, we first look for the cube Ci in
which x lies, and then approximate f by the interpolation finter of the values on the summits of the cube Ci.
Note that this procedure is very fast, since, by construction, the cubes form a tree, each node having 2N nodes.
The identification of the cube in which x lies is simply a walk on this tree. At each node we simply have to
compare the coordinates of x with the centre of the ”node” cube, which immediately gives in which ”son” x
lies. The interpolation procedure (approximation of f(x) knowing the values of f on the summits of the cube)
is also classical and rapid (linear in the dimension N).

3.3. Application: parametrization of a KPP model

We want to illustrate the previous methodology in the context of the estimation of the parameters associated
to the so called KPP equation:

∂tu−∇.(D∇u) = Ru(1− u), (5)

where u(x) is the unknown concentration (assumed to be initially a compact supported function, for instance),
D the diffusion coefficient and R the reaction rate. These equations are posed in a domain ∆ with Neumann
boundary conditions. Note that the geometry of the domain ∆ can be rather complex (e.g., when u is the
density of tumor cells in the brain). Initially the support of u is very small and located at some point x0 ∈ ∆.
Therefore we may assume that

u(T0, x) = α1|x−x0|≤ε, (6)
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Figure 2. An example of an inhomoge-
neous mesh of the space of parameters
(with 500 points). The two parameters are
w = D/R and x0.

for some time T0 (in the past).
We generate a virtual population of solutions of the KPP equation, assuming Gaussian distributions on its

parameters, and adding noise. We then try to recover the distributions of the parameters by a SAEM approach
(using Monolix software [22]). For this we first precompute solutions of the KPP equation on a regular or non
regular mesh (see Figure 2), and then run SAEM algorithm using interpolations of the precomputed values of
KPP equation (instead of the genuine KPP).

As illustrated in table 1, the results are of good quality. Adding some noise deteriorates the accuracy but
the results are reasonable for practical applications.

Theor E1 E2 E3
error error error

R 0.0245 0.0237 -3.3% 0.0234 -4.5% 0.0231 -5.7%
D 8.64e−7 8.67e−7 0.3% 8.79e−7 1.7% 9.62e−7 11%
x0 0.415 0.399 -3.9% 0.393 -5.3% 0.37 -11%
ωR 0.201 0.196 -2.5% 0.263 31% 0.253 26%
ωD 0.205 0.188 -8.3% 0.247 20% 0.395 93%
ωx0 0.254 0.244 -3.9% 0.241 -5% 0.616 143%

Table 1. Results (from Monolix) and errors for the mean parameters of the population. Col-
umn E1 refers to a population without noise (see text). Column E2 (resp. E3) refers to a
population with a 5% (resp. 10%) noise. Test with homogeneous grid.

The main interest of this methodology is to tackle problem of parameters identification in complex PDE
systems. The computational cost of the whole algorithm that mean generation of the mesh and SAEM com-
putation, can be divided in two distinct parts: an offline time corresponding to the computation of the mesh,
which can be done once and for all, and an online time corresponding to the estimation of the parameters for
a given population.

In the previous example, the gain is of order 725 for the homogeneous grid and 1200 for the heterogeneous
grid compared to a full computation with a whole resolution of the PDE during the SAEM algorithm.

3.4. Conclusions

In this work we present a new method combining SAEM algorithm and a precomputation step. This method
could be helpful to reduce the overall computation time when the model is very long to compute, for instance
when the model is based on partial differential equations.

In a future work we intend to study in details the method which performs simultaneously the precomputation
of the parameter space and the SAEM algorithm.
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4. Greedy algorithms and model reduction

In this section, we will briefly present a general method to approximate high-dimensional functions. This
technique can be used in particular to solve high-dimensional partial differential equations. This section is
related to a series of recent works [4–6, 16]. We also refer to the contribution of Virginie Ehrlacher to this
volume for an application of this technique to eigenvalue problems.

4.1. An introductory example

To fix the idea, let us consider the parametric problem: find u(θ, x) a real valued function solution to, for all
θ ∈ T , {

−divx(a(θ, x)∇xu(θ, x)) = f(θ, x) ∀x ∈ X ,
u(θ, x) = 0 ∀x ∈ ∂X .

(7)

Here, x varies in subdomain X of Rd, θ is a parameter which lives in T a subset of Rp. We assume in the
following that (θ, x) 7→ a(θ, x) and (θ, x) 7→ f(θ, x) are two real valued functions such that for almost all values
of the parameter θ ∈ T , the problem (7) is well posed. For example, f is in L2(T ×X ), a is in L∞(T ×X ) and is
bounded from below by a positive constant, so that there exists a unique solution u ∈ L2(T , H2(X ) ∩H1

0 (X )).
This is the setting we will consider in the following. The functional spaces H1

0 (X ) and H2(X ) are the classical
Sobolev spaces: H1

0 (X ) = {v : X 7→ R, v ∈ L2(X ), |∇xv| ∈ L2(X ) and v = 0 on ∂X} and H2(X ) = {v : X 7→
R, v ∈ L2(X ), |∇xv| ∈ L2(X ) and |∇2

x,xv| ∈ L2(X )}.
A parameter estimation problem typically writes as follows: given some observations on the function u(θ, x),

how to estimate the values of θ ∈ T ? Many approaches have been proposed to solve this inverse problem, and
it is not the aim of this section to discuss them. We rather would like to explain a method to approximate the
high-dimensional function (θ, x) 7→ u(θ, x). This approximation can then be used to solve the inverse problem,
for example to provide a first guess to a deterministic optimization approach or to build a variance reduction
technique in a Bayesian technique. Such an approximation is sometimes called a response surface, or a reduced
order model.

The difficulty is of course that the functions u depends on the variable (θ, x) with dimension d+ p. Standard
approximation techniques based for example on tensorization of one dimensional grids lead to a huge number
of degrees of freedom, since the complexity is exponential in the dimension. This is the so-called curse of
dimensionality. Various approaches have been proposed to tackle this difficulty such as sparse grids techniques
base [3, 24] or reduced bases methods [17, 19]. We here focus on an algorithm introduced by Ladevèze [15],
Ammar [1] and Nouy [18] that we call below the greedy algorithm. This algorithm is also sometimes called the
Proper Generalized Decomposition.

4.2. The greedy algorithm

Let us now present the greedy algorithm we are interested in. The bottom line is to approximate the function
u(θ, x) as a sum of tensor products:

u(θ, x) =
∑
k≥1

rk(θ)sk(x)

and to compute each of the terms in this sum iteratively, as the best next tensor product approximation.
Depending on the problem under consideration, this best approximation is defined in various ways. This
algorithm is greedy in the sense that the terms are computed iteratively and once one of them is computed, it
is not modified in the following iterations. For simplicity, we consider the tensor product of only two functions
(rk(θ) and sk(x)) but the algorithm equally applies to a tensor product of more than two functions. For example,
if the parametric space is high-dimensional (namely if p is large), one could think of using a decomposition of
the form u(θ, x) =

∑
k≥1 r

1
k(θ1) . . . rpk(θp)sk(x).
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In the specific example (7) above, the algorithm writes as follows: iterate on K ≥ 0

(rK+1, sK+1) ∈ argmin
r∈L2(T ),s∈H1

0 (X )

E

(
K∑
k=1

rk(θ)sk(x) + r(θ)s(x)

)
(8)

where

E(v) =
1

2

∫
T ×X

a(θ, x)|∇xv|2 dθ dx−
∫
T ×X

f(θ, x)v(θ, x) dθ dx

is the energy functional associated to (7), defined for v ∈ L2(T , H1
0 (X )). The energy functional E has a unique

minimum, which is characterized by the Euler equations (7). The idea underlying the algorithm (8) is that at
each iteration, the best tensor product minimizing E is chosen.

In practice, to solve (8), one actually considers the Euler Lagrange equations associated to (8), which are:
iterate on K ≥ 0, find rK+1 ∈ L2(T ) and sK+1 ∈ H1

0 (X ) such that, for all δr ∈ L2(T ) and δs ∈ H1
0 (X )∫

T ×X
a(θ, x)∇x(uK(θ, x) + rK+1(θ)sK+1(x)) · ∇x(rK+1(θ)δs(x) + δr(θ)sK+1(x)) dθ dx

=

∫
T ×X

f(θ, x)(rK+1(θ)δs(x) + δr(θ)sK+1(x)) dθ dx

(9)

where, for the ease of notation, we introduced

uK(θ, x) =

K∑
k=1

rk(θ)sk(x). (10)

The problem (9) is the weak form of the problem:
−divx

((∫
T
a(θ, x)(rK+1(θ))2 dθ

)
∇xsK+1(x)

)
=

∫
T
rK+1(θ) (f(θ, x) + divx (a(θ, x)∇xuK(θ, x))) dθ,

rK+1(θ)

∫
X
a(θ, x)|∇xsK+1|2 dx =

∫
X

(f(θ, x) + divx(a(θ, x)∇xuK(θ, x))) sK+1(x) dx,

(11)
where the first equation is an elliptic problem on sK+1 (for a fixed function rK+1) with homogeneous Dirichlet
boundary conditions, and the second equation gives rK+1 (for a fixed function sK+1). Two remarks are in
order. First, it is obvious from the formulation (11) that the problem defining the couple (rK+1, sK+1) is
nonlinear: starting from the linear problem (7), we end up with the nonlinear problem (11). This is because the
space of tensor products is not a linear space. Second, if we assume that the data a and f admit a separated

representation of the form a(θ, x) =
∑
k≥1 r

a
k(θ)sak(x) and f(θ, x) =

∑
k≥1 r

f
k (θ)sfk(x), then, all the integrals

involved in (11) are either integrals over T or over X , using the Fubini’s theorem: there is no integral over the
product space T × X . In practice, (11) is typically solved by a fixed point algorithm.

Notice that compared to the original problem which was with complexity Nd+p (if N denotes the number
of degrees of freedom per dimension), the new formulation is a sequence of problems with a much smaller
complexity, namely Nd +Np. This comes at a price: the nonlinearity of (11).

4.3. Convergence

The algorithm (8) is at the interface between two approximation techniques:

(i) the techniques developed in order to get the best rank n approximations of tensors, using appropriate
formats and associated approximation algorithms (which are not necessarily greedy algorithms), see [9,
13];
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(ii) the greedy algorithms developed in the field of nonlinear approximation, to approximate a function as
a sum of elements of a dictionary (which is not necessarily the set of tensor products), see [23].

In the algorithm (8), we both use tensor products to approximate the solution (as in item (i) above) and a
greedy technique to compute the terms of the sum (as in item (ii) above).

The convergence of the algorithm can actually be deduced from general results on the convergence of greedy
algorithms [8, 16].

Theorem 1. Let us consider the algorithm (8) and the function uK defined by (10). The following convergence
result holds: lim

K→∞
‖uK − u‖L2(T ,H1

0 (X )) = 0. Moreover, if u ∈ L1 where the Banach space L1 ⊂ L2(T , H1
0 (X ))

is defined as the set of functions with finite projective norms

L1 =

u(θ, x) =
∑
k≥0

ckrk(θ)sk(x), s.t. rk ∈ L2(T ), sk ∈ H1
0 (X )), ‖rk(θ)sk(x)‖L2(T ,H1

0 (X )) = 1 and
∑
k≥0

|ck| <∞

 ,

then there exists C > 0 (which depends on u) such that, for all positive K, ‖uK − u‖L2(T ,H1
0 (X )) ≤ CK−1/6.

The convergence rate can be improved to −1/2 using an orthogonal version of the algorithm. The theorem
also holds for tensor products of more than two functions.

This result essentially tells us that the algorithm is safe: it is converging. On the other hand, the convergence
rate is rather slow. In practice, one typically observes that the convergence is exponential for small values of
K, and then slows down.

4.4. Extensions and open questions

The prototypical example (7) enjoys two specific properties: it is linear and symmetric. In [4], we were able
to generalize the convergence result to nonlinear problems, which are still defined as the minimum of some
functional. In this case however, we have no convergence rates. In [6], we investigated various techniques to
generalize the approach to linear but non-symmetric problems, which are thus not simply associated to an
energy minimization problem: there is up to now no satisfactory technique to treat non-symmetric problems.
We have also on-going works on parametric eigenvalue problems.

Generally speaking, the main question which seems difficult to attack is the following: if the solution to
the original problem admits a separated representation (sum of tensor product functions) with a small number
of terms, will the greedy algorithms be able to approximate efficiently this function ? There has been very
encouraging results in that direction for some greedy algorithms recently [2] but it is unclear if they can be
extended to our setting.
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