
HAL Id: hal-01102756
https://hal.science/hal-01102756v1

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of a Combined Active Control and Fault
Detection Scheme to an Active Composite Flexible

Structure.
Nazih Mechbal, Michel Vergé, Gérard Coffignal, Manickam Ganapathi

To cite this version:
Nazih Mechbal, Michel Vergé, Gérard Coffignal, Manickam Ganapathi. Application of a Combined
Active Control and Fault Detection Scheme to an Active Composite Flexible Structure.. Mechatronics,
2006, 16 (3-4), pp.1993-208. �10.1016/j.mechatronics.2005.11.007�. �hal-01102756�

https://hal.science/hal-01102756v1
https://hal.archives-ouvertes.fr


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9221

To cite this version :

Nazih MECHBAL, Michel VERGÉ, Gérard COFFIGNAL, Manickam GANAPATHI - Application of
a Combined Active Control and Fault Detection Scheme to an Active Composite Flexible
Structure. - Mechatronics - Vol. 16, n°3-4, p.1993-208 - 2006

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/9221
mailto:archiveouverte@ensam.eu


 
 
 
 
 

Application of a Combined Active Control 
and Fault Detection Scheme to an Active 

Composite Flexible Structure.  
 

N. Mechbal a*, M. Vergé a, G. Coffignal a, Ganapathi b 

 
a  Laboratoire de Mécanique des Structures et des Procédés (LMSP – UMR, CNRS), École Nationale 

Supérieure des Arts et Métiers (ENSAM), 151 Boulevard de l'Hôpital, Paris, France. 
b Institute of Armament Technology, Girinagar, Pune, 411025, India. 

 
 
 
Abstract 
 
In this paper, the problem of increasing reliability of active control procedure is 

considered. Indeed, a design method of rejection perturbation in presence of potentially faults, 
on a flexible structure with integrated piezo-ceramics, is presented. The piezo-ceramics are 
used as actuators and sensors. A single unit based solution, which handles both control action 
and fault diagnosis is proposed. The algorithm uses H∞ optimization techniques. A full order 
model of the structure is first obtained via both finite-element (FE) approach and 
identification procedure. This model is then reduced in order to be used in our robust 
approach. By a suitable choice of weightings functions, the provided method is able to reject 
disturbance robustly and to estimate occurred faults. The case of sensors and actuators faults 
is discussed. The choice of weightings for diagnosis and control systems is also tackled. 
Finally, the effectiveness of this integrated method is confirmed by both simulation and 
experimental results. 
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1. INTRODUCTION  

In many industrial and spatial applications, noise and vibration are important problems. 
The conventional method of treatment is to use passive damping techniques. However, these 
techniques are primarily effective at a limited band of frequencies. In the past decade, active 
control of vibrations has emerged as a viable technology to bridge this low-frequency 
technology gap. Recent developments have been propelled by the rapid technology growth in 
practical digital signal processing and by the use of promising smart materials with adaptable 
properties such as piezo-ceramics. Indeed, piezoelectric devices, as in particular PZT piezo-
patches, seem very attractive to carry out the function of sensor and actuator. The aim of 
reducing the vibrations may now be reached with a lower increase of weight. 

 
The smart structure obtained is able to react to external perturbations. It is more efficient 

than passive absorption ([1]). But it is also more sensitive to the failure of any element (e.g. 
actuators, sensors or onboard electronics), which can destabilize the control law and cause 
severe damages to the structure. In fact, due to wear of mechanical and electrical components 
piezo-ceramics might fail in more or less critical way. As a consequence, procedure of fault 
detection and isolation (FDI) can be necessary to ensure a reliable and safe operating.  

 
The theory of FDI has known a great interest during these last three decades ([2], [3]). The 

general concept of analytic FDI procedure is to compare the actual behavior of the monitored 
plant to that expected on the basis of a mathematical plant model. Plant models, however, are 
generally incomplete and inaccurate. Moreover, exogenous inputs, noises and modeling errors 
can either cause excessive false alarms and missed detection, or make it difficult to detect 
failures. Hence, any robust FDI procedure must be able to separate the effect of perturbation 
from the effect of failures.  

 
Furthermore, the modeling of a physical system for feedback control invariably involves a 

trade-off between the simplicity of the model and its accuracy in matching the behavior of the 
physical system. In active control and because of the highly flexibility of the class of systems 
under study, the goal is to design a feedback controller which increases the system damping. 
Moreover, these systems present many modes but the controller designed is usually based 
only on few of them. This can provoke the apparition of spillover phenomena and hence lost 
of control ([4]). Beside this, stiffness and natural frequencies can only be approximately 
estimated. Hence, it is desirable that the closed-loop be robustly stable to variation of these 
parameters and to spillover. As a consequence, it is necessary to use robust control law and 
robust fault detection algorithms ([5]). 

 
Many effective methods have been proposed to solve this problem. But most of them are 

based on generating fault detector independently from the control law ([6]). In this paper, we 
propose to apply to a composite flexible structure, a single algorithm that handle both the 
required robust active control law, as well as detecting fault occurrence in active elements. 
This dual problem is formulated as an H∞ design problem by using a standard system setup. 
Both for control law and for FDI, H∞ optimization techniques have been intensively used to 
generate robust controller ([7]-[10]) and robust filter detectors ([11], [12]). 

 
Combined approach has been studied by [13], [14] and [15]. In this paper, we use the 

algorithm developed by Stoustrup and al. ([15]-[17]). This algorithm is based on frequency 
domain H∞ formulation that makes weight selection more straightforward specially to 
improve the robustness to neglected dynamics introduced by the model reduction. This 
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algorithm is based on a kind of separation principle, which respects the fundamental trade-off 
between diagnosis and control systems. Moreover, the use of a combined module can be 
beneficial in terms of implementation and reliability. 

 
Moreover, as in [18] and [19], here, the problem of robust detection is also reformulated in 

a problem of optimal robust estimation, where now the unmeasured signal to be estimate is 
the input fault signal. Indeed, in this case, diagnostic of faults is straightforward rather using a 
common two main stages approaches: robust residual generation and robust residual 
evaluation. 

 
The flexible structure under study is a composite beam with piezoelectric patches as 

sensors and actuators. Hence, to perform classical linear dynamical analyses we use Nastran 
software to realize the finite-element (FE) model. However, this software does not contain 
any specific elements dealing with the piezoelectric coupling (electrical-mechanical) problem. 
Hence, we have elaborated an original strategy of simulation, which consists in exploiting the 
analogy between thermal and piezoelectric equations. The FE model obtained is then 
compared (in order to update it) to an actual model obtained by experimental identification. 

 
The main contribution of this paper is to show how H∞ optimization can be satisfactorily 

employed for control and fault estimation of flexible structure equipped with PZT actuators 
and sensors. The effectiveness of this integrated method is confirmed by both simulation and 
experimental results. 

 
The paper is organized as follows. After a description of the active structure in section 2 

the FE model and simulations are presented in section 3. In section 4, an experimental 
identification of the actual physical process is performed and matched with the FE model.  In 
section 5, the combined feedback controller and fault estimator is formulated as an H∞ design 
problem. Simulation and experimental results on the composite structure are given in section 
6. A conclusion is drawn in section 7. 

2. EXPERIMENTAL SETUP 

The structure is made of a composite beam with 3 pairs of piezoelectric ceramics bounded 
symmetrically to the beam and covered by very thin electrodes on their top and bottom sides. 
The beam of dimension 360 ×18×3mm, is constituted of two external thin plates (thickness 
0.5mm) between which is inserted a composite filling (thickness: 2mm). The structure is 
illustrated in Fig. 1. 

 
The actuators and sensors are PZ29 piezoelectric ceramics type with dimension 

49×24.5×0.51mm. PZT (Lead Zirconate Titanate) is a very stiff and transversely isotropic 
material with large piezoelectric coefficients. They are positioned parallel to the mid plate 
surface and polarized in a way that permits sensing or supplying pure bending motion (see 
Fig. 2). The composite element is realized with pre-impregnated plies of composite material 
of reference 07628 ES15. The beam is in vertical position (see Fig. 1) and the piezoelectric 
are numbered. Their position has been determined by FE approach ([20]). 
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Fig. 1: The composite active structure 
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Fig. 2: Piezoelectric ceramic bounded to the beam and its polarization 

 
The setup is completed by a control loop: charge amplifiers (Kistler© amplifier) for the 

conditioning of measured signals, tension amplifiers (Trech© amplifier) for the actuators and 
a specialized Dspace© card performing the real-time measurements and control. 

3. FE MODELING AND NASTRAN SIMULATIONS 

The FE method is a powerful approach to numerical analysis. It permits to model 
mechanical structures with arbitrary geometry and material properties. With this approach and 
without losing generality, the equation of motion of a linear flexible structure can be written 
as 

QqKqCqM =++ &&&  
where M, C and K are respectively the mass, damping and stiffness matrix of the solid 
structure (including active elements). Q  is the external generalized force vector. q  is the 
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nodal displacement vector. To predict the dynamic behaviour of the whole structure, the 
embedded piezoelectric active devices must be introduced in the last equation to set up Q . 

3.1. Formulation of piezoelectric elements 

In the following model formulation, we assume that the piezoelectric patches are perfectly 
bounded to the plate and the elastic field in such materials is coupled with the electric field.  

Finite element equations for piezoelectric materials have already been formulated in many 
papers (for example, [20]). The linear constitutive relations for the direct and the inverse 
piezoelectric effects can be written as:  

EdS TE −= σε  

EdD σεσ +=  

where the superscript T denotes a matrix transpose, ε  is the vector of strain tensor 
components, σ  is the vector of stress tensor components, D  is the electric displacement 
vector, E  is the electric field vector, ES  is the elastic flexibility matrix evaluated at constant 

E , d  is the piezoelectric coupling matrix and σε  is the dielectric matrix at constant stress. 
These equations can also be written in a more suitable way as, 

EeC TE −= εσ  

EeD εεε +=  

where εε  is the dielectric matrix at constant strain and EC  is the elastic stiffness matrix 
evaluated at constant E . 

3.2. State representation and model reduction 

Piezo-ceramics are discretized by mean of plate elements in order to model their mass and 
rigidity. The coupling is then introduced in the finite-element model that leads to the 
following equation ([5]). 

)(tuQQQ aext
+=  

where ext
Q  represents external mechanical strength and uQa .  represents actuator's effects. 

 is the input voltage. By duality, the characterization of the piezoelectric direct effect 
leads to a relation between the output voltage  and a function of the vector of mechanical 
nodal displacement: 

)(tu
)(ty

)()( tqQty c=  
Now, using the previous finite element model and taking into account a disturbance input, 

with form 
)(tdQQ

dext
=  

the equation of the motion of the active flexible structure becomes, 
dQuQqKqCqM

da
+=++ &&&  

Defining the mode shape iΦ  and the angular frequency iω  of the ith mode as the solution 
of the following generalized eigen problem ([1], [5]): 
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iii MK Φ=Φ 2ω , 

there exist then N linearly such iΦ  where N is size of the differential system (usually N is 
very large). A reduction is done by projection of the nodal displacements on a truncated 
modal matrix. Let Φ be this modal matrix and g  the vector of the associated generalized 
displacements defined by: 

[ ] gqNnn .;,1 Φ=<<ΦΦ=Φ L  

After some substitution and left multiplying by TΦ  the equation of the motion can be 
rewritten as: 

Qgkgcgm TΦ=++ &&&  

where m, c and k are diagonal matrices provided C has convenient properties. 
 
The most important stage in the reduction of order is the choice of the eigen modes kept in 

the reduced modal basis. Given the position of actuators and sensors, the modes are sorted 
regarding to their H∞ norms as described in [5]. By choosing now the state vector as  

⎟⎟
⎠

⎞
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⎝

⎛
=

g
g

x
&

ω
, 

we obtain a 2n order model that we turn into state space representation as 
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iii

inn

QuQx
diagdiag
diag

x 1,1,, 00
)(2)(

)(0
&  

                         [ ] xQy nic ,10)/1diag( ωΦ=  
 
From this state model we can then easily obtain the transfer functions of the process and 

the perturbation. In our application, for each transfer function, the first four modes were 
considered sufficient as it will be shown regarding to the efficiency of the controller.  

3.3. Actuator simulation 

The Nastran software does not contain any specific elements dealing with the piezoelectric 
coupling problem. To solve this problem, we have first exploited the analogy between thermal 
and piezoelectric equations. And then, we have used Nastran to perform classical linear 
dynamical analyze. 

 
Hence, with this original approach a straightforward actuator simulation is possible. As a 

matter of fact, to formulate an actuator, we assume that the electrical field is constant through 
the thickness and perpendicular to the midsurface, and we use the following thermal equation: 

 

th
CC εεσ −=  with  ( )0TT

th
−= αε . 

 
Where [ T000321 αααα = ] , iα  the coefficient of dilation in the direction i,  

the initial temperature and T the final temperature. 
0T
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We recall that the inverse piezoelectric effect is written as: 

EeC TE −= εσ with [ ]T

h
VE 100×= . 

 
Where h is the thickness of the piezoelectric ceramic (see Fig. 2). Matching the two 

equations, we obtain: 
EeC T

th

E =ε  

Hence, using EeC TE
th

1−
=ε  we have a direct analogy between the two couplings. Taking 

now  and 00 =T αα =i  one can determine the parameters ( T,,, 321 ααα ) allowing simulating 
the piezoelectric coupling. This leads to the following systems: 
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Remarks:  
¾ Because the piezoelectric materials are transversely isotropic leads to consider a thermal 

transversely isotropic behavior. 
¾ When we simulate an electrical excitation, we impose therefore a temperature on the 

surfaces of a piezoelectric pair that will induce a structure deformation. It is a linear problem 
taking into account the change of temperature but uncoupled in the sense that the temperature 
profile is imposed and does not evolve. Hence, we do not need thermal balance calculus. 

3.4. Sensor simulation 

A piezoelectric sensor can detect the strain when it is connected to a current amplifier. 
Indeed, when deformed, it accumulates an electric charge  on their surface electrode. 
Hence,  represents the image of the strain and it is given by ([20]): 

)(tq
)(tq

∫∫
−+ ∑

−−

∑

++ Γ+Γ=
2

2

1

1
)( dnednetq εε  

where  and  are respectively the upper and lower surfaces of the upper and lower 

electrodes.  and  are the normals to the upper and lower electrodes as shown in Fig. 2. 
In practice, we use a charge amplifier to measure . The output voltage is then given by: 

+Σ1
−Σ 2

+
1n −

2n
)(tq
)()( tqty β=  

where β  is an amplification coefficient. 
 
Now, by using Nastran Reissler-Mindlin plate's theory associated with the finite-element 

method ([21]) applied in displacement to the Nastran CQUAD4 element, the output voltage 
 can be written in terms of the element displacement vectors )(ty eq  as: 

eTe
D

qQty .)(
2

=  
where  
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and e and  (or ) are respectively the thickness and the length of the i ceramic (see Fig. 1 
and 2).  

1L 2L

 
Finally, the last operation consists in gathering element matrices in order to set up the 

global model of the system. Following this approach, the output voltage of the charge 
amplifier is a linear combination of degrees of freedom (DOF). Consequently, by using the 
classical MPC (MultiPoint Constraint) of Nastran, this output voltage can be determined.   

3.5. Simulations results  

The global FE model obtained, allows the calculus of the modal deformation and eigen 
frequencies of the structure as well as the Bode diagrams of each transfer between a sensor 
and an actuator. For that, we suppose that the ceramics are perfectly pasted to the beam. 

 
Hence, first vibration modes and frequencies obtained with this model are given in Tab. 1. 
 
We also have performed simulations that allow us to define the ceramics that are the most 

sensitive to one particular mode in the case where these modes are excited. This is very 
important in a control or in a perturbation rejection point of view. 

4. EXPERIMENTAL IDENTIFICATION 

Although methods and computers allow working with increasingly rich models, the 
modeling step constitutes a simplification quite rough of the physical reality. To validate the 
simplification hypotheses or to reduce errors by updating the model, it is necessary to make 
an experimental identification of the actual physical process ([22]). 

We have thus, identified the structure by elaborating a model based on experimental Bode 
diagram. This model is then compared to the one obtained by FE simulations. 
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Fig. 3: Experimental identification 
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Table 1 

Vibration frequencies and modal deformation given by the FE model
Mode Frequency (Hz) Frequency (rad/s) Modal deformation
1 6,34 39,84 bending
2 43,51 273,38 bending
3 54,76 344,07 bending 
4 127,47 800,92 bending
5 190,96 1199,84 torsion
6 257,77 1619,62 bending
7 370,18 2325,91 bending
8 478,93 3009,21 bending
9 661,11 4153,89 bending
10 695,98 4372,98 torsion

 

4.1. Experimental statements and first model 

With the available actuators and sensors pasted on the beam, we have access to necessary 
information for its identification. We obtain experimental Bode diagrams (magnitude and 
phase) for each transfer between a sensor and an actuator (see Fig. 3). Indeed, as the beam is 
endowed with 3 sensors/actuators, it is therefore possible to define several couples of 
sensor/actuator (see Fig. 1). We will qualify these couples of path. Thus, the path 1-2 
represents the transfer between actuator 1 and the sensor 3. 

Using a large number of frequencies (between 0 and 2000 rad/s), then by refining our 
measures around resonance frequencies, we reconstitute an "experimental" Bode diagram 
representative of the structure motion in steady state harmonic response. We present in Fig. 4 
and 5 Bode diagram relative to paths 1-2 and 3-2. 

 
 

 

Frequency (rad/s) 

 

 

Phase

Magnitude

 
Fig. 4: Experimental Bode diagram of path 1-2 
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Fig. 5: Experimental Bode diagram of path 3-2 

 
In the interval of frequency between 0 and 2000 rad/s, each path possesses at least 4 

resonant peaks (see, Table 2). These peaks are not always the same for each path. However, it 
is necessary to keep in mind that from a mechanical viewpoint, all modes are present on the 
structure, but, according to the disposition of ceramics, the contribution of each mode to the 
measures is more or less negligible. 

 
To elaborate a first model, we use the fact that each peak corresponds to a pair of complex 

conjugated poles. Thus we can represent each peak by a second order system. So, for each 
path, our model will be constituted by several second order systems and a first order system 
representing the effect of the charge amplifier. A gain bloc is added. It permits to adapt the 
static gain of the whole system, as described in Fig. 6. It is an empirical approach. 
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Fig. 6: Model structure retained for the identification procedure (p is the Laplace symbol) 

 
Making a large number of simulations, we have determined all the parameters 

( τωξ et,, iiK ), which allow us to approach at best the actual system.  
For paths 1-2 results are given in Fig. 7: the curve reflects the model and the cross are 

experimental points.  
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Fig. 7: Actual and simulated Bode diagrams for path 1-2 

 
For example, the continuous transfer function corresponding to path 1-2 is given by:  
 

)10814.2p355.3p)(1057.6p863.4p)(10854.7p605.5p)(1617p563.0p)(1885p(
)1071.1p45.78p)(10.967.6p56.10p)(05.89p9437.0p(80459621627.3 G 6252422

62422

21 ⋅++⋅++⋅+++++
⋅++++++

=−

 
For paths 3-2, results are given in Fig. 8. 

 

 
Fig. 8: Actual and simulated Bode diagrams for path 3-2 

 

The two paths present the same resonant frequencies with different magnitudes. But For 
the anti-resonant frequencies we can notice that they are not exactly the same. The 4 first 
experimental resonant frequencies of the two paths are given in table 2:  

 

4.2. Finite element model updating and validation 

In the active control, the identification is envisaged of different manner according to the 
mechanic viewpoint or control viewpoint. Indeed, in mechanics the objective of the 
identification is to obtain geometrical or physical parameters of the finite element model, such 
as the density mass, the Young modulus or the location of piezoelectric elements stuck on the 
structure. 

 - 11 - 
 



 
Table 2 

Resonant experimental frequencies of path 1-2 and 3-2
Mode Frequency (Hz) Frequency (rad/s)
1 6,4 40,21
2 44,1 277,09
4 129 810,53
6 267,4 1680,13

  
In the framework of our application, if , for example, we compare the Bode diagram of 

path 3-2 obtained by the FE model to that one obtain by the experimental identification, we 
observe that differences are essentially due to DC gain (see Fig. 9). This shows the validity of 
our FE model. What is more, this gain difference is foreseeable in regard to the fact that in the 
FE model, sensor and actuator amplifiers are not modelized. Hence, by minimizing a criterion 
characterizing the gap between measures and simulations we perform an updating of the FE 
model. 
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Fig. 9: Magnitude diagrams of the actual ant the EF model of path 3-2 

 

5. CONTROL AND FDI 

In this section, the combined feedback controller and fault estimator design is presented. 
This integrated approach is based on an algorithm developed by Stoustrup and al. ([15]-[17]). 
The theoretical framework is briefly described in the following. We recall that in this paper 
the Laplace variable is denoted p. 

5.1. Problem formulation 

Consider first, a control problem in its standard system configuration as depicted in Fig. 
10. Here,  is a disturbances or set points signal. The measurements  are used by the 
controller to generate the control signals  in order to make the outputs to be controlled  
sufficiently small (for more details on standard form, please refer to [9]). 

dw y
u cz
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Fig. 10: Standard control problem 

 
This system is described by the following matrix transfer function: 
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The H∞ control problem consists in finding the controller, , that minimize the H)( pK ∞ 

norm of the transfer . 
dcwzG

 
Suppose now, that the control system is operating under faulty conditions. Hence, one way 

to model the effect of faults is to consider actuators and sensors faults as additive on the 
control and the measurement signals respectively. i.e.:  
 

acsc fuuandfyy +=+=  
where  is sensor fault signal and  is actuator fault signal. sf af
 

The goal for the combined approach is to design a single module which in addition to the 
control signal, also generate a vector signal  containing estimates of the potential faults: fu

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

s

a
f f

fu ˆ
ˆ

 

 
Moreover, for a successful individual identification, it is of paramount importance to have 

good fault models. Hence, we introduce frequency weightings on the fault signals:  
 

aaasss wpWfandwpWf )()( ==  
 
where  and  are signals that are supposed to have flat power spectra. These are fictitious 
signals with the sole purpose of generating frequency coloured signals  and . For more 
details on direct faults estimation one can refer to [18] and [19]. 

sw aw

sf af

 
The block diagram of the standard control problem is now given in Fig. 11.  

 

 - 13 - 
 



G(p)G(p)
w

y

u

z

+
+Wa(p)Wa(p)

Ws(p)Ws(p)

aw
sw

af
sf

fu )( pK
cu

cy

G(p)G(p)
w

y

u

z

+
+Wa(p)Wa(p)

Ws(p)Ws(p)

aw
sw

af
sf

fu )( pK
cu

cy

 
Fig. 11: Combined control and fault diagnosis scheme 

 
To transform the system into a new standard H∞ control problem form, we define first the 

fault estimation error signal: 
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Then we establish a new augmented standard problem (Fig. 12) by defining the following 

vectors: 
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Fig. 12: Standard model for the combined approach. 

 
For the new standard problem depicted in Fig. 12, the transfer matrix is given by: 
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The explicit formula is: 
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Introducing the control law: ypKu ⋅= )( , the following closed loop system can be 
obtained: 

wpTz zw ⋅= )(  
 

where  is given by a Lower Linear Fractional Transformation (LLFT), i.e.: zwT
 

)())()(()()()())(),(()( 21
1

221211 pGpKpGIpKpGpGpKpGFpT Lzw ⋅⋅−⋅⋅+== −  
 
Hence, the problem is to minimize the H∞ norm of the following transfer: 

 
γ<

∞zwT  
 

Stoustrup and al. have demonstrated that, in the certain case, the solution of this problem 
could be obtained by a kind of separation principle ([15], [16]). Indeed, they pointed out that 
making the closed loop transfer function associated with the control objectives small and 
making the closed loop transfer function associated with FDI objectives small can be achieved 
independently.  

 
For our propose, we have used a state space approach to solve this combined problem ([8]) 

and [9]). The solution is based on the mix sensibility algorithm. 
 

5.2. Weighted problem 

We introduce now control and FDI weights. The H∞ design problem of the combined 
feedback controller and residual generator is now reformulated in terms of the two-design 
conditions:  

Control part: ccwzc WTW
dc

γ<
∞21  

FDI part: ffwzf WTW
ff

γ<21  

 
where  are two weighting matrices relative to control performances and robustness and 

 are two other weighing matrices relative to FDI robustness.  
ciW

fiW
Without loss of generality, it can be assumed that all weighting functions have been chosen 

in order to normalize the H∞ standard problem (i.e., 1== fc γγ ) 
 

Hence, including weighting matrices in the setup leads to the following transfer matrix: 
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where: 
( )0~

1212 aWGG =  

( )sa WWGG 2222
~

=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s

a

W
W

R
0

0
. 

 
This weighing matrix R, influence strongly the FDI problem. Indeed, if R is an identity 

matrix, the design problem is a fault estimation problem. If R has full rank then it is a fault 
detection problem. 
 

It is easy to see (as noticed in [15] and [16]) that solving the H∞ design implies making 4 
transfer functions/matrices small:  
¾ Making 

∞dcwzT  small implies good disturbance rejection and robustness. 

¾ Making 
∞fcwzT  small implies that undetected failures do not cause disastrous. 

¾ Making 
∞df wzT  small will reduce the rate of false alarms. 

¾ Making 
∞ff wzT  small implies good estimation or detection of faults. 

 
Hence, to ensure a good control and FDI a careful weight selection is necessary.  

6. APPLICATION TO THE COMPOSITE BEAM 

The purpose here is to reject the effect of the disturbance on measured signal in presence of 
possible actuator or sensor faults.  

 
We use the piezo-ceramic 1 as actuator and the piezo-ceramic 2 as sensors. The piezo-

ceramic 3 creates the disturbance. The sampling time is fixed to . s4106 −⋅
 
In this paragraph, the experimental results obtained for the controller alone and then for the 

integrated approach are presented 
 

6.1. Weightings selection  

The selection of the weighting functions is a crucial part of the design. 
 
Control part: Here, the focus has only been on disturbances rejection as no tracking 

references is considered. Hence, the controller has been optimized for rejection of 
perturbation and FDI specifications. Furthermore, when modeling, we have neglected many 
modes. Therefore it is necessary to take into accounts omitted modes in order to obtain a 
robust controller. For that, we have defined multiplicative uncertainty on the output that 
represent neglected dynamics. 
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To select dynamic weightings functions, we define the following system:  
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where  and {  represent, respectively, the state space representation 
of the retained and omitted modes. This omitted state part of the system could introduce spill 
over phenomena while controlling the system.  

{ }0,,, ccc CBA }0,,, ooo CBA

To avoid this phenomena and to ensure a good disturbance rejection we have selected the two 
weighting functions ( ) which minimize the classical mixed sensitivity problem (see, 
[8] and [23] for more details) 

21, cc WW

 
Fault estimation part: As here the goal is to estimate the fault entry, we need to select 
weighting matrices that permit to scale the fault to the same level. For our application, it was 
sufficient to scale to fault estimation errors by constant weights. The weight used in design is 
given by: 

α=1fW  
where α is a constant gain depending on the nature of the fault. 
Moreover, to ensure a good fault estimation we need either to filter the estimation error or to 
model the fault signal as the output signal from a low pass dynamic system, i.e. 

fWf f 2=  
In this application, it is the second method which has been used and the weighting function 

 is selected as “a lawpass” transfer function.  2fW
 
In conclusion, the weighting matrices  are adapted to the kind of the fault.  is 
chosen as a constant function, which permits to scale the fault to the same level and  as 
transfert function with first or second order low pass transfer functions.  

21 and ff WW 1fW

2fW

 
 

6.2. H∞ control results 

To elaborate the controller we use the reduced model presented in &4.1. This model is 
based on the first 3 modes of the identified one (see Fig. 7 and 8). In order to test the 
robustness of the controller, we apply it to the actual process. 

 
To realize the implantation in real time, each transfer block of the controller is reduced 

using the classic method based on the comparison of the controllability grammian and the 
observability grammian ([1], [5]). After reduction of the controller, transfer functions 
denominators have degrees contained between 8 and 12. During experimentations, we have 
noted a very good coincidence between simulations and experimentations on the structure.  

 
The performance objective is to attenuate vibration due to external disturbances. We 

present in Fig. 13 the frequency diagram of the open loop and closed loop system of path 1-2. 
This figure shows a good attenuation of frequency peaks and hence the increase of the 
damping values of the 3 first modes 
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Fig. 13: Open and closed loop Frequency response functions of path 1-2 

 
Hence, we present below simulations and actual results for several perturbations and for 

uncertain system. Parametric uncertainty has been considered (uncertain resonant frequencies, 
). %10±rf

 
Rejection of perturbations with a reduced controller.  
 
Perturbations are 3 sinusoidal signals exciting the 3 first resonant frequencies of complete 

model: 
 

        Feedback action 

Time (s)

(V) 

(V) 

(V) 

Closed 
loop 
output

Open 
loop 

Output 

Open and closed loop output 

 
Fig. 14: Simulation for the 3 first resonant frequencies 
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Fig. 14 presents the time evolution of the system output (Volts) in open loop and in closed 
loop, when a sinusoidal perturbation is acting on the beam. In the top curve, the perturbation 
frequency is at 6.5 Hz which is very near of the first resonant frequency. As the figure shows, 
when the controller is connected (at time st 1= ), the output magnitude is reduced in about 

. For the middle curve and for the bottom curve, the perturbation frequency is 
respectively at 44 Hz and 129 Hz (see Table 1). In conclusion, Fig.14 shows that the 
controller is efficient and rejects the sinusoidal perturbation in an acceptable time. Note that in 
this approach, the perturbation in not measured.  

s5.0

 
%10±rfSimulations for model with uncertain resonant frequencies ( ): 

 
Feedback action Outputs 

(V) 

(V) 

(V) 

Time (s) 

Closed 
loop 

output

Open 
loop 

output 

 
Fig. 15: Robustness tests: modified 3 first resonant frequencies  

 
The Fig. 15 is analog to Fig.14, but the frequencies of perturbations are modified. The 

controller has been calculated on the basis of the identified model but the simulations have 
been performed with a model in which the modal frequencies have been modified. This figure 
shows the robustness of the H∞ controller. However, it is necessary to insist on ideal 
conditions of this simulation: the choice of weighting functions is adapted to the frequency of 
the disturbance and on the quality of the nominal model. Rather than to multiply simulations, 
it will be more convincing to realize experimentations on the actual structure. 
 

Actual results (using Dspace©) for a sinusoidal perturbation at Hz4.6 : 
 
Fig. 16 shows the output system when a sinusoidal perturbation is applied. In the first part 

(t<3s), the steady state response is obtained. The controller is connected at time t=3s. This 
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figure shows that the controller is efficient and the rejection is quite good. Note that the actual 
process is certainly different of the model. Surely, the structure has many eigen modes than 
those of Table 1, and these modes are not well known. In this experiment, no spillover has 
detectable.  

 
 

 

Closed loop output 

Time ( s )

(V) Feedback action Open loop  

 
Fig. 16: Perturbation rejection for f=6.4 Hz 

 

Actual results for chock type perturbation: 
 

 

Closed loop output 

Tim e (s) 

(V) 

 
Fig. 17: Rejection of chock type perturbation 

 
For chock type perturbation, the settling time in open loop is about . In Fig. 17, we can 

notice that with our controller, the perturbations are rejected in about . This shows the 
efficiency of the closed loop. This comes largely from the choice of the weighting functions 
that are well adapted to the nature of the disturbance. 

s10
s3
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6.3. Necessity of fault detection 

The use of piezoelectric device as sensor or actuator can lead to different kind of failure: 
• Cracks can appear in the ceramics or in the electrodes,  
• Ceramics can be poorly pasted. 
• Stressed ceramics due to exposition to a high magnetic field. 

If a ceramics is partially detached, the locally physical characteristics of the structure 
change which implies in addition to faulty measures an alteration of the global behavior of the 
structure. In the case of occurrence of cracks on ceramics, the global behavior of the structure 
is not modified but the useful surface of the ceramic is reduced. This kind of faults presents 
two consequences: a diminution of the gain and a lost of the symmetry of the setting. 

 
Hence, to show the necessity of the FDI procedure, we have performed several 

simulations. These simulations were carried out in closed loop and by integrating actual 
measuring noises, which have been measured on the structure. It is a white noise of an 
estimated variance of . 2-6 V2.58.10

We present in Fig. 18 a simulation result for a faulty case. Here, the simulated fault is 
described as a step function. Fault sensor starts at st 2=  and finishes at  with amplitude 
of  V. It's a small fault that represents an increase of  of the piezoelectric gain. For 
the closed loop, the controller is connected at t=1 s.  

st 3=
310.5 − %3.8

 
 Closed loop output 

Time (s) 

Fault

Open loop output 

Feedback action 

(V) 

 
Fig. 18: Output with an increase of 8.3% of the sensor gain at sts 32 ≤≤  

 
Fig. 18 shows that we obtain  of rejection in 4s when the fault is acting during 1s. 

This figure indicates that is not possible to detect the fault using only the measure of the 
output. Of course, as we will see it (Fig. 21), performing detection by analyzing only the 
output depends on the kind and the magnitude of faults. But, without integrating FDI 

%93
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procedure, it is hard to make distinction between fault and perturbation or noise effect. In 
addition to that, that controller could mask the fault effect on the output because it interprets 
the fault as a perturbation and would try to reject it. 

 

6.4. Combined module 

We apply now the combined design of Fig. 12 to the composite beam. The design was 
optimized by a judicious choice of weighting matrices in terms of good fault estimation. The 
weighting matrices  have been adapted to the kind of the fault as described 
before.  

21 and ff WW

 
We present below some results obtained in the case where the composite structure is 

corrupted by different kind of sensors and/or actuators faults:  
 

Small sensor fault: We perform here, using the combined design, the same simulation as the 
one presented in Fig. 18. This fault represents an increase of  of the piezoelectric gain. 
Here we choose the two weighting functions as  

%3.8

 

0001.0
1,50 21 +

==
p

WW ff  

The fault estimation signal is depicted below: 
 

Sensor Fault Fault  Estimation 

Time (s)

(V) 

 
Fig. 19: Fault estimation for small sensor fault – increase of 8.3% at 2s≤ t ≤3s 

 
Comments: It turns out from Fig. 19 that integrating now the FDI procedure in the design, 

allow us to detect the presence of a fault. Indeed, as discussed before, it wasn't possible to 
decide of the occurrence of a fault by analysing only the output signal. The estimation is quite 
fast but not very accurate. This is due to the fact that we want to detect small fault in the 
presence of noise measure.  
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¾ Important sensor fault: we perform now the same simulation but with a fault signals 
described as a step function of amplitude of . As it is a big fault its effect on the 
output is visible on Fig. 20 but the estimation is now quite fast and more accurate. 

5.0

 
        Fault        Open and closed loop output

Fault

Time (s) Time (s) 

(V) (V) Feedback 
action 

 
Fig. 20: Output and fault estimation: Tall sensor fault 

 
• Actuator fault: the fault consists in a modification of the gain actuator. Here the 

gain is increase as a ramp function entering from st 2=  to  with a slope of 
. Fig. 21 shows that fault estimation and perturbation rejection are rather 

good. 

st 4=
001.0

 
Fault and estim ation O pen and closed loop  output  

Tim e (s) 

Feedback 
action 

Fault 
action 

Tim e (s) 

(V ) (V) 

 
Fig. 21: Output and fault estimation: Actuator fault – ramp of slope 0.001 at t=2s 

 
 
Comments: In Fig. 21, we notice a good tracking of the fault but with a less accuracy. The 

dynamic of the fault estimation depends on the choice of . It is a trade off between fast 
and accurate estimation in presence of noises. 

2fW
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The faulty signal is here described as the output of an integrator having a white noise as 
input. It goes into the system from st 2=  to st 4= . This fault simulates a change in the 
variance of the measured noise. 
 

Fault signal Open and closed loop output 

Fault 
action 

Fault 
Estim ation

Feedback 
action 

Tim e (s) Tim e (s) 

(V) (V) 

 
Fig. 22: Output and fault estimation: noise fault 

 
Comments: Fig. 22 shows the capability of the proposed single module to reject 

disturbance robustly and to identify which faults have occurred.   

7. CONCLUSION  

This paper described the design and experimentation of a single module that integrates 
both robust feedback control action and fault estimation and diagnosis. The experimental set 
up is a structure made of a composite beam with piezoelectric patches as sensors and 
actuators. 

 
This work focuses on the necessity of including FDI procedure in any active control 

strategy to ensure safe applications. The method is based on a formulation of control design 
and detection design in a scheme of an H∞ optimization problem. We point out the 
importance of the trade-off between the simplicity of the model and its accuracy in matching 
the behaviour of the closed loop physical system.  

 
The algorithm proposed is based on H∞ optimization techniques. An important aspect of 

this method is the trade-off between detection and control systems. Hence, by suitable 
selection of weights, we can control robustly the system and generate accurate estimation of 
occurred faults. This permits also to reduce the rate of fault alarms and therefore to increase 
significantly the reliability of the process. Simulations and experimentations on the actual 
process have shown the efficiency of the proposed method.  

 
Further work is under way to generate a MIMO fault tolerance control algorithm.  
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