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Introduction of variability into pantograph-catenary dynamic 

simulations 
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Currently, pantograph-catenary dynamic simulations are mainly based on 
deterministic approaches. However, the contact force between catenary and 
pantograph depends on many key parameters that are not always quantified 
precisely and can vary in time and space. To get a better chance of addressing 
extreme or combined critical conditions, methodologies to consider variability 
are thus necessary. Aerodynamic forces and geometrical irregularities of 
catenaries are thought to be significant sources of variability in measurement and 
this paper proposes methods to take them into account. Results are compared 
with measurements to correlate the effect of the considered parameters with 
experimentally observed variability. Finally, a virtual certification example is 
shown, with a study of the influence of speed on the impact of variability. 
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1 Introduction 

Today, the minimization of rolling stock impact on infrastructure is a leading objective 
in the railway sector. In this context, requirements on current collection quality given by 
the Technical Specifications for Interoperability (TSI) are likely to become much 
restrictive in the next few years. However, performance of existing pantographs has 
almost reached their physical limits, especially in the case of train sets with multiple 
pantographs. 

Since inline test give limited knowledge of the system response and are limited 
due to conflicts with commercial traffic, virtual tools [1] are certain to represent a 
growing part of the effort on optimisation and sensitivity studies. Examples of 
optimisation studies are [2], which aims to limit breakages and to improve current 
collection quality under knuckle junctions, or [3] in which the parameters studied are 
pantograph suspension characteristics. For sensitivity analyses, Ref. [4] analyses span 
length, static uplift force and pantograph system parameters, and Ref. [5] analyses 
catenary geometry through installation error indices. 

Based on SDTools libraries, SNCF has developed an efficient and powerful 
finite element library for the simulation of pantograph/catenary interaction named 
OSCAR [6]. This software is certified against EN50318 and validated against 
measurements. It is routinely used for design studies. Although OSCAR has been 
developed on deterministic approach, it is quite clear that a basic statistical strategy 
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would give a higher confidence in results and be useful for industrial use. This paper 
presents the first developments of this new methodology, introducing three kinds of 
irregularities, namely catenary geometry irregularity, catenary wear and transient 
aerodynamic forces.  

The case study is based on the French pantograph CX made by Faiveley running 
under the east high-speed line between Paris and Strasbourg allowing a maximum speed 
of 320 km/h. Some homologation measurements done by SNCF's testing agency 
(Agence d'Essais Ferroviaires) and others resulting from maintenance measurement 
campaigns are used to establish the source of variable parameters impacting 
performance. 

Geometrical irregularities of catenaries, contact wire wear and aerodynamic 
forces are first introduced as physical sources of variability and characterized by 
measurements. Section 3 then proposes methodologies to take these sources into 
account. Results of simulations are then compared to each other and with measurements 
to identify the main physical phenomena. In section 4, the proper selection of 
observation criteria is shown to be a critical aspect of the proposed analysis. Finally, 
section 5 details an example typical for virtual certification highlighting the importance 
of vehicle speed.  

2 Sources of variability analysis 

Three physical perturbations and associated measurements are studied in the following 
section: 

 geometric irregularities, which correspond to the actual height of the contact wire, 
given in [cm],  contact wire wear which is defined by the contact wire section, given in [mm2],  aerodynamic irregularities, defined as a perturbation around the mean aerodynamic 
applied force, given in [N]. 

2.1 Geometric irregularity 

Geometric irregularity characterizes differences between nominal and real geometry of 
the catenary particularly at mast and dropper positions. The nominal geometry is 
defined by perfectly regular sag of 1/2000 and a fixed height identical for every mast. 
This study focuses on parameters like dropper length and mast height, which affect the 
contact wire static height. Figure 1 shows that the measurement is much less regular 
than the theoretical design. The spatial and spectral representations are given for 
measurements in solid line and for the nominal height of the catenary in dashed line. 

Measurements are low-pass filtered using a 20-points moving average method. 
This corresponds to a filter at 0.25 m-1 or 4m, which is smaller than the smallest inter-
dropper distance. Higher frequency irregularities are not taken into account since they 
cannot be caused by geometric irregularities.  



 

 

Figure 1. Filtered measurements (solid line) and nominal (dashed line) contact wire 
height (a) and spatial-spectrum of contact wire height (b) 

2.2 Contact wire wear  

Wear can slightly modify dynamic behaviour of the catenary since it acts on local 
stiffness and on contact wire height. It is characterized by a decrease of section area 
A[mm2] and an increase of contact wire height [mm]. 

In-line measurements are used to determine a mean wear over the contact wire. 
These global values permit to define coefficients of a wear law defined experimentally 
[7] as:  

 � = 1 ×  1 + 0  − ×  � 0  × � �0 × � × 2 × ( �) × 2  ∙ �   (2.1) 

with 

 ( �) = �  �1
2    (2.2) 

where A is the surface removed by one pantograph passage, Fc the load, i the current 
and V the train speed. V0, i0 and F0 are used for normalization and taken equal to 
nominal values, i.e. V0=3m/s, i0=426A, F0=190N. k1, k2,  and  are the adimensional 
parameters defined to fit with measurements. H is the hardness of the softer of the two 
materials, H=110HR. Finally, kr is a coefficient used to interpolate the relationship 
between R and Fc, kr=4.97 10-2 Ω.N1/2. 

(a) 

(b) 



2.3 Aerodynamic irregularities 

The aerodynamic irregularity is defined as a time varying vertical force fluctuating 
around the mean aerodynamic force applied on the pantograph. This variation is due to 
changes in different parameters such as train speed or wind speed and direction. 
Available measurements are used to compute the mean aerodynamic force. They are 
filtered at 1 Hz and give a reasonable indication of the variation range for the 
aerodynamic force. For the considered case at 320km/h shown on Figure 2, one has a 
mean of 96N and a range of variation between 83N and 109N with a 95% confidence 
interval. The use of the same data for irregularity studies will be discussed in the next 
section. 

 

Figure 2. Measured aerodynamic forces (normal lines) and 95% probability interval 
(bold lines) 

3 Integrating uncertainty in simulation tools 

The method to account for each uncertainty depends on how each parameter influences 
the dynamic behaviour and will be detailed in subsections. All considered cases 
however share a random signal generation process. The classical method used here is to 
affect a random phase n, in the [-]  interval, to a spectrum of known amplitude An 
and to compute the response by inverse Fourier transform.  

where zero mean is achieved by setting A0=0 and the spectrum is constrained to be 
symmetric (that is AN-n=An and N-n=-n) to obtain a real realization by inverse Fourier 
transform. 

3.1 Geometric irregularities 

Between droppers and spans the geometry is only linked to tension, beam section and 
gravity which are well known. The proposed strategy is thus to use random values for 
contact wire height at dropper and span locations. Wear induces height modifications 
whose dynamic impact is very low for long wavelengths. One can thus neglect 
geometry modifications induced by wear. 

 ( ∆ ) =   �   2�  � +�  �
=1

 (3.1) 



One thus first generates a random signal with equation (3.1) using the amplitude 
spectrum shown in dashed line in Figure 1(b), which corresponds to the filtered 
measurement. Given this signal, an inverse static computation is performed by 
modifying dropper length of the nominal catenary in order to converge to the target 
position of contact wire at dropper and span locations. The resulting catenary mesh is 
then used in dynamic simulations, taking into account geometric irregularities. Figure 3 
shows an example of sag obtained from the nominal catenary model and the target 
height after a static computation. Figure 3b illustrates the difference in sag and 
demonstrates that the target geometry is reached with a gap of less than 0.1mm along 
the contact wire. The highest variations come from the approximation of the masts 
height, which is negligible. 

 

 

Figure 3. Comparison between contact wire height measured and computed by inverse 
static method: superposed heights (a) and differences of heights under droppers (b) 

3.2 Contact wire wear 

The spatial distribution of wear is not really random. Contact force is indeed usually 
higher in the same area of the contact wire. One thus prefers to generate a wear profile 
by using equation (2.1). One applies the contact force computed with the nominal 
geometry as Fc. The wear profile A(x), obtained for one cycle, is then multiplied by a 
target number of cycles before renewing the contact force computation. The full 
lifespan of the contact wire is thus separated into n linearly spaced simulations, n 
representing the number of cycles varying between 0 and 108. 

As shown in Figure 4, wear induces a perturbation dz to the vertical position of the 
contact point. In the time integration, solved with Newmark implicit method, one thus 
considers 

 K ∙ q + C ∙ q + M ∙ q = kc zcat + dz − zpanto   (3.2) 

where K is the stiffness matrix, C the damping matrix, M is the mass matrix, zcat , height 

(b) 

(a) 



of the contact wire corrected by the section change dz and zpanto, height of the 
pantograph. q is the displacement vector and kc the contact stiffness.  

 

Figure 4. Contact wire section of a new wire (a) and a worn wire (b), A being the area 
and G the centre of gravity 

The second effect is a section reduction of the contact wire which leads to a decrease of 
the local stiffness. As OSCAR uses FEM, stiffness variations cannot have higher 
frequency than the one induced by the element size. A constant stiffness is applied for 
each beam element of the contact wire, by averaging the random section wear signal 
over the element length. Both phenomena are taken into account at the same time in this 
study, which does not aim to analyse their impact separately. 

3.3 Aerodynamic irregularities 

As seen previously, measured aerodynamic forces are filtered at very low frequency. 
While defining a probability distribution for the aerodynamic force would be a classical 
approach, it does not contain any spectral information so that a different approach was 
preferred here. As shown in Figure 5, one defines a design force spectrum by extending 
the measurements to higher frequencies and uses this spectrum to generate a vertical 
load on the upper mass of the pantograph model that is random in time. The extension 
was done by roughly taking the mean value of the spectrum amplitude computed at 1Hz 
as fixed amplitude between 1Hz and 100Hz. The frequency under 1Hz corresponds to a 
spatial frequency under 0.012m-1 for a nominal speed of 83m/s, which is under the span 
frequency, equal to 0.0185m-1 (=1/54m). The value 100Hz has been taken arbitrary. 

 

Figure 5. Aerodynamic force spectrum measured (dotted lines) and spectrum shape 
defined (solid line) 

4 Contact force analysis 

Directly comparison of contact forces in the time domain does not give a clear 



understanding of the impact of irregularities in particular due to the presence of phase 
differences with the measurements. To address this issue different comparison tools 
have been considered. Of the four detailed here, two are used to compare signals 
together, and two are used to compare signals to measurements. 

4.1 Criteria selection 

Statistical values 

The main goal of pantograph-catenary simulation is to evaluate the current collection 
quality. The usual approach is to divide the contact-force standard deviation by mean 
contact force, which has to be as low as possible and under 0.3 to meet standards. This 
is a statistical criterion which, assuming the load to follow a normal distribution, 
corresponds to a probability to lose contact of less than 1%. This criterion is called 
coefficient of variation in statistics. For n simulations, the first statistical moments can 
be considered as discrete variables of i, i∈[1, n] on which standard deviation can be 
computed:  

 S1= (Fm,i), with Fm,i the mean contact force of the i th simulation,  S2 = (Fc,i)), with Fc,i the time signal of contact force of the i th simulation,  S3 = ((Fc,i)/Fm,i),  Min3=Min((Fc,i)/Fm,i),  Max3=Max((Fc,i)/Fm,i),  M3= E((Fc,i)/Fm,i),  Mnom= (Fc, nominal)/Fm, nominal, with Fc, nominal the time signal of contact force 
computed with the nominal speed and nominal contact force with the nominal 
model as defined in section 2.1, and Fm, nominal it's mean, 

where and E denote the standard deviation and expectation operators computed over 
the n simulations. S3 and M3 are the main criteria to define  

Spectrum of differences 

In order to compare simulations together more precisely than using a simple scalar 
criterion, the computation of the difference between two contact force spectra gives 
information about which frequencies are more affected by modifications. All 
simulations are compared with the nominal model. For each type of irregularity, results 
are averaged over a hundred simulations. 

Frequency band analysis 

Frequency Band Analysis (FBA), see more details in [8], is a comparison tool used to 
get a sharper discrimination of unsynchronized signals than a simple comparison of 
Power Spectral Density (PSD) without observing shift of frequency but only mean 
amplitude in frequency bands. FBA gives a graphical representation of variance against 
frequency. Defining a range of variation over a set of simulations gives information 
about the amplitude of variation of energy in a frequency band, which can easily be 



compared with measurements. In our case, frequency bands will be centred on the 
harmonics of median span frequency, which appeared to be the main contributors in the 
PSD.  

Frequency coherence function:  

The aim of the coherence function [8],  

 

,
2 ( ) =

 ( ) 2
( ) ∙ ( )

 (4.1) 

is to assess and quantify if a linear relationship exists between two sets of frequency 
spectrums. As the numerator is the magnitude squared of a cross power spectrum and 
the denominator a multiplication of two power spectrum (real valued), the coherence 
function is real and has values between 0 (no linear relationship between the two 
signals) and 1 (perfect linear relationship between the two signals). The result is usually 
given in percentage. 

In practice, each signal is decomposed in I equally spaced samples centred on a 
post. Inter and auto spectra are then computed as the mean over I samples 

   =
1∙  ;  ∙  ;  ∗

=1

 (4.2) 

with 

  ;  =   ;  ∙ − ∙2�∙�∙�−1

=0

 (4.3) 

where 

 X is the discrete Fourier transform of the time signal x,  FE is the sample frequency,  fk is the frequency of evaluation of the coherence function,  x,y
2(fk) is the coherence function (without units) between x and y at frequency fk,  Sxy(fk) is the Cross Power Spectrum between the signals x and y at frequency fk,  Sxx(fk) Power Spectrum of the signal x at frequency fk, 

Since the model and test are random, one has l simulation and m measurements. The 
final coherence at a frequency is the average l x m coherences. The curve will be shown 
in black. The process is repeated for each measurement with respect to all others and the 
average curve is shown in red. It is assumed that simulation coherence with 
measurements cannot be higher than measurements with each other. To be able to 
compare with nominal results (i.e. with no irregularity), its coherence with 
measurements is shown as a green line. 

To ease the comparison of various cases a scalar measure of coherence is 
introduced by computing the surface under the curve defined by x,y

2(fk) for frequencies 
between 0 and 20Hz. This scalare represents the percentage of coherence between the 
group of simulations and the group of measurements for this range of frequencies. 



4.2 Sample results 

Simulations are performed with OSCAR for a nominal model containing 3600 elements 
and 3200 nodes, for a section containing 14 spans. Train speed is fixed at 320km/h with 
a simulation over 700m (10 spans). Time consumption is about 2 minutes, which gives 
the possibility to make 3000 simulations for all irregularity cases in around 100 hours. 
The work is distributed over several computers.  

Comparison of simulations 

The most widely used criterion is /Fm. Its mean M3 must be as small as possible for a 
good collection. M3 - Mnom gives the mean impact of irregularities. The range of 
variation defined by Min3 and Max3 gives additional information of the tendency. 
Associated values are given in Table 1. As a complement Figure 6 gives a histogram of /Fm. 

Geometric irregularity has a strong impact on current collection quality. This 
impact can be strongly positive or negative as the values Max3 and Min3 show. The 
distribution is almost centered on the nominal value and the standard variation induced 
by this irregularity on /Fm is ±3.7% of the mean value (S3/M3).  

Wear irregularity is the second most influent irregularity at 320km/h according 
to Figure 6. But the way it is defined here only induces positive impact on current 
collection. The contact force is globally smoothed where wear is high, which is located 
on the area of high force. Consequently, standard deviation of contact force (S2) is 
reduced. 

Aerodynamic irregularity has a very small impact on standard deviation of the 
contact force (S2). The main modification is induced on mean force (S1), which can be 
explained by the way the simulation is performed. The aerodynamic signal is indeed 
averaged to zero over the whole simulation, which is different from the period on which 
statistical values have been computed. The impact of aerodynamic irregularity can 
therefore be taken into account simply by varying the mean force with ±13N as seen 
previously, which leads to a standard variation on /Fm of ±9% of M3. 

 

Figure 6. Distribution of the geometry (black), aerodynamic (grey) and wear (white) 
irregularities for 1000 simulations each  

The second result, shown in Figure 7, is the spectrum of contact force differences for 
each irregularity. Span frequency and harmonics are given with vertical dotted lines. It 
appears that the impact of geometric irregularity is focused on span frequencies, which 
is consistent with the fact that the energy of contact force is higher at these frequencies. 



The same behaviour is observed with wear irregularity in a more ambiguous way. It is 
although not the case of aerodynamic irregularities. This observation confirms the 
previous conclusion about the lower impact of aerodynamic irregularity on contact force 
variation around its average. 

 

Figure 7. Mean of spectra of contact force differences for geometry (solid line), 
aerodynamic (dashed line) and wear (dotted line) irregularities, with span harmonic 
frequencies (vertical lines) 

Table 1. Results of statistical values of sets of contact forces simulated 

 Mnom M3 Min3 Max3 S3 S1 S2 

Geometric irregularity 

0.2427 

0.2391 0.211 0.270 0.009 0.183 1.20 

Wear irregularity 0.2377 0.233 0.242 0.003 0.01 0.34 

Aerodynamic irregularity 0.2441 0.240 0.250 0.002 0.628 0.181 

Measurement-simulation comparison 

In order to compare model and test variations, the FBA and coherence criteria give 
visual support.  

On the FBA graph in the left column of Figure 8, surfaces with transparency 
represent the range between maximum and minimum observed values for corresponding 
set of simulations  (in dark grey) and measurements (in light grey). Nominal behaviour 
is shown in black dotted line. One can see the energy variation of the contact force at a 
specific frequency, namely, the range of variance at this frequency. Geometric 
irregularity represents far better the amplitude of variations observed in measurements 
than the two other which are nearly unnoticeable. For frequencies higher than 0.1m-1, 
wear irregularity seems to be more representative than aerodynamic irregularity. The 
low level of FBA variability in the aerodynamic sensitivity analysis is coherent with the 
low level of spectrum differences in Figure 7.  

On frequency coherence charts in the right column of Figure 8, frequency 
dependent spectrum linearity is assessed between the set of measurements and the set of 
simulations. Coherence between simulations and measurement can at best be equal to 
coherence between measurements themselves. Wear and aerodynamic irregularities 
clearly improve global coherence, which is represented by the grey area. This means 
that phase and frequency variations induced by these irregularities are representative of 
measured variations unlike what happens with geometry irregularity. 



Values of the scalar coherence criterion, given in Table 2, give a similar trend 
than the qualitative conclusion on frequency dependence. In particular, the mean 
coherence between geometry-irregularity simulations is quite low. One thus expects that 
geometry irregularity induces significant non-linearities into the pantograph-catenary 
system. Understanding why FBA and coherence criteria lead to different conclusions on 
the representativity of variability models seems an interesting direction for future work.  

   

Figure 8. Frequency band analysis (left) and frequency coherence (right) of geometry 
(a), aerodynamic (b) and wear (c) irregularities.  

(b) 

(a) 

(c) 



Table 2.Percentage of coherence for each type of irregularity 

Mean Coherence between 
[0-20]Hz 

Simulations/ 
Measurements 

Nominal/ 
Measurements 

Measurements/ 
Measurements 

Simulations/ 
Simulations 

Geometric irregularity 38.91% 

32.13% 58.11% 

64.95% 

Wear irregularity 52.37% 95.37% 

Aerodynamic irregularity 50.60% 95.10% 
 
 

5 Example of use in virtual certification  

Virtual certification is a promising approach to use numerical simulations. The 
European project PantoTRAIN (see [9]) led to a full procedure to extend pantograph 
certification to different catenary systems. The recent certification of a new pantograph 
in France and Spain was an opportunity to lead a blind test in parallel to inline tests. 
This pantograph has the particularity to be insensitive to the airflow and has a twice 
lower bow mass. Wear is very low on the catenary used for the inline tests. Geometry 
irregularity is thus the main known source of variability. 

The analysis is based on three sets of dynamic contact forces: 

 Inline tests, which are dynamic forces obtained directly from an equipped 
pantograph on the train at four different speeds,   Simulations with nominal geometry, which correspond to simulations made at the 
same speeds and mean forces as the inline tests with the nominal catenary defined 
in section 2.1  Simulations with measured geometry, which correspond to simulations made at the 
same speeds and mean forces as the inline tests with the geometry measured under 
the catenary modelled  

Figure 9 displays the simulation value of (Fm-3 with black triangles in comparison to 
the measured values in light grey triangles for the same values of mean forces as shown 
by the circles. The tests show a dispersion of mean force which generates dispersion on 
(Fm-3This criterion is almost the same as /Fm, since it follows the same goal, but 
has to be over zero and consequently as high as possible. The curves Fm,min and Fm,max 
correspond to the minimal and maximal values of the mean contact forces authorized by 
the recent TSI.   

Table 3. Deviation on  depending on the speed and presence of geometry irregularity 
shows three comparisons between dynamic inline tests, simulations with nominal 
geometry and simulations with measured geometry over the section used for the model. 
The difference on the prediction of /Fm between tests and simulations is computed for 
the four speeds. At each speed, the value of /Fmis averaged. The left column is 
obtained by comparing inline tests with the nominal catenary and the central one with 
the measured height of the catenary. The right one compares simulations obtained with 
measured and nominal geometries. 

The difference between both nominal and measured geometries is only of 2% at 
320km/h. At every other speed, the difference between simulations is between 14% and 



17%, which means that either the speed or the mean force (or both) has an influence on 
the geometric irregularity impact on contact force.  

Inline test are based on different sections and each of them has a geometry that 
differs from that used in simulations. In the central column, the value of /Fm of inline 
tests however seems to be always lower than simulations. This implies that the 
representation of geometric irregularity used here includes cases that have significantly 
different impact from what is actually found in test. One thus includes too many 
geometry configurations within the way the geometry irregularity is defined. 

 

Figure 9. Comparison between inline tests and simulations with nominal geometry (a) 
and comparison between inline tests and simulations with measured geometry. 

Table 3. Deviation on  depending on the speed and presence of geometry irregularity 

Speed [km/h] 

Relative deviations on /Fm 

Nominal geometry /Inline 
tests 

Measured geometry 
/Inline tests 

Measured geometry / 
Nominal geometry 

260 -15% -0.7% 14% 

280 -24% -9% 17% 

300 -26% -14% 15% 

320 -16% -14% 2% 

 

6 Introduction of speed and mean force variations 

Since the impact of variable geometries was shown to depend on speed, one seeks to 
further characterize this dependence. In order to compare simulation results to those 
obtained for the virtual certification, one computes two sets of simulations at 300km/h 
and 320km/h with the mean force Fm,300 obtained at 300km/h and the thousand 
geometries previously generated. 

Figure 10(a) shows the distribution of mean force for variable geometries at 
three different design points. The mean force distribution show little impact from speed, 



or the mean force. For the average of /Fm and , as show Figure 10(b) (c), speed has 
clearly a higher influence than mean force. It is difficult to draw more conclusions from 
this figure. 

Figure 11 shows the histograms of /Fm for two speeds and a correlation plot 
where each point is associated with a geometry and the resulting /Fm at the two speeds. 
The correlation plot is elongated along the diagonal, which implies that there is a strong 
correlation for both variation of mean force and speed. One can observe a higher 
dependence between two different mean forces Fm than between two different speeds. 
This qualitative observation can be quantified by the correlation defined as  

 �1,2 =  
� �  �  1,  �  2  �  �  1 × �  �  2  (6.1) 

which gives rFm=96,4% and rSpeed=88.9% where rFm is the correlation between /Fm of 
the sets (320km/h, Fm,320) and (320km/h, Fm,300) and rSpeed is the correlation between /Fm of the sets (300km/h, Fm,300) and (320km/h, Fm,300). Speed thus has more influence 
than mean force when considering the impact of geometry on contact force. 

 

 

 

Figure 10. Mean force (a), standard deviation (b), /Fm(c) distributions for one thousand 
geometric irregularities at three different design points (speed, mean forces): 300km/h 
and Fm,300 (black), 320km/h and Fm,300 (grey), 320km/h and Fm,320 (white).  

(a) (b) 

(c) 



 

Figure 11. Dependence on (speed, mean force) of the criterion /Fm for two groups of 
design points: (320 km/h, Fm,300) against (320 km/h, Fm,320)(a)  and (320 km/h ,Fm,300) 
against (300 km/h, Fm300)(b). The nominal values are indicated by the solid lines.  

One now seeks to evaluate how representative the random geometry is of the 
measurement by comparing the results of virtual certification with those of this method. 
By getting in the same conditions of speed and force as those which led to the results of 
Table 3, one can define a range of variation of /Fm at (300km/h, Fm,300), which can be 
deduced knowing the variation of /Fm at (320km/h, Fm,320) from the nominal.  

Figure 12. Dependence on (speed, mean force) of the criterion /Fm between 
two design points, (300 km/h, Fm,300) against (320 km/h, Fm,320). shows the combined 
influence of speed and mean force. The nominal values of /Fm for both design points 
are indicated in thin solid line. The intersection is thus the position of the nominal 
geometry. In order to locate the position of the geometry irregularity used for the Table 
3, one draws a vertical thick dotted line 2% higher than the nominal value for the design 
point (320km/h, Fm,320). One then qualitatively define the limits of values of /Fm at 
(300km/h, Fm,300) taken around this line. These limits are indicated in horizontal thin 
dotted lines. The range of variation thus defined is around [-8% 8%] around the nominal 
value. The result of 15% obtained in virtual certification is clearly out of range. One 
concludes that the random generation of irregularity is not very representative of the 
measurements used.  

One thus seeks to explain the origin of this gap. The last difference between 
simulations computed for virtual certification and these ones is the length of simulation; 
three catenary sections were used for the certification. Figure 13 shows the contact force 
at (300km/h, Fm,300) for measured and nominal geometries. Three stretches have been 
defined to compute the relative deviation between the /Fm of both signals. 

(a) (b) 



 

Figure 12. Dependence on (speed, mean force) of the criterion /Fm between two design 
points, (300 km/h, Fm,300) against (320 km/h, Fm,320). 

 

Figure 13. Contact forces along three catenary sections at (300km/h, Fm,300) for nominal 
(black) and measured (grey) geometries and relative deviations between /Fm of 
measured and nominal geometries for three different zones.  

The first stretch is the same as the one computed for the variability study with a length 
of 400m. The relative deviation of 7% is included in the interval defined previously in 
Figure 12. The random geometry generation method thus includes the measured case. 
The second stretch has the same length as the first one, namely 400m. It is located on 
and after an overlap section. The variation of /Fm is 27%. The last stretch is the whole 
simulation, on which the variation of /Fm is 17%, approximately the value given in 



Table 3 (15%). One observes that the criterion /Fm is not precise enough to compare 
several geometries and the location of variations can be discriminating, particularly for 
the overlap section.  

To confirm this conclusion, that the location has a strong influence on current 
collection quality,  and justify further developments,  Figure 14 shows the variation of /Fm computed over 400m along the catenary. Higher values of local /Fm are clearly 
located around overlap sections. This observation encourages developing more accurate 
criteria which take into account the location on a catenary section and avoid averaging 
critical areas. 

 

Figure 14. Measured contact forces at 320km/h (a) and local /Fm  defined from the 
contact force 200 m before and after the associated PK. Overlap sections are shown 
with vertical dotted lines. 

7 Conclusion 

The paper introduced variability in pantograph/catenary simulations due to three 
different types of irregularities and the following conclusions can be drawn. 

Wear irregularity has a low impact on current collection quality, even in the 
entirely determinist case defined here, which amplifies this impact. This kind of 
irregularity improves significantly the frequency coherence. Simulations show a 
positive impact on current collection. Taking this kind of irregularity into account is 
thus not a priority. 

Aerodynamic irregularity only impacts the mean contact force, without inducing 
any significant effect over time. As the energy variation of the load is low, this kind of 
irregularity nearly does not affect current collection quality if the average is removed. 
Taking a range for the averaged load is thus representative of the impact of 
aerodynamic irregularity. 

Geometry irregularity induces variations of amplitude that are representative of 
measurements for low frequencies, but does not improve coherence with measurements. 
The variation of the normative criterion σ/Fm indicates that this kind of irregularity has a 



high impact on current collection, which can be good or bad. As this irregularity has the 
most impact on current collection, further studies on appropriate representation are 
clearly needed. 

The last section first showed that speed has more influence than mean force on 
the impact of the geometric irregularity. It then appeared that the proposed random 
geometries might include non-representative cases, so that further work on geometry 
characterization is needed. Finally, current criteria used to define the current collection 
quality were shown to vary depending on location.      

The relatively simple examples of this paper demonstrated the importance of 
introducing variability in pantograph catenary models. Quantification of uncertainty, 
introduction of other variable parameters, further sensitivity studies, more careful 
statistical interpretation of tests and redefinition of criteria are clear perspectives for 
future work. 
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