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ABSTRACT 

Damage tolerant active control is a new research area targeting to adapt fault tolerant control methods to mechanical 

structures submitted to damage. Active vibration control is a mature engineering area, using modern control 

methods to address structural issues that may result from excessive vibration. However, the subject of structural 

vibration control under damage represents a novel subject in the literature. There are some difficulties to adapt 

regular controller designs to active control, which may not result in good performance even for healthy structures. 

Fault detection and diagnosing research has conducted to development of the fault tolerant control area, whose 

methods are equally hard to translate to damaged structure control. Spatial active vibration control encompasses 

some techniques that present important features to structure control, however this is not necessarily true in the 

general control design area, where spatial constraints are normally not involved. We propose in this paper an 

investigation of these spatial techniques, applied to structural damage control. Several new strategies for vibration 

control are presented and analyzed, aiming to attain specific objectives in damage control of mechanical structures. 

Finite element models are developed for a case study structure, considering healthy and three different damage 

conditions, which are used to design controllers, adopting an approach based on a 𝐻∞ spatial norm, and according 

to some of the proposed strategies. Discussion of the achieved results contributes to clarify the main concepts 

related to this new research area, and controller performance analysis permit to foresee successful real case 

application of the techniques here described. 

 
KEY WORDS:  Damage Tolerant Active Control, Spatial 𝐻∞  Control, Fault Tolerant Control, 

Structural Health Monitoring, Active Vibration Control, Piezoelectric, Smart Structures, Finite 

elements. 

 

1 INTRODUCTION 

Development of new technologies and materials, aiming to extend the operative life of 

mechanical structures and increase the level of safety standards, constitute a modern challenge 

that calls for the use of advanced tools, methods and procedures. New generations of mechanical 

structures based on smart materials possess the ability to change their physical properties in 

response to specific stimulus. Embedding smartness to structures improves its intrinsic or 

extrinsic characteristics and entails innovations beyond the ingenious design of final products. It 

also brings significant impact on processes and systems adopting the new structures. For example, 

smart composites can present the ability to monitor its structural health and therefore to guarantee 

better control of its passive, active or adaptive functions. Smart structure development in general 

opens new fascinating frontiers for applied research and product engineering.  
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Recently, the concepts of Damage Tolerant Active Control (DTAC) were proposed [1]. DTAC 

systems represent a new research area that has intersections with both Fault Tolerant Control 

(FTC) and active control of vibration areas. DTAC systems’ framework is based on Structural 

Health Monitoring (SHM), in the same way that most FTC methods rely on Fault Detection and 

Diagnosis (FDD) systems, to provide feedback data used to achieve the performance goals of the 

controller [2]. Intense research activity in the last decades brought to maturity several methods of 

the aforementioned areas. This effort represents the application of multidisciplinary monitoring 

methods to assess complex systems of modern engineering, seeking essentially safe operation and 

useful life extension for these systems, generally based on evaluation of their operational status, 

and eventually applying control methods to ensure the required performance. DTAC systems 

therefore comes to use a wide multidisciplinary context, applying knowledge from different fields, 

such as mechanical structures modeling, signal processing, instrumentation, fracture mechanics, 
modal analysis and artificial intelligence, among others. 

SHM methods provide fault detection and diagnosis of the state of a mechanical structure [3] [4] 

[5] [6] [7]. Such methods have been developed at various engineering sectors, especially air or 

land vehicles [8] [9] and civil structures [10]. SHM is now considered the key technology to pave 
the transition from traditional schedule-driven to condition-based maintenance [11]. 

Active control of mechanical structure vibrations has evolved significantly in the last two 

decades [12] [13] [14]. A known example of successful application of these methods is the 

response control of buildings to vibrations caused by winds or earthquakes [15] [16]. Several 

other problems have been treated in the literature [17] [18], and an increasing number of 

applications may become common in the near future, following the trend of lighter structures. 

Fault detection techniques associated to control methods have conducted to the development of 

the FTC area, beginning with the case of a robust controller that is designed to encompass some 

previously conceived faults. This is known as passive FTC, despite the fact that a controller is 

involved, because the controller is not expected to change due to the occurrence of a fault. Two 

main classes of active FTC methods, when the controller changes, may be identified: the 

reconfiguration of the controller in face of faulty conditions, in order to maintain adequate 

performance; or the fault accommodation through switching the controller to another one 

previously designed [19] [20] [21]. However, simple application of these active FTC methods to 

damaged structures brings new challenges, and consequent specific solutions, thereby generating 

the new area of DTAC. To the better knowledge of the authors, there are very few publications 

applying active reconfigurable or switching control of vibration techniques to damaged structures. 

Attempts to design control architectures that take fatigue into account, in order to prevent from 
potential damages, have been proposed recently in [22] and [23].  

Smart structures include in general embedded sensors, actuators and eventually processors, 

enabling them to diagnose and react to abnormal states, and thus minimizing the effects of a 

possible damage. Including embedded digital processors, smart structure capabilities may 

integrate a high level of computational intelligence. New methods and procedures are necessary, 

conducting to automatic analysis, diagnosis and damage control processes. The range of 

embedded techniques to monitor and control mechanical structures now can adopt a large amount 

of transducers, routines for the detection of faults, its diagnosis and prognosis, and also the 

reconfiguration of the active control algorithms in response to a damage, be it a permanent change 
or a specific response facing an emergency or harsh situation. 

Pursuing DTAC goal to control damaged smart structure vibrations, two different controller 



objectives may be adopted: vibration suppression in the whole structure or only in some specific 

parts. In this paper, an approach to DTAC system design, based on spatial H∞ norm, is presented, 

aiming to maintain acceptable performance for a possibly damaged controlled structure. Active 

vibration control of structures is basically concerned with spatially distributed systems. These 

system models are governed by partial differential equations that can be discretized using a modal 

analysis procedure, which leads to mode shapes that describe the spatial characteristics of the 

structure. In the case of irregular geometries and non-trivial boundary conditions, analytical 

solutions are not available to generate this type of model. Finite Element (FE) and system 

identification methods are often used to represent spatially distributed models. Numerical 

simulations provide the ability to understand the relative effects of property changes in great detail, 

such as brought by damage, and are thus quite fundamental for design. In this work, FE models, 

for healthy and damaged smart structures, are used to design spatial controllers intended to 
manage vibration suppression in the presence of structural damages.  

The common approach to active vibration control design is to assume an input disturbance in one 

or more specific positions, with authority to locally excite dominant modes. In this case, and 

especially if a damage is present, one needs to adjust the controller for each considered vibration 

mode, in order to not increase unexpected vibration modes at some structure regions (damaged or 

not). Furthermore, it is common to have some specific position to measure the vibration to be 

controlled, often in a collocated configuration of inputs and outputs. Applying a 𝐻∞ based 

approach, which is currently the preferred design method for active vibration control, early work 

of the authors [24] has investigated a combined scheme allowing vibration rejection and sensor 

faults detection on smart structures. As in these approaches, one use only specific points for input 

and output, it does not adequately take into account the spatial restrictions of the structure. This 
opens the way to spatial norm definitions and respective controller design methods [25]. 

To control (healthy) structures, some early works introduced the application of spatial norms [26] 

[27]. The authors proposed to use spatially distributed models instead of these mentioned point-

by-point framework or, as generally called, pointwise models. These norms have been employed 

to elaborate collocated optimal 𝐻2 and 𝐻∞ spatial controllers that ensure vibration reduction 

over entire structures in a spatially average sense. This is done by employing the spatial 

information embedded within the models of structures that result from modal analysis. Robustness 

of collocated controllers have been investigated and implemented effectively on real structures 

using piezoelectric transducers (PZT) by [28] [29] and [30]. The improved performance obtained 
using spatial approach to control healthy structure vibration is well established now [31] [32]. 

The objective of this paper is to further explore issues in vibration analysis for smart structure 

testing and control, considering the occurrence of damage. It presents a spatial approach to 

perform DTAC on damaged smart structures. We propose to investigate 𝐻∞ spatial control 

applied to damaged structures with non-collocated PZT sensors and actuators, under some 

strategic treatment of DTAC goals. Comparing collocated and non-collocated configuration, the 

last one present restricted stability performances and do not have necessarily the same number of 

inputs and outputs [13] [33]. Structures always present flexibility between the actuator position 

and the region where the vibration must be attenuated, which entails the collocated concept only 

for theoretical applications. Composite smart structures, constructed with the active elements 

embedded in non-isotropic composite layers, are clearly the non-collocated case. Discussions of 

FE simulated results are here presented, adopting the spatial approach and new control strategies, 
which are applied to a case study smart structure.  



The outline of the rest of the paper is the following: in Section 2 DTAC different strategies and 

respective controller architectures, which are going to be explored in the examples, are presented; 

in Section 3, the Finite Elements models used in the simulations are given, including details about 

transducers and damages representations; in Section 4, the mathematical model approach for 

spatial norm based controller design is presented; in Section 5, simulated results for a cantilevered 

structure is developed, including a spatial robust controller and damage effects; in Section 6, 

application of some DTAC configurations and strategies are analyzed; a discussion of the results 

is presented in Section 7 and final remarks and future perspective are drawn in the last section. 

2 STRUCTURES AND DAMAGE CONTROL 

DTAC systems mean essentially active control of mechanical vibrations of structures aiming to 

maintain an adequate performance under the possibility of structural damage. Applications 

demand a network of transducers to produce measurement data to feedback the control loop, but 

also to feed specialized modules implementing structural integrity analysis techniques, in order to 

guarantee that the DTAC controller attains its goals. Ergo, the structure has to be smart to embed a 

DTAC system. A brief insight of smart structure constitution is given in the sequence. 

2.1 Smart functions in structures 

Advanced structures with improved self-capabilities have been intensively studied over the last 

four decades [34]. A smart structure needs the ability to respond to internal changes and also to 

environmental conditions. It means that built-in sensors and actuators are necessary, to monitor 

and diagnose these changes. Smart structures emulate some characteristics of a biological system 

as sensing, actuation, adaptability and self-repair. Development of smart structures is fuelled by 

the on-going technological progress and evolution of performance demands. 

Different materials can be used on smart structures to act and sense. Among possible current 

transducers, piezoelectric materials are those widely used, due to their adaptable properties. 

Because piezoelectric elements can be used for mechanical to electrical transduction and vice-

versa, they can be adopted as sensors and/or actuators, which makes it easier to integrate the smart 

functions to the structure. Commonly used piezoelectric materials are semicrystalline polymer 
film PVDF (polyvinylidene fluoride), and PZT ceramic (lead zirconate titanate). 

Nowadays, and particularly in aeronautical industry, composite materials are increasingly used 

due to their strength properties. Because of its multilayer structure, they are suitable to host smart 

materials. Indeed, embedded sensors and actuators could be easily incorporated into the composite 

as a smart layer, during or even after the manufacturing phase of the composite panels. 

Therefore, based on the adopted objectives to perform structural active control, different 

strategies may be considered, depending if the structure is in a healthy condition or if damage was 

detected. The respective framework is presented in Fig. 1, where the strategies depend if the 
structure has an identified damage or not. If the structure is a healthy one, there are two strategies: 

 Strictly tolerant active control; 

 Preventive active control; 

If damage is identified there are two other strategies to be applied: 

 Evolving damage active control; 

 Adaptive tolerant active control. 



 
Fig. 1: Structural active controllers under possible damage 

It is also possible that a DTAC system may combine these strategies, but this will not be treated 
here. A description of the four above possibilities is presented in the following. 

A robust control is the first step to face damage that may occur in the future to the structure. The 

basic objective here is to design an active controller that rejects specifically some considered 

modes. Indeed, targeting the vibration level of the most damaging mode of some structures, 

subjected to known severe stress conditions, can enhance its longevity. As an example, one can 

refer to [23], where the authors proposed an active logic for the damage reduction of printed 

circuit boards by means of piezoelectric actuators and sensors. A strictly tolerant active controller 

(STAC) is the strategy to be used to design a controller robust enough to guarantee a minimal 

acceptable performance even if damage occurs. The resultant controller is fixed, meaning that it 

will not necessarily respond to parameter changing in the structure, beyond its already included 

robustness capacity. The applicability of this strategy is limited, and basically depends on the 

predictability of future damages and its respective severity. Nevertheless, the compromise 

between robustness and performance may conduct to a poor controller behavior for a not damaged 
structure. 

A preventive active control (PAC) is the strategy to be used when the controller is designed to 

avoid or retard the occurrence of damage. An example of this strategy is presented by [22], where 

a cost function includes an expression that take into account material fatigue, which is then 

minimized in the controller design process. The main goal here is to guarantee a longer structure 
life based on the use of a PAC system. Again the controller does not change if damage is detected. 

If damage is detected and identified, an evolving damage active controller (EDAC) is the 

strategy to design a controller to protect the structure. The main goal is to minimize the vibration 

energy flow to the damaged region in order to avoid the damage evolution. It may be typically 
used in a smart structural repair, which now can monitor and control the extent of damage [35]. 

The last strategy general approach is to accommodate a detected damage and at the same time 

maintain an adequate level of performance. Consider a smart structure with a network of sensors 

and actuators including an SHM module and an active vibration controller. When damage is 

detected, the controller shall be adapted to face the new structural condition. This is the adaptive 

tolerant active control (ATAC) novel strategy, mainly addressed in this paper. Some different 
system configurations are examined briefly in the next paragraphs. 



 
Fig. 2: DTAC scheme in a reconfigurable design 

The first and simplest ATAC configuration is to depend on a human interaction to design a new 

controller. An existing SHM module must provide enough information so that an engineer may be 

able to design a new controller to guarantee the required performance. Evidently, this may not be 

applicable for emergency situations, where a rapid response is necessary. In this case, an 

automatic reconfiguration of the controller is indicated. The automatic reconfiguration mechanism 

and the FDD module interaction is the subject of a future publication, demanding its proper space 
to detail the reconfiguration method. 

To be able to perform online the reconfiguration, and ensure a fast response of the controller to a 

sudden change of structural behavior, the FTC main configurations [21] [36] may be adopted. The 

main difference between FTC and DTAC are the specific methods to be adopted for controller 

design, which must take into account spatial restrictions necessary to provide effective control of 

structural vibrations. The FTC typical framework is depicted for DTAC in Fig. 2. 

Comparing the block diagram seen in Fig. 2 with a regular feedback controller diagram, it may 

be noticed the introduction of two new blocks, respectively SHM and ATAC, which includes the 

reconfiguration algorithm and the active controller. The SHM module must provide information to 

the reconfiguration algorithm to be able to change the active controller online. Signals that come 

from the SHM block may be a residue vector, generated by recent input and output signal 

measurements, weighed against a validated signature of the healthy structure. However, for DTAC 

systems, more information may be necessary, such as severity and localization of damage, or 

other data required by the reconfiguration algorithm, for example pole deviations due to damage, 

or semantic information for an artificial intelligence based reconfiguration. 

Considering that even if this controller reconfiguration mechanism should respond as fast as 

possible, eventually the implicit time delay may bring some difficulty to its application when a 

really fast response is necessary, for example, in the case of serious and sudden aircraft damage. 

New elaborations over this scheme may avoid catastrophic consequences of time delay, but they 

will be treated in future publications. 

3 ACTIVE SMART STRUCTURE AND FE MODEL 

The FE models of the cantilevered structure represented in Fig. 3, equipped with non-collocated 

and surface-mounted piezoelectric patches, are developed in the next sections. Models of the 

healthy structure, including representation of the piezoelectric patches, are used to assess the 



undamaged performance. Developed models of the structural damages are also based on patches, 

and used to simulate the closed-loop behaviour under the action of different DTAC controllers.  

3.1 Adopted composite smart structure 

We adopt in this study an active cantilevered laminate plate in a horizontal position, according to 

dimensions (920 × 192 × 1.2 𝑚𝑚) and elements in Fig. 3, which is modeled with the complete 

six degree-of-freedom (DOF) at each node in a dense FE grid, in order to have the complete 

dynamics represented as realistic as possible. The structure consists in four epoxy/carbon layers 

with orientation angle [0°/−45°/+45°/0°] . The actuators are circular PZT patches from 

NOLIAC® and sensors are flexible macro fiber ceramic (MFC), from Smart Materials®. Material 

properties for the layers, piezoelectric elements and respective glue are given in the Appendix. 

 
Fig. 3: Adopted composite structure with active elements 

3.2 Piezoelectric transducers 

A key challenge is to achieve a good validated model for the piezoelectric patches, and their 

interactions with the composite structure. Thereby, we tested and identified the mechanical 

properties of composite specimens, for the transducers’ parameters in the FE models [9]. 

Accordingly, piezoelectric patches have been glued on these specimens and electromechanical 

measurements have been performed for correlation studies [9]. 

The smart structure FE models developed in this work use the Structural Dynamics Toolbox for 

MATLAB® (SDT) [37], based on piezoelectric Mindlin shells, taking into account the 

viscoelasticity of the composite core, the glue, and the piezoelectric coupling equations. Electrical 
degrees of freedom (DOF) are included in addition to the nodal displacement [38]. 



 

Fig. 4: (𝑎) Geometric representation of the glued piezo-patch : (𝑎1) Top view; (𝑎2) zoom with a side 

view. (𝑏) Example of damage-patches. 

For piezoelectric shell elements, electrical DOFs correspond to the difference of potential on the 

electrodes while the corresponding load is the electrical charge. For volume elements, one defines 

multiple point constraints to enforce equal potential on nodes linked by a single electrode and sets 

one of the electrodes to zero potential. To represent sensors, the configuration corresponds to 

cases where the voltage remains very small and an electrical charge is generated basically due to 

mechanical deformations. For the actuator configuration the electrical charge corresponds to the 
resulting force associated with the voltage, applied through a voltage driven amplifier [39]. 

Considering dynamic measurements, one expects that the first in plane mode of the patch, due to 

Poisson’s effect, will generate compression through the thickness and thus a charge distribution on 

the surface [40]. To bypass the need to compute all modes in the frequency range of interest, the 

proposition is to compute the direct frequency response on a given range and to use the resulting 

shapes to build a Ritz basis. Further details on this method may be found in [41], but the approach 

guarantees good results at the retained frequencies and is deemed most efficient for the considered 
applications.  

3.3 FE patches modeling 

Referencing to Fig. 4a, to account for material properties, one considers a volume mesh 

distinguishing an orthotropic base plate (shown in blue), a glue layer (EPO-TEK) assumed to be 

an isotropic elastic material, (in orange), and a transversely isotropic piezoelectric material 

(shown in green). The electrodes are placed on the circular surfaces and polarization is in the 
direction normal to the surface. 

Based on a Stiffness Reduction Method (SRM) [42], a parametrical damage is introduced 

through the parameter Υ. Indeed, in SHM context, a common and simple way of modeling 

damage is to incorporate a stiffness loss in the region of the damage by modifying the respective 

materials properties. We represent this change using the vector 𝑃𝑚𝑎𝑡 (Young’s modulus, shear 

modulus, density etc.) to the product Υ𝑃𝑚𝑎𝑡  with Υ ≤ 1 [42]. Therefore, to introduce this 

damage, an automatic approach has been developed using SDT software where a damage-patch is 

generated with a specific mesh. The dimension and the material properties of this damage-patch 

could then be changed and adjusted. The introduction of this patch before changing its properties 



does not alter the modal properties of the structure. Moreover, nodes inside this damage-patch 

could be removed to create crack damages. It is possible to see in Fig. 4b two examples of this 

automatic generated approach to represent damage in FE models. Notice also that there is a mesh 

for the structure, a different one for the damage boundaries and a third for the damage itself. 

4 SPATIAL NORM-BASED CONTROL DESIGN 

An active vibration control methodology based on a spatial 𝐻∞ norm definition [30] has been 

studied in the last two decades, starting from the initial work of [26]. This approach may be very 

useful to DTAC systems, and is explored further in this paper. It must be emphasized that 

application of these concepts to damage control is probably unique to DTAC, representing a 

control methodology that may not be used by a regular FTC system. The idea is to control the 

vibration in predefined regions of the structure, instead of having pointwise controllers, i.e. a 

norm minimization at specific points where the structure has performance indicators or sensors. 

In pointwise active control, the controller is designed based only on the information of some 

positions along the structure [43]. Notwithstanding, vibration characteristics at other locations 

along the structure are not indeed accounted for. This may cause problems if vibration reduction 

over the entire structure is needed. To deal with such issues, [29] have extended the 𝐻2 and 𝐻∞  
norms to spatially distributed systems. Before introducing the spatial controller, we address first 

and briefly the general robust design framework. 

4.1 Modal model 

Second-order differential modal equations are commonly used to represent structure behavior, 

because it is basic for a FE model, and can be easily converted to state-space formulation used in 

control area. Beginning with the nodal second-order approach, the concentrated parameters matrix 

equation of a generic mechanical structure is modelled as 

𝑀𝑝�̈� + 𝐷𝑝�̇� + 𝐾𝑝𝑝 = 𝐵0𝐹𝑎 (1) 

where 𝑝 is the displacement vector for the adopted nodes, 𝑀𝑝, 𝐷𝑝 and 𝐾𝑝 are respectively the 

inertial, damping and stiffness matrices, 𝐹𝑎 is the vector of external forces acting on the structure 

and 𝐵0  reflects its position distribution. Mechanical structures have an infinite number of 

vibration modes, and modelling them inevitably limits it to an adequate number, in order to 

represent the problem at hand. The modal matrix is defined as 

Φ = [𝜙1 𝜙2 … 𝜙𝑚] 
where 𝛷𝑖, 𝑖 = 1, … 𝑚 are the first m natural modes. Considering the transformation for modal 

coordinates obtained using 𝑝 = Φ𝑞 and pre-multiplying (1) by Φ𝑇, it results 

a
T

p
T

p
T

p
T FBqKqDqM 0   (2) 

that may be written as 

𝑀𝑚�̈� + 𝐷𝑚�̇� + 𝐾𝑚𝑞 = 𝐵𝑚𝐹𝑎 (3) 

where 𝑀𝑚 = Φ𝑇𝑀𝑝Φ, 𝐷𝑚 = Φ𝑇𝐷𝑝Φ, 𝐾𝑚 = Φ𝑇𝐾𝑝Φ, 𝐵𝑚 = Φ𝑇𝐵0, commonly known as modal 

matrices, with 𝑀𝑚 and 𝐾𝑚 diagonal matrices. In order to get also a diagonal modal damping 

matrix, which is very convenient for the modal analysis, it is common to adopt the proportional 

form, 𝐷𝑝 = 𝛼𝑀𝑝 + 𝛽𝐾𝑝 , where 𝛼  and 𝛽 ≥  0.  This assumption gives rather approximate 

values considering that flexible structures have very small damping factors in general. 



4.2 State-space model 

Starting from (2), it is usual to choose the modal matrix Φ such as the modal mass matrix 
results an identity matrix, leading to (4), for each mode, 

�̈�𝑖 + 𝑑𝑚,𝑖�̇�𝑖 + 𝑘𝑚,𝑖𝑞𝑖 = 𝑏𝑚,𝑖𝐹𝑎,𝑖, (4) 

where 𝑖 = 1,2, . . . 𝑚, is the mode index, 𝑑𝑚 and 𝑘𝑚 are the damping and stiffness coefficients 

for the respective mode. Even if a finite number of modes are considered, a model reduction 

approach is yet necessary to get a manageable model. Consider for the moment this reduced 

number 𝑛 < 𝑚 as the number of modes to control explicitly. 

Adopting the state vector definition 𝑥(𝑡) = [𝑞(𝑡) �̇�(𝑡)]𝑇  corresponding to modal 

displacements and velocities, the respective state-space model derived from (4) may be written as 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝐵𝑢𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
 (5) 

where the four piezoelectric transducers seen in Fig. 3 are being considered as one control 

input  𝑢(𝑡) (Piezo 1), two measured outputs vector 𝑦(𝑡) (Piezo 2 and Piezo 3) and disturbance 

input (Piezo 4). The system matrix 𝐴 has dimension 2𝑛 × 2𝑛, and is given by 

𝐴 = [
0𝑚×𝑚 𝐼𝑚×𝑚

𝐾𝑚 𝐷𝑚
] 

where 𝐷𝑚 and 𝐾𝑚 are the diagonal matrices obtained from (4) but limited to only 𝑛 modes. 

Notice that the 𝐵 and 𝐶 matrices must reflect the position of the respective transducers. We are 
here neglecting a possible feedthrough term between inputs and outputs.  

4.3 Spatial H∞ controller design 

It is convenient to represent the adopted structure, in order to design its active controller, by the 

general MIMO system framework seen in Fig. 5. There, it may be seen two blocks and four 

signals, respectively the structural plant and controller blocks and disturbance and control signal 

vectors input signals 𝑤(𝑡) and 𝑢(𝑡), and the time and spatial dependent performance index 

vector 𝑧(𝑟, 𝑡) and measured output vector 𝑦(𝑡). 

 
Fig. 5: Active control problem framework 

In state space form, the plant to be controlled may be represented by (6), where 𝑥𝑝(𝑡) is the 

state vector. All vectors and matrices must have adequate dimensions, regarding the number of 

inputs and outputs and the order of the plant. Considering the closed-loop system, its input is 

solely the disturbance vector and the performance vector is the output. In general, performance 



index depends only on time. But to include the spatial restrictions we need to formulate the 𝐻∞ 

spatial control problem where the performance output vector depends also on the spatial position. 

Considering initially only the time dependence, the state-space formulation is represented in (6): 

�̇�𝑝(𝑡) = 𝐴𝑝𝑥𝑝(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝐵𝑢𝑢(𝑡)

𝑧(𝑡) = 𝐶𝑧𝑥𝑝(𝑡) + 𝐷𝑧𝑤𝑤(𝑡) + 𝐷𝑧𝑢𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑦𝑥𝑝(𝑡) + 𝐷𝑦𝑤𝑤(𝑡)

 (6) 

Given a state-space controller as 
�̇�𝑘(𝑡) = 𝐴𝑘𝑥𝑘(𝑡) + 𝐵𝑘𝑦(𝑡)

𝑢(𝑡) = 𝐶𝑘𝑥𝑘(𝑡) + 𝐷𝑘𝑦(𝑡)
, (7) 

the 𝐻∞ problem is to find the controller matrices which satisfy the infinity norm, stated as an 

optimization objective function for the transfer matrix 𝑇𝑧𝑤 between the disturbance 𝑤(𝑡) a

nd performance 𝑧(𝑡) according to (6), which is a well-known problem. 

𝐽∞ =
∫ 𝑧(𝑡)𝑇𝑧(𝑡)𝑑𝑡

∞

0

∫ 𝑤(𝑡)𝑇𝑤(𝑡)𝑑𝑡
∞

0

 (8) 

To take into account a spatial region Ω where we want to minimize the 𝐻∞ spatial norm, a 

space dependent weighing matrix 𝑄(𝑟) , where 𝑟 ∈ Ω  is the spatial vector, is introduced 

according to (9): 

𝐽∞ =
∫ ∫ 𝑧(𝑡)𝑇𝑄(𝑟)𝑧(𝑡)𝑑𝑟

Ω
𝑑𝑡

∞

0

∫ 𝑤(𝑡)𝑇𝑤(𝑡)𝑑𝑡
∞

0

 (9) 

Considering the objective function in (9), the new performance vector may now be written as  

𝑧(𝑟, 𝑡) = 𝐶𝑧(𝑟)𝑥𝑝(𝑡) + 𝐷𝑧𝑤(𝑟)𝑤(𝑡) + 𝐷𝑧𝑢(𝑟)𝑢(𝑡) (10) 

or,  

𝑧(𝑟, 𝑡) = [𝐶𝑧(𝑟) 𝐷𝑧𝑤(𝑟) 𝐷𝑧𝑢(𝑟)][𝑥𝑝(𝑡) 𝑤(𝑡) 𝑢(𝑡)]𝑇 (11) 

Defining an auxiliary matrix 𝛤 such that 

Γ𝑇Γ = ∫ [𝐶𝑧(𝑟) 𝐷𝑧𝑤(𝑟) 𝐷𝑧𝑢(𝑟)]𝑇𝑄(𝑟)[𝐶𝑧(𝑟) 𝐷𝑧𝑤(𝑟) 𝐷𝑧𝑢(𝑟)]𝑑𝑟
Ω

 (12) 

and the new performance index as 

𝑧𝑟(𝑡) = Γ[𝑥𝑝(𝑡) 𝑤(𝑡) 𝑢(𝑡)]𝑇=[Π Θ𝑤 Θ𝑢] [𝑥𝑝(𝑡) 𝑤(𝑡) 𝑢(𝑡)]𝑇, 

it results 

𝑧𝑟(𝑡) = Π𝑥𝑝(𝑡) + Θ𝑤𝑤(𝑡) + Θ𝑢𝑢(𝑡). 

It is then possible to write the spatial objective function as 

𝐽∞ =
∫ [𝑥𝑝(𝑡) 𝑤(𝑡) 𝑢(𝑡)]Γ𝑇Γ[𝑥𝑝(𝑡) 𝑤(𝑡) 𝑢(𝑡)]𝑇𝑑𝑡

∞

0

∫ 𝑤(𝑡)𝑇𝑤(𝑡)𝑑𝑡
∞

0

, (13) 

conducting to (14), now similar to (8), 

𝐽∞ =
∫ 𝑧𝑟(𝑡)𝑇𝑧𝑟(𝑡)𝑑𝑡

∞

0

∫ 𝑤(𝑡)𝑇𝑤(𝑡)𝑑𝑡
∞

0

. (14) 

which is similar to a regular 𝐻∞ objective function. Then, the spatial 𝐻∞ problem may be 

solved using known methods for the 𝐻∞ problem. 



4.4 Model reduction 

As mentioned before, real structures have an infinite number of vibration modes or degrees-of-

freedom (DOF). To elaborate a useful mathematical model, we first choose an adequate number of 

nodes, which implies a consequent number of DOFs, reflecting a bandwidth of interest. To 

account for local geometrical details, especially to model damages and their spatial variations, FE 

method is the most used to model structures. FE method leads in general to significantly large 

models, impacting on the controller order, and eventually resulting in numerical difficulties. To 
solve this conflict, a model reduction technique is necessary. 

The simplest approach for model reduction is by direct truncation, projecting the nodal 

displacements on a truncated modal matrix model. This pure truncation of high frequency modes 

is often a poor approximation. The neglected modes are ignored by assuming that their collective 

impact on the in-bandwidth modeled dynamics is minor. However, for control design purposes a 

controller based on such a model can alter zeros of the system, and, as closed-loop performances 

are largely dictated by open-loop zeros, one can expect differences between simulated and 

experimental results. It is, therefore, important to improve the reduced model of the system so that 
high performance controllers can be designed.  

The approach used here is based upon including additional modes with resonant frequency far 

from the desired bandwidth, such that the flexibility of this single mode is equivalent to that of all 

out-of-bandwidth modes, omitted from the expansion. During the last decades, several 

publications have proposed to obtain a feedthrough term to capture the effect of truncated modes 

in an optimal way [25] [44]. In [29] and [30], the authors have extended this idea to the spatial 

model. In this case, the feedthrough term is found by minimizing the weighted 𝐻∞ and 𝐻2 

spatial norms of the error between the infinite dimensional and the truncated model [45]. However, 

from a FE simulation point of view, the modal basis with augmented states is generally preferred 

to using a feedthrough term. It induces only marginal increase of numerical cost.  

In this work, given the position of actuators and sensors, the finite-dimensional model is 

obtained after a choice of a restricted subspace (or modes) that sufficiently describe the global 

dynamic behavior in the bandwidth of interest. Following the preceding discussion, the resulting 

reduced model is augmented by two second order poles, placed at least one decade beyond the 

bandwidth of interest. This model results in a system transfer function that maintains the 
appropriate pole-zero relationship. 

5 SPATIAL 𝑯∞ CONTROL AND STRUCTURE DAMAGE 

Next subsection presents details of the FE modeling of the healthy structure, for the complete 

and nominal models. In the sequence, the spatial 𝐻∞ controller is designed and its performances 

are shown through comparison between structure response to disturbance and a controlled 

response. Finally, the last subsection shows the effect of a small damage on the structure response. 

5.1 FE simulation of the healthy structure 

Following the model reduction approach previously described, two second order out-of-

bandwidth terms is included in the model, to ensure that the high frequency response content are 

close to that of the actual structure response. Damping value of 𝜉𝑖 = 0.7 and frequencies 

𝜔1 = 5000 𝑟𝑎𝑑/𝑠 and 𝜔2 = 5400 𝑟𝑎𝑑/𝑠 were adopted for these two terms.  



Table 1: Some natural frequencies of the healthy structure 

Modes 
Frequency 

(rad/s) 
Modes 

Frequency 

(rad/s) 
Modes 

Frequency 

(rad/s) 
Modes 

Frequency 

(rad/s) 
Modes 

Frequency 

(rad/s) 

𝟏 2.7 𝟔 93.3 𝟏𝟏 278.2 𝟏𝟔 448.0 𝟐𝟐 742.2 

𝟐 16.9 𝟕 140.2 𝟏𝟐 325.5 𝟏𝟕 475.9 𝟐𝟓 742.2 

𝟑 26.6 𝟖 152.7 𝟏𝟑 366.5 𝟏𝟖 493.1 𝟑𝟎 1011.5 

𝟒 47.2 𝟗 208.9 𝟏𝟒 405.4 𝟏𝟗 556.8 35 1184.1 

5 79.5 𝟏𝟎 228.3 𝟏𝟓 430.7 𝟐𝟎 564.3 𝟒𝟎 1297.8 

Two models are adopted for the numerical simulation: for the first one, which is used to design 

the controllers, only the 12 first modes are adopted, and it is here called the nominal model; and 

the second one, which is based on the first 40 modes and is used to simulate the performance of 

the designed controllers, we called the complete model. Fig. 6 shows the magnitude Bode diagram 

of the complete and the nominal transfer functions from the control input 𝑢 to outputs 𝑦1 and 𝑦2. 

Some natural frequencies are given in Table 1. Fig. 6 presents FE simulations including the 
piezoelectric patches and responses to modes 1, 4 and 10. 

It may be seen Fig. 6a that the natural frequencies of the reduced nominal model, with the 

additional two frequencies, coincide with the complete model in-bandwidth low frequencies, and 

also the effect for additional modes in the high frequency response. It is to be also noticed that, 

depending on the considered input output path, some modes are not excited and so do not appear 
in the respective frequency response. 

5.2 The spatial 𝐻∞ control of the healthy structure 

The controller is designed to reduce the effect of the disturbance in a spatial 𝐻∞ sense. The state 

space model for the nominal plant, including the spatial performance output is written as 

 

 
Fig. 6: (𝑎) Bode diagram of the complete and the nominal model; (𝑏) Mode shapes 1, 4 and 10. 



 
Fig. 7: Selected outputs, inputs and the impact zone to be monitored 

{

�̇�𝑛(𝑡)     = 𝐴𝑛𝑥𝑛(𝑡) + 𝐵𝑛𝑤𝑤(𝑡) + 𝐵𝑛𝑢𝑢(𝑡)

𝑧𝑛(𝑡)   =  (
Π
0

) 𝑥𝑛(𝑡) + (
0
𝑅

) 𝑢(𝑡) 

𝑦𝑛(𝑡)     =  𝐶𝑦𝑥𝑛(𝑡) 

 (15) 

with 𝑅 a weighting factor adjusting the level of the control signal, in order to have a satisfactory 

trade-off between control effort and vibration reduction, and 𝛤𝑇 = [Π 0 0] is obtained from 

the following integral 

𝛤𝑇𝛤 = ∫ 𝐶𝑧(𝑟)𝑇𝑄𝑤(𝑟)𝐶𝑧(𝑟)𝑑𝑟
Ω

 

where the spatial weighting matrix 𝑄𝑤(𝑟) is chosen according to the region of the structure 
where we want to control the vibration. 

Fig. 7 indicates the positions of the measured output vector 𝑦𝑛(𝑡) and one arbitrarily chosen 

displacement output 𝑧(𝑡), which is only used to give a comparison reference of the controller 

performances. This performance output could be experimentally measured using a laser 

vibrometer. The respective controller, designed based on the healthy structure nominal model, is 

called here the first controller. The impact area, also indicated in Fig. 7, is the region where the 

subsequent damage will be included. 

The first simulation refers to the healthy structure with unitary spatial weighting function, which 

means that the vibration reduction effort is equally performed along the plate. An adequate value 

of 𝑅 is chosen (𝑅 = 0.3) as a compromise between performance and stability. Fig. 9 shows the 

magnitude Bode diagram of the open loop and the closed loop system for the performance and the 

measured outputs. To highlight the controller effect on the vibration attenuation of the structure 

nominal modes we used in this case the nominal model to close the loop and obtain the frequency 
responses shown in Fig. 8. 

For the next simulations, the controller is designed using the nominal plant model but we adopt 

the complete model to close the loop, in order to evaluate its robustness and spillover avoiding 

capabilities. The modes in Fig. 8a are numbered respecting the frequencies given inTable 

1.Considering the 𝑧 output, it is possible to notice that the peak reduction for mode 1 is more 

than 20 𝑑𝐵, what is true also for mode 2, with a smaller attenuation for modes 6, 8 and 10, 

and less attenuation at mode 4, near 5 dB. Modes 3, 5, 7 and 11 are not present in any response, 

open or closed loop. The 𝑦1 and 𝑦2 responses are similar to the 𝑧 response.  

Considering Fig. 9, where the complete model is used to close the loop, the in-bandwidth 

frequencies present the same behavior, and the highest frequencies did not show significant 

variation. We can notice that spillover is not present and this first controller shows good results. 



 
Fig. 8: (𝑎) Bode diagram of the uncontrolled and controlled nominal structure. (𝑏) Zoom on mode 4 

  

Fig. 9: Bode diagram of the uncontrolled and controlled healthy structure 

The corresponding spatial frequency response of the system for the output 𝑦1 is presented in 

Fig. 10, where the third axis represents the position on the beam. These 3D diagrams permit to 

assess the controller spatial effect over the healthy structure. They show the simulated spatial 

frequency responses of the uncontrolled and the controlled structure. Here, we have taken the 𝑦 

position at its middle, i.e. 𝑦 = 96 𝑚𝑚, and measured the 𝑥  along the structure while the 

frequency response (vertical axis) is in terms of the structure's transverse displacement. One 

should notice the mitigation of vibration of the entire structure, which has been also illustrated by 

the Bode regular diagram in Fig. 9. 



 

Fig. 10: Spatial transfer function response of the nominal system  

Fig. 11 presents the 𝐻∞ norm evaluated for the uncontrolled and controlled systems, in order to 

complement the analysis of the spatial effect of the controller over the healthy structure. It is 

clearly visible the effect of vibration reduction on the norm caused by the adopted spatial 
controller. 

 
Fig. 11: Spatial 𝑯∞ norm of the controlled and uncontrolled system (𝑸(𝒓) = 𝟏) 

 

Time domain responses for both outputs for a Schroeder disturbance input signal can be seen in 

Fig. 12, for open and closed-loop, which complements the analysis of the system behaviour. The 

controller effectiveness can be easily assessed in these figures, considering the linear amplitude 

and also the linear sweep of the excitation signal from DC to 1570 rad/s in the shown 200 seconds 

period. It is visible also the attenuation in the in-bandwidth frequencies for the nominal model and 

that, for the extra frequencies of the complete model, the control signal increases or decrease the 

peak amplitudes by a small factor, but maintains the stability of the system. 

5.3 Including damage  

In this section we consider the effect of a barely visible impact damage (BVID), admitting 

𝚼 = 2 × 10−3, on the plant dynamics. Damage is represented, as described before, by a circular 

patch with diameter ∅ = 20 𝑚𝑚, centered at position (570,140) 𝑚𝑚 (see Fig. 13b). Fig. 13a 

illustrates the amplitude response of the complete model of the structure after including this 

damage. It is possible to see that the damage consequences on the plant model are small.  



 
Fig. 12: Schroeder disturbance signal output responses of the healthy structure 

Different response effects may result from different damages, which depend on several factors. It 

is possible for instance that the damage can lead to a decrease in the structure vibration on some 

regions. However, for the problem at hand, and considering this increase in the vibration, we aim 

to address the several possible DTAC strategies, to analyze how to change the controller in order 

to get the better possible performance of the respective controller. 

 

 
 
Fig. 13: (𝑎) Comparing the effect on the complete model including a small damage. (𝑏) BVID Damage 

centered at position (𝑥 = 570, 𝑦 = 140) 𝑚𝑚 

 



6 APPLYING DTAC STRATEGIES 

As mentioned before, there are several strategies to be adopted in a DTAC framework. For the 

present study, we are beginning in the next subsection with the basic approach where the 

controller is sufficiently robust to guarantee performance to some damage. In the sequence a 

controller reconfiguration scheme to accommodate the fault is presented and in the last subsection 

a controller to prevent evolution of damage is the subject, always based on 𝐻∞ spatial control. 

6.1 Robust active controller 

The spatial 𝐻∞ scheme has intrinsic robustness properties that can be straightforward used here 

to face small structural damages. Using the first 𝐻∞ spatial controller, simulations of the healthy 

and the damaged systems are presented for the measured output vector, 𝑦1(𝑡), and the spatial 

performance output 𝑧(𝑡). Fig. 14 shows the open-loop time response of the plane model to a 

Schroeder disturbance for the previous BVID damage, the closed-loop for the healthy plate 

response and the closed-loop where the first controller is being used after the occurrence of the 

damage. 

Considering the damaged closed-loop response (Fig. 14) and comparing with the healthy closed-

loop case, it is possible to notice a small increase in modes 4, 6 and 10, but a bigger increase in 

mode 8, both in the performance output and the measured output y1,. But, considering the open-

loop response, there is yet attenuation due to the controller anyway. For the out-of-bandwidth 

frequencies, it is possible to notice amplification of the response, but also by a small factor.  

Based on results in Fig. 14, showing that the differences between the healthy and the damaged 

closed-loop structure response are not significant, it is possible to conclude that a robust controller 

may deal with small damages. Obviously, this is a specific case, but it may be expected that 

similar results be achieved for several small level damages. Furthermore, if a damage study is 

performed first, the controller may then be designed to specifically reject the main damaging 

modes. That being said, the effect of a severe damage may not be so easily treated. In the 

following subsection, we study the effect of a severe damage on the closed loop responses. 

 
Fig. 14: Effect of a small damage on the first controller performance for a Schroeder disturbance response 



 
Fig. 15: Effect of a severe damage on the first controller performance 

6.2 Reconfigurable Active Controller 

The impact on closed-loop performance due to a severe damage may be much more significant 

than the previous case, conducting even to instability. Also, it may be expected that, for some 

well-localized damage, even if it is small, the consequence may be very significant. For these 

cases, an adaptive tolerance is required, demanding a DTAC strategy. A severe damage is 

considered here, adopting  𝚼 = 2 × 10−5. Fig. 15 shows the effect of this damage on response to 
the same Schroeder disturbance input response, using yet the first controller.  

It may be seen in Fig. 15 that now the first controller is not so effective. The performance output 

presents a significant increase in the level of several modes, and mainly in the higher frequencies. 

In the measured output, this is expected with the reduction of stiffness due to damage. 

A reconfiguration to attenuate this damage effect is indicated, and in this case a new controller 

design needs to be conducted, which would be based on an experimental identification of the new 

structure. For an online redesign, this module is necessarily included in the framework, as 

described in Fig. 2. This reconfiguration module design demands some involved modeling and 

also a SHM method and we will be following here the simple approach. In the present case, a new 

controller was designed, based on the damaged FE model. Results for this new controller are 

shown in Fig. 16, where it is clearly visible how the new controller improves vibration mitigation, 

recovering a performance near to the one of the first controller. Fig. 17 presents 𝐻∞ spatial norm 

distribution for the same simulation, and it is very useful to understand the reconfiguration 
controller effect. 

In Fig. 17 it may be seen the previous three closed-loop systems. In the upper panel the healthy 

plate model with the first controller. In the middle panel, it may be seen the first controller facing 

the severe damage and in the lower panel, the second controller after reconfiguration. Damage 

effect in the plate under the strictly robust controller is clearly visible in Fig. 17b, showing high 

amplitude peaks located in the damage region. This effect is also seen in Fig. 17c, but the 



respective peaks are here considerably attenuated, showing only a fraction of the energy from the 

previous case. It is implied that reconfiguration of the spatial controller achieved its goal, and we 

may expect that the operative life of the structure will be extended.  

 

Fig. 16: Controller reconfiguration for a Schroeder disturbance 

 

Fig. 17: Effect of a severe damage on the closed-loop 𝐻∞ norm 



6.3 Evolving active controller 

The case where damage has been detected and localized, and we want to control its evolution, is 

addressed in this subsection, applying EDAC strategy. The idea is to try protecting the damaged 

area, in order to avoid the growth of the damage, attenuating vibration in the region where it is 

localized. This can be done by emphasizing the controller performance around the damaged area, 

albeit at the expense of vibration rejection performance over other regions. The spatial approach 

studied here is especially interesting to this strategy, providing this capacity through the spatial 

weighing function 𝑄(𝑟). To show the effectiveness of the EDAC strategy, three weighing 

functions and a point-wise controller are simulated and their performances compared on assessing 
crack propagation. 

A likely situation has been simulated by considering that the former severe damage has provoked 

crack propagation along one of the composite plies. Indeed, we have introduced a crack that 

begins from the border of the first impact damage to the border of the structure along the 45° 

direction of the ply. Thereby, a specific damage-patch has been added to the FE model with the 
impact damage, as shown in Fig. 18. 

 
Fig. 18: Severe damage crack along the 45° direction 

The crack measures 68 𝑚𝑚 and its effect on frequency response outputs are presented in Fig. 

19. The changing due to this crack damage is easily seen as a significant one for the 𝑦2 response. 

We can also see in Fig. 20 how this crack affects the spatial 𝐻∞ norm of the nominal system 
showing a big vibration increase, which could lead to instability.  

 

Fig. 19: Effect of crack damage on the frequency responses 



 
Fig. 20: Effect of the crack damage on the open and closed loop nominal system 

Fig. 21 depicts the spatial adopted scheme, where the damaged area is depicted. Two different 

spatial weighing functions may be seen also in this figure, a Gaussian and a gate function, 

encompassing the regions where the damage is located. They are centered on a mid-point of the 

damage area with coordinates (570𝑚𝑚, 150𝑚𝑚). The pointwise controller has been calculated 

for the position (650𝑚𝑚, 150𝑚𝑚).  

 

Fig. 21: Gauss (𝑎) and Gate (𝑏) spatial weighing functions 𝑄(𝑟) 

Fig. 22 presents results obtained for these two weighing functions, and also for a constant spatial 

weight for the complete beam, the pointwise 𝐻∞ controller and the open-loop system, in terms of 

the 𝐻∞ norm. It is possible to see that the open-loop 𝐻∞ norm is growing along the 𝑥-axis, 

with an inflection due to the damage, and getting a high level after that. All controlled signals 

clearly show the attenuation in the vibration. To analyze these results, it is important to notice the 

region where damage is located and also the performance point used for the pointwise controller. 

The open loop response shows a minimum at the damage region, and then increases to the tip of 

the plate. The pointwise controller obtains the smaller norm, but only at the specific considered 

point, and after this point increases the norm in a rate bigger than the open loop system. At the 

region near the clamp of the plate the norm is similar to the others, but in the center it is higher. 

Considering the spatial controller with a constant weighing function, it presents a regular 

performance no the complete plate, and only in a region near the performance point the pointwise 

norm is smaller. Comparing this with the other two spatial function controllers, result of the 

constant weigh function controller is a little better in general, except in the region of the damage. 
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Considering that the objective here is to attenuate vibration on this region, the better one is the 

Gaussian weighing function controller, but both functions protect the damaged area, and the Gate 

function has a performance close to the Gaussian. It is possible to notice that the efficiency of the 

Gaussian weighing function is maximal around the center of the Gaussian.  

 

Fig. 22: Simulated closed loop spatial 𝐻∞ norm for the nominal system as function of 𝑥 at the line 

𝑦 = 150 𝑚𝑚 

7 DISCUSSION 

An investigation of the applicability of spatial 𝐻∞ norm controller design to DTAC strategies 

was conducted here, through extensive FE modeling and simulations, including open loop and 

closed loop study of performance of several controllers and damage conditions, over a case study 

cantilever structure. Different controllers, corresponding to a different strategy were tested. 

The first controller corresponds to the simple strategy to design a robust spatial 𝐻∞ controller 

that may respond well to a structural damage. Results have shown that it is possible to expect that 

for small damages this may work with some loss of performance. Also, for a bigger damage, the 

loss of performance may be beyond an expected level, and it is possible to expect also that 

instability may come as a consequence of the damage localization, even though this did not occur 

in the simulations. 

The second controller was designed according to the strategy that is supposed to become the 

most common, when a controller is reconfigured to attend a detected and localized damage. This 

control scheme may present a SHM module to provide these functions, and a reconfiguration 



mechanism to use data so generated to change the controller parameters in order to face the 

damage. These two modules are necessary to guarantee an automatic online performance, and it is 

not treated here because goes beyond the scope of this paper. Also, it is possible to engage an 

engineer to provide the controller reconfiguration, what was adopted in this case. Results shown 

that it is possible to recover a good performance, similar to the original healthy controller, when 

the spatial 𝐻∞ controller is used to face the damaged structure, under a severe damage. 

Finally, the third analyzed strategy relates to the case when damage was detected and localized in 

some structure, and a controller is designed to maintain the respective damage region under low 

vibration, in order to guarantee an operative life extension to the structure. In this case, the spatial 

norm controller has shown specific features that confirm its vocation for DTAC application. Using 

four different optimization objectives, varying the spatial norm regions constraint, it was clearly 

shown the protection capacity of the controller over the known region of the damage, in this case 

corresponding to a Gaussian weighing function presenting the better performance. 

It is possible to conclude also that the third strategy could be mixed with the first one, which 

becomes the second strategy presented in Fig. 1, the preventive active controller. Considering that 

we may know in advance the more probable region to show damage, the structure could be 

protected using an adequate weighing function, in order to prevent a future damage to occur, or at 

least retarding it. 

8 CONCLUSIONS 

This work aims to elaborate over some fundamental concepts and main strategies of DTAC 

application, presenting several 𝐻∞ spatial norm controller design approach. Based on detailed 

FE models, developed to represent healthy and damaged structures, these controllers and 

strategies are assessed through various simulated results and diagrams.  

Although FTC methods can be adapted to DTAC systems, peculiar characteristics of mechanical 

structures demands specific design solutions, which detach these two areas. In particular, spatial 

constraints, normally present on requirements of active control of structure vibration, indicate 𝐻∞ 

spatial norm as a base for control design techniques of great interest for DTAC application. Those 

characteristics are illustrated on the analysis of the results here presented.   

For the sake of completeness, mathematical modelling is briefly presented, from the structural 

control standing point. Simulated results of the addressed DTAC strategies exemplify the 

interesting properties of the spatial norm approach to face structural damage consequences.  

As future development perspective, new methods to implement modules to provide online 

efficient reconfiguration and switching of controllers, and respective stability analysis, are under 

investigation. The mitigation of fatigue damage and how to take it into account in the design of 

the control algorithm are DTAC's topics that are also currently explored. 

APPENDIX 

We present here the material properties of the active composite structure presented in Section 3.1. 

Hence, the materials properties of each composite layer of the structure are given in Table A1, 

whereas those of the two piezoelectric types in Table A2 and Table A3 respectively. The four 

piezoelectric patches were bonded using Epoxy glue (302-3M, produced by EPO-TEK) with 

properties given in Table A4. 

 



Table A1: Mechanical properties of the composite material (23℃) 

Property 
𝜌 

(𝑔/𝑚3) 

𝐸11 = 𝐸22 

 (𝐺𝑃𝑎) 

𝐸33  
(𝐺𝑃𝑎) 

𝜐12 
𝐺12 = 𝐺13 = 𝐺23 

 (𝑝𝐶/𝑁) 

Value 1154 69 8.1 0,03 4.8 

TableA2: Mechanical and electrical properties of the PZTs (NOLIAC
®
)  

Property 
Dim 

(𝑚𝑚) 

𝜌 

(𝐾𝑔/𝑚^3) 

𝐸11 

 (𝐺𝑃𝑎) 

𝐸33  
(𝐺𝑃𝑎) 

𝜐12 
𝑑31 

 (𝑝𝐶/𝑁) 

𝑑33  
(𝑝𝐶/𝑁) 

Value  28 × 14 × 0.1  7600 62,50 52,63 0,38 −195 460 

Table A3: Mechanical and electrical properties of the MFCs (Smart Materials
®
) 

Property 
Dim 

(𝑚𝑚) 

𝜌 

(𝐾𝑔/𝑚^3) 

𝐸11 
 (𝐺𝑃𝑎) 

𝐺33  
(𝐺𝑃𝑎) 

𝜐21 𝜐12 
𝑑31 

 (𝑝𝐶/𝑁) 
𝑑33  

(𝑝𝐶/𝑁) 

Value  ∅30 × 0.1 5440 30.4 5.52 0,16 0,38 −170 400 

TableA4: 302- 3M EPO-TEK glue properties 

Property 
Operating 

temperature 

Coefficient of 

thermal expansion 

Dielectric 

constant  
Dissipation factor Storage modulus 

Value − 55℃ 𝑡𝑜 100 ℃ 193 10−6℃−1 3,39  𝑎𝑡 1 𝑘𝐻𝑧  0,0061 𝑎𝑡 1 𝑘𝐻𝑧 1,73 𝑀𝑃𝑎 𝑎𝑡  23°𝐶 
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