
HAL Id: hal-01102610
https://hal.science/hal-01102610v3

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterisation of an Algebraic Algorithm for
Probabilistic Automata Characterisation of an Algebraic

Algorithm for Probabilistic Automata
Nathanaël Fijalkow

To cite this version:
Nathanaël Fijalkow. Characterisation of an Algebraic Algorithm for Probabilistic Automata Charac-
terisation of an Algebraic Algorithm for Probabilistic Automata. STACS, Symposium on Theoretical
Aspects of Computer Science, Feb 2016, Orléans, France. �hal-01102610v3�

https://hal.science/hal-01102610v3
https://hal.archives-ouvertes.fr


Characterisation of an Algebraic Algorithm for

Probabilistic Automata

Nathanaël Fijalkow

University of Oxford, United Kingdom

Abstract. We consider the value 1 problem for probabilistic automata over finite
words: it asks whether a given probabilistic automaton accepts words with prob-
ability arbitrarily close to 1. This problem is known to be undecidable. However,
different algorithms have been proposed to partially solve it; it has been recently
shown that the Markov Monoid algorithm, based on algebra, is the most correct
algorithm so far. The first contribution of this paper is to give a characterisation
of the Markov Monoid algorithm.
The second contribution is to develop a profinite theory for probabilistic au-
tomata, called the prostochastic theory. This new framework gives a topological
account of the value 1 problem, which in this context is cast as an emptiness
problem. The above characterisation is reformulated using the prostochastic the-
ory, allowing to give a modular proof.

1 Introduction

Rabin [9] introduced the notion of probabilistic automata, which are finite au-
tomata with randomised transitions. This powerful model has been widely stud-
ied since then and has applications, for instance in image processing, compu-
tational biology and speech processing. This paper follows a long line of work
that studies the algorithmic properties of probabilistic automata. We consider
the value 1 problem: it asks, given a probabilistic automaton, whether there ex-
ist words accepted with probability arbitrarily close to 1.

This problem has been shown undecidable [6]. Different approaches led to
construct subclasses of probabilistic automata for which the value 1 problem is
decidable; the first class was ♯-acylic automata [6], then concurrently simple au-
tomata [2] and leaktight automata [4]. It has been shown in [3] that the so-called
Markov Monoid algorithm introduced in [4] is the most correct algorithm of
the three algorithms. Indeed, both ♯-acylic and simple automata are strictly sub-
sumed by leaktight automata, for which the Markov Monoid algorithm correctly
solves the value 1 problem.

Yet we were missing a good understanding of the computations realised
by the Markov Monoid algorithm. The aim of this paper is to provide such an
insight by giving a characterisation of this algebraic algorithm. We show the



existence of convergence speeds phenomena, which can be polynomial or ex-
ponential. Our main technical contribution is to prove that the Markov Monoid
algorithm captures exactly polynomial behaviours.

Proving this characterisation amounts to give precise bounds on conver-
gences of non-homogeneous Markov chains. Our second contribution is to de-
fine a new framework allowing to rephrase this characterisation and to give a
modular proof for it, using techniques from topological and linear algebra. We
develop a profinite approach for probabilistic automata, called prostochastic the-
ory. This is inspired by the profinite approach for (classical) automata [1,8,5],
and for automata with counters [10].

Section 3 is devoted to defining the Markov Monoid algorithm and stating
the characterisation: it answers “YES” if, and only if, the probabilistic automa-
ton accepts some polynomial sequence.

In Section 4, we introduce a new framework, the prostochastic theory, which
is used to restate and prove the above characterisation. We first construct a space
called the free prostochastic monoid, whose elements are called prostochastic
words. We define the acceptance of a prostochastic word by a probabilistic au-
tomaton, and show that the value 1 problem can be reformulated as the empti-
ness problem for probabilistic automata over prostochastic words. We then ex-
plain how to construct non-trivial prostochastic words, by defining a limit oper-
ator ω, leading to the definition of polynomial prostochastic words. The above
characterisation above reads in the realm of prostochastic theory as follows:
the Markov Monoid algorithm answers “YES” if, and only if, the probabilistic
automaton accepts some polynomial prostochastic word.

Section 5 concludes by showing how this characterisation, combined with
an improved undecidability result, supports the claim that the Markov Monoid
algorithm is in some sense optimal.
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2 Probabilistic Automata and the Value 1 Problem

Let Q be a finite set of states.



A distribution over Q is a function δ : Q→ [0, 1] such that
∑

q∈Q δ(q) = 1.
We denote D(Q) the set of distributions over Q, which we often consider as
vectors indexed by Q.

For E ⊆ R, we denote MQ×Q(E) the set of (square) matrices indexed
by Q over E. We denote I the identity matrix. A matrix M ∈ MQ×Q(R)
is stochastic if each line is a distribution over Q; the restriction to stochastic
matrices is denoted SQ×Q(E). The space SQ×Q(R) is equipped with the norm
|| · || defined by

||M || = max
s∈Q

∑

t∈Q

|M(s, t)|.

This induces the standard Euclidean topology on SQ×Q(R). The following clas-
sical properties will be useful:

Fact 1 (Topology of the stochastic matrices)

– For every matrix M ∈ SQ×Q(R), we have ||M || = 1,

– For every matrices M,M ′ ∈ MQ×Q(R), we have ||M · M ′|| ≤ ||M || ·
||M ′||,

– The monoid SQ×Q(R) is compact.

Definition 1. (Probabilistic automaton) A probabilistic automaton A is given

by a finite set of states Q, a transition function φ : A → SQ×Q(Q), an initial

state q0 ∈ Q and a set of final states F ⊆ Q.

Observe that it generalises the definition for classical deterministic automata,
in which transitions functions are φ : A→ SQ×Q({0, 1}).

A transition function φ : A → SQ×Q(Q) naturally induces a morphism
φ : A∗ → SQ×Q(Q)1.

We denote PA(s
w
−→ t) the probability to go from state s to state t reading

w on the automaton A, i.e. φ(w)(s, t). We extend the notation: for a subset T of
the set of states, PA(s

w
−→ T ) is defined by φ(w)(s, T ) =

∑
t∈T φ(w)(s, t).

The acceptance probability of a word w ∈ A∗ by A is PA(q0
w
−→ F ),

denoted PA(w). In words, it is the probability that a run starting from the initial
state q0 ends in a final state (i.e. a state in F ).

The value of a probabilistic automaton A is val(A) = sup{PA(w) | w ∈
A∗}, the supremum over all words of the acceptance probability.

Definition 2. (Value 1 Problem) The value 1 problem is the following deci-

sion problem: given a probabilistic automaton A as input, determine whether

val(A) = 1, i.e. whether there exist words whose acceptance probability is ar-

bitrarily close to 1.

1 Note that we use “morphism” for “monoid homomorphism” throughout the paper.



Equivalently, the value 1 problem asks for the existence of a sequence of
words (un)n∈N such that limn PA(un) = 1.

3 Characterisation of the Markov Monoid Algorithm

The Markov Monoid algorithm was introduced in [4], we give here a different
yet equivalent presentation. Consider A a probabilistic automaton, the Markov
Monoid algorithm consists in computing, by a saturation process, the Markov
Monoid of A.

It is a monoid of Boolean matrices: all numerical values are projected away
to Boolean values. So instead of considering M ∈ SQ×Q(R), we are interested
in π(M). Hence to define the Markov Monoid, one can consider the underlying
non-deterministic automaton π(A) instead of the probabilistic automaton A.
Formally, π(A) is defined as A, except that its transitions are given by π(φ(a))
for the letter a ∈ A.

The Markov Monoid of π(A) contains the transition monoid of π(A), which
is the monoid generated by {π(φ(a)) | a ∈ A} and closed under (Boolean
matrix) products. Informally speaking, the transition monoid accounts for the
Boolean action of every finite word. Formally, for a word w ∈ A∗, the element
〈w〉 of the transition monoid of π(A) satisfies the following: 〈w〉(s, t) = 1 if,
and only if, there exists a run from s to t reading w on π(A).

The Markov Monoid extends the transition monoid by introducing a new
operator, the stabilisation. On the intuitive level first: let M ∈ SQ×Q(R), it
can be interpreted as a Markov chain; its Boolean projection π(M) give the
structural properties of this Markov chain. The stabilisation π(M)♯ accounts for
limnM

n, i.e. the behaviour of the Markov chain M in the limit. The formal
definition of the stabilisation operator is as follows:

Definition 3. (Stabilisation) Let m be a Boolean idempotent matrix.

The stabilisation of m is denoted m♯ and defined by:

m♯(s, t) =

{
1 if m(s, t) = 1 and t is m-recurrent,

0 otherwise.

The definition of the stabilisation matches the intuition that in the Markov
chain limnM

n, the probability to be in non-recurrent states converges to 0.

Definition 4. (Markov Monoid) The Markov Monoid of an automaton A is the

smallest set of Boolean matrices containing {π(φ(a)) | a ∈ A} and closed

under product and stabilisation of idempotents.



ALGORITHM 1: The Markov Monoid algorithm.

Data: A probabilistic automaton.
M← {π(φ(a)) | a ∈ A} ∪ {I}.
repeat

if there is m,m′ ∈ M such that m ·m′ /∈ M then

add m ·m′ toM
end

if there is m ∈ M such that m is idempotent and m♯ /∈M then

add m♯ toM
end

until there is nothing to add;
if there is a value 1 witness inM then

return YES;
else

return NO;
end

On an intuitive level, a Boolean matrix in the Markov Monoid reflects the
asymptotic effect of a sequence of finite words.

The Markov Monoid algorithm computes the Markov Monoid, and looks
for value 1 witnesses:

Definition 5. (Value 1 witness) Let A be a probabilistic automaton.

A Boolean matrixm is a value 1 witness if: for all states t ∈ Q, ifm(q0, t) =
1, then t ∈ F .

The Markov Monoid algorithm answers “YES” if there exists a value 1 wit-
ness in the Markov Monoid, and “NO” otherwise.

Our main technical result is the following theorem, which is a characteri-
sation of the Markov Monoid algorithm. It relies on the notion of polynomial

sequences of words.
We define two operations for sequences of words, mimicking the operations

of the Markov Monoid.

– the first is concatenation: given (un)n∈N and (vn)n∈N, the concatenation is
the sequence (un · vn)n∈N,

– the second is iteration: given (un)n∈N, its iteration is the sequence (unn)n∈N;
the nth word is repeated n times.

Definition 6. (Polynomial sequence) The class of polynomial sequences is the

smallest class of sequences containing the constant sequences (ε)n∈N and (a)n∈N
for a ∈ A, and closed under concatenation and iteration.



A typical example of a polynomial sequence is ((anb)n)n∈N, and a typical
example of a sequence which is not polynomial is

(
(anb)2

n)
n∈N

.
We proceed to our main result:

Theorem 1. (Characterisation of the Markov Monoid algorithm) The Markov

Monoid algorithm answers “YES” on input A if, and only if, there exists a poly-

nomial sequence (un)n∈N such that limn PA(un) = 1.

This result could be proved directly, without appealing to the prostochastic
theory developed in the next section. The proof relies on technically intricate
calculations over non-homogeneous Markov chains; the prostochastic theory
allows to simplify its presentation, making it more modular. We will give the
proof of Theorem 1 in Subsection 4.5, after restating it using the prostochastic
theory.

A second advantage of using the prostochastic theory is to give a more nat-
ural and robust definition of polynomial sequences, which in the prostochastic
theory correspond to polynomial prostochastic words.

A direct corollary of Theorem 1 is the absence of false negatives:

Corollary 1. (No false negatives for the Markov Monoid algorithm) If the Markov

Monoid algorithm answers “YES” on input A, then A has value 1.

4 The Prostochastic Theory

In this section, we introduce the prostochastic theory, which draws from profi-
nite theory to give a topological account of probabilistic automata. We construct
the free prostochastic monoid in Subsection 4.1.

The aim of this theory is to give a topological account of the value 1 prob-
lem; we show in Subsection 4.2 that the value 1 problem can be reformulated as
an emptiness problem for prostochastic words.

In Subsection 4.3 we define the notion of polynomial prostochastic words.
The Subsection 4.4 is devoted to a technical proof, about the powers of

stochastic matrices.
The characterisation given in Section 3 is stated and proved in this new

framework in Subsection 4.5.

4.1 The Free Prostochastic Monoid

The purpose of the prostochastic theory is to construct a compact monoid PA∗

together with a continuous injective morphism ι : A∗ → PA∗, called the free
prostochastic monoid, satisfying the following universal property:



“Every morphism φ : A∗ → SQ×Q(R) extends uniquely
to a continuous morphism φ̂ : PA∗ → SQ×Q(R).”

Here, by “φ̂ extends φ” we mean φ = φ̂ ◦ ι.
We give two statements about PA∗, the first will be weaker but enough for

our purposes in this paper, and the second more precise, and justifying the name
“free prostochastic monoid”. The reason for giving two statements is that the
first avoids a number of technical points that will not play any further role, so
the reader interested in the applications to the Markov Monoid algorithm may
skip this second statement.

Theorem 2. (Existence of the free prostochastic monoid – weaker statement)

For every finite alphabet A, there exists a compact monoid PA∗ and a contin-

uous injective morphism ι : A∗ → PA∗ such that every morphism φ : A∗ →
SQ×Q(R) extends uniquely to a continuous morphism φ̂ : PA∗ → SQ×Q(R).

We construct PA∗ and ι. Consider X =
∏

φ:A∗→SQ×Q(R) SQ×Q(R), the
product of several copies of SQ×Q(R), one for each morphism φ : A∗ →
SQ×Q(R). An element m of X is denoted (m(φ))φ:A∗→SQ×Q(R): it is given by
an element m(φ) of SQ×Q(R) for each morphism φ : A∗ → SQ×Q(R). Thanks
to Tychonoff’s theorem, the monoid X equipped with the product topology is
compact2.

Consider the map ι : A → X defined by ι(a) = (φ(a))φ:A→P , it induces a
continuous injective morphism ι : A∗ → X. To simplify notations, we some-
times assume that A ⊆ X and denote a for ι(a).

Denote PA∗ = A∗, the closure of A∗ ⊆ X. Note that it is a compact
monoid: the compactness follows from the fact that it is closed in X. By defini-
tion, an element u of PA∗, called a prostochastic word, is obtained as the limit
in PA∗ of a sequence u of finite words. In this case we write limu = u and say
that u induces u.

Note that by definition of the product topology on X, a sequence of fi-
nite words u converges in X if, and only if, for every morphism φ : A∗ →
SQ×Q(R), the sequence of stochastic matrices φ(u) converges.

We say that two converging sequences of finite words u and v are equivalent
if they induce the same prostochastic word, i.e. if limu = limv. Equivalently,
two converging sequences of finite words u and v are equivalent if, and only if,
for every morphism φ : A∗ → SQ×Q(R), we have limφ(u) = limφ(v).

Proof. We prove that PA∗ satisfies the universal property. Consider a morphism
φ : A∗ → SQ×Q(R), and define φ̂ : PA∗ → SQ×Q(R) by φ̂(u) = limφ(u),

2 Note that here by compact we mean Hausdorff compact: distinct points have disjoint neigh-
bourhoods.



where u is some sequence of finite words inducing u. This is well defined and
extends φ. Indeed, consider two equivalent sequences of finite words u and v

inducing u. By definition, for all ψ : A∗ → SQ×Q(R), we have limψ(u) =

limψ(v), so in particular for φ this implies lim φ(u) = lim φ(v), and φ̂ is well
defined. Both continuity and uniqueness are clear.

We prove that φ̂ is a morphism. Consider

D = {(u, v) ∈ PA∗ × PA∗ | φ̂(u · v) = φ̂(u) · φ̂(v)}.

To prove that φ̂ is a morphism, we prove that D = PA∗ × PA∗. First of all,
A∗ ×A∗ ⊆ D. Since A∗ ×A∗ is dense in PA∗ × PA∗, it suffices to show that
D is closed. This follows from the continuity of both product functions in PA∗

and in SQ×Q(R) as well as of φ̂.

We give a second, stronger statement about PA∗, which in particular justi-
fies the name “free prostochastic monoid”.

From now on, by “monoid” we mean “compact topological monoids”. The
term topological means that the product function is continuous:

{
P × P → P
(s, t) 7→ s · t

A monoid is profinite if any two elements can be distinguished by a mor-
phism into a finite monoid, i.e. by a finite automaton. (Formally speaking, this is
the definition of residually finite monoids, which coincide with profinite monoids
for compact monoids, see [1].)

To define prostochastic monoids, we use a stronger distinguishing feature,
namely probabilistic automata. Probabilistic automata correspond to stochastic
matrices over the rationals; here we use stochastic matrices over the reals, since
SQ×Q(R) is compact, while SQ×Q(Q) is not.

Definition 7. (Prostochastic monoid) A monoid P is prostochastic if for every

elements s 6= t in P, there exists a continuous morphism ψ : P → SQ×Q(R)
such that ψ(s) 6= ψ(t).

There are many more prostochastic monoids than profinite monoids. Indeed,
SQ×Q(R) is prostochastic, but not profinite in general.

The following theorem extends Theorem 2. The statement is the same as in
the profinite theory, replacing “profinite monoid” by “prostochastic monoid”.

Theorem 3. (Existence of the free prostochastic monoid – stronger statement)

For every finite alphabet A,



1. There exists a prostochastic monoid PA∗ and a continuous injective mor-

phism ι : A∗ → PA∗ such that every morphism φ : A∗ → P , where

P is a prostochastic monoid, extends uniquely to a continuous morphism

φ̂ : PA∗ → P.

2. All prostochastic monoids satisfying this universal property are homeomor-

phic.

The unique prostochastic monoid satisfying the universal property stated in item

1. is called the free prostochastic monoid, and denoted PA∗.

Proof. We prove that PA∗ satisfies the stronger universal property, along the
same lines as for the weaker one. Consider a morphism φ : A∗ → P, and define
φ̂ : PA∗ → P by φ̂(u) = limφ(u), where u is some sequence of finite words
inducing u.

To see that this is well defined, we use the fact that P is prostochastic. Con-
sider two equivalent sequences of finite words u and v inducing u. Consider a
continuous morphism ψ : P → SQ×Q(R), the composition ψ◦φ is a continuous
morphism from A∗ to SQ×Q(R), so since u and v are equivalent it follows that
lim(ψ◦φ)(u) = lim(ψ◦φ)(v), i.e. limψ(φ(u)) = limψ(φ(v)). Sinceψ is con-
tinuous, this implies ψ(lim φ(u)) = ψ(lim φ(v)). We proved that for all con-
tinuous morphisms ψ : P → SQ×Q(R), we have ψ(lim φ(u)) = ψ(lim φ(v));
since P is prostochastic, it follows that lim φ(u) = lim φ(v), and φ̂ is well
defined.

Clearly φ̂ extends φ. Both continuity and uniqueness are clear. We prove
that φ̂ is a morphism. Consider

D = {(u, v) ∈ PA∗ × PA∗ | φ̂(u · v) = φ̂(u) · φ̂(v)}.

To prove that φ̂ is a morphism, we prove that D = PA∗ × PA∗. First of all,
A∗ ×A∗ ⊆ D. Since A∗ ×A∗ is dense in PA∗ × PA∗, it suffices to show that
D is closed. This follows from the continuity of both product functions in PA∗

and in P as well as of φ̂.

We prove that PA∗ is prostochastic. Let u 6= v in PA∗. Consider two se-
quences of finite words u and v inducing respectively u and v, there exists a
morphism φ : A∗ → SQ×Q(R) such that lim φ(u) 6= limφ(v). Thanks to the
universal property proved in the first point, this induces a continuous morphism
φ̂ : PA∗ → SQ×Q(R) such that φ̂(u) 6= φ̂(v), finishing the proof.

We now prove that there is a unique prostochastic monoid satisfying the
universal property, up to homeomorphism. Let P1 and P2 two prostochastic



monoids satisfying the universal property, together with two continuous injec-
tive morphisms ι1 : A∗ → P1 and ι2 : A∗ → P2. Thanks to the universal
property, ι1 and ι2 are extended to continuous morphisms ι̂1 : P2 → P1 and
ι̂2 : P1 → P2, and ι̂1 ◦ι2 = ι1 and ι̂2◦ι1 = ι2. This implies that ι̂1◦ ι̂2 ◦ι1 = ι1;
thanks to the universal property again, there exists a unique continuous mor-
phism θ such that θ ◦ ι1 = ι1, and since both ι̂1 ◦ ι̂2 and the identity morphism
on P1 satisfy this equality, it follows that they are equal. Similarly, ι̂2◦ι̂1 is equal
to the identity morphism on P2. It follows that ι̂1 and ι̂2 are mutually inverse
homeomorphisms between P1 and P2.

Remark 1. The free prostochastic monoid PA∗ contains the free profinite monoid
Â∗. To see this, we start by recalling some properties of Â∗, which is the set of
converging sequences up to equivalence, where:

– a sequence of finite words u is converging if, and only if, for every deter-
ministic automaton A, the sequence is either ultimately accepted by A or
ultimately rejected by A, i.e. there exists N ∈ N such that either for all
n ≥ N , the word un is accepted by A, or for all n ≥ N , the word un is
rejected by A,

– two sequences of finite words u and v are equivalent if for every determin-
istic automaton A, either both sequences are ultimately accepted by A, or
both sequences are ultimately rejected by A.

Clearly:

– if a sequence of finite words is converging with respect to PA∗, then it is
converging with respect to Â∗, as deterministic automata form a subclass of
probabilistic automata,

– if two sequences of finite words are equivalent with respect to PA∗, then
they are equivalent with respect to Â∗.

Every profinite word induces at least one prostochastic word: by compactness
of PA∗, every sequence of finite words u contains a converging subsequence
with respect to PA∗. This defines an injection from Â∗ into PA∗. In particular,
this implies that PA∗ is uncountable.

4.2 Reformulation of the Value 1 Problem

The aim of this subsection is to show that the value 1 problem, which talks
about sequences of finite words, can be reformualted as an emptiness problem
over prostochastic words.



Definition 8. (Prostochastic language of a probabilistic automaton) Let A be a

probabilistic automaton. The prostochastic language of A is:

L(A) = {u | φ̂(u)(q0, F ) = 1}.

We say that A accepts a prostochastic word u if u ∈ L(A).

Theorem 4. (Reformulation of the value 1 problem) Let A be a probabilistic

automaton. The following are equivalent:

– val(A) = 1,

– L(A) is non-empty.

Proof. Assume val(A) = 1, then there exists a sequence of words u such that
limPA(u) = 1. We see u as a sequence of prostochastic words. By compactness
of PA∗ it contains a converging subsequence. The prostochastic word induced
by this subsequence belongs to L(A).

Conversely, let u in L(A), i.e. such that φ̂(u)(q0, F ) = 1. Consider a se-
quence of finite words u inducing u. By definition, we have limφ(u)(q0, F ) =
1, i.e. limPA(u) = 1, implying that val(A) = 1.

4.3 The Limit Operator, Fast and Polynomial Prostochastic Words

We show in this subsection how to construct non-trivial prostochastic words, and
in particular the polynomial prostochastic words. To this end, we need to bet-
ter understand convergence speeds phenomena: different limit behaviours can
occur, depending on how fast the underlying Markov chains converge.

We define a limit operator ω. Consider the function f : N → N defined
by f(n) = k!, where k is maximal such that k! ≤ n. The function f grows
linearly: roughly, f(n) ∼ n. The choice of n is arbitrary; one could replace n
by any polynomial, or even by any subexponential function, see Remark 2.

The operator ω takes as input a sequence of finite words, and outputs a
sequence of finite words. Formally, let u be a sequence of finite words, define:

u
ω = (uf(n)n )n∈N.

It is not true in general that if u converges, then u
ω converges. We will show

that a sufficient condition is that u is fast.
We say that a sequence (Mn)n∈N converges exponentially fast to M if there

exists a constant C > 1 such that for all n large enough, ||Mn −M || ≤ C−n.



Definition 9. (Fast sequence) A sequence of finite words u is fast if it converges

(we denote u the prostochastic word it induces), and for every morphism φ :
A∗ → SQ×Q(R), the sequence (φ(un))n∈N converges exponentially fast.

A prostochastic word is fast if it is induced by some fast sequence. We de-
note by PA∗

f the set of fast prostochastic words. Note that a priori, not all pros-
tochastic words are induced by some fast sequence.

We first prove that PA∗
f is a submonoid of PA∗.

Lemma 1. (The concatenation of two fast sequences is fast) Let u,v be two

fast sequences.

The sequence u · v = (un · vn)n∈N is fast.

Proof. Consider a morphism φ : A∗ → SQ×Q(R) and n ∈ N.

||φ(un · vn)− φ̂(u · v)||

= ||φ(un) · φ(vn)− φ̂(u) · φ̂(v)||

= ||φ(un) · (φ(vn)− φ̂(v))− (φ̂(u)− φ(un)) · φ̂(v)||

≤ ||φ(un)|| · ||φ(vn)− φ̂(v)||+ ||φ̂(u)− φ(un)|| · ||φ̂(v)||

= ||φ(vn)− φ̂(v)||+ ||φ̂(u)− φ(un)||.

Since u and v are fast, the previous inequality implies that u · v is fast.

Let u and v be two fast prostochastic words, thanks to Lemma 1, the pros-
tochastic word u · v is fast.

The remainder of this subsection is devoted to proving that ω is an operator
PA∗

f → PA∗
f . This is the key technical point of our characterisation. Indeed,

we will define polynomial prostochastic words using concatenation and the op-
erator ω, mimicking the definition of polynomial sequences of finite words. The
fact that ω preserves the fast property of prostochastic words allows to obtain
a perfect correspondence between polynomial sequences of finite words and
polynomial prostochastic words.

We start by a few definitions. As a convention, M denotes a matrix in
SQ×Q(R), and m a Boolean matrix. Note that when considering stochastic ma-
trices we compute in the real semiring, and when considering Boolean matrices,
we compute products in the Boolean semiring, leading to two distinct notions
of idempotent matrices.

The following definitions mimick the notions of recurrent and transient
states from Markov chain theory.



Definition 10. (Idempotent Boolean matrix, recurrent and transient state) Con-

sider a matrix M ∈ SQ×Q(R), its Boolean projection π(M) is the Boolean ma-

trix such that π(M)(s, t) = 1 if M(s, t) > 0, and π(M)(s, t) = 0 otherwise.

Let m be a Boolean matrix. It is idempotent if m ·m = m.

Assume m is idempotent. We say that:

– the state s ∈ Q ism-recurrent if for all t ∈ Q, ifm(s, t) = 1, thenm(t, s) =
1,

– the m-recurrent states s, t ∈ Q belong to the same recurrence class if

m(s, t) = 1,

– the state s ∈ Q is m-transient if it is not m-recurrent.

The main technical tool is the following theorem, stating the exponentially
fast convergence of the powers of a stochastic matrix.

Theorem 5. (Powers of a stochastic matrix) Let M ∈ SQ×Q(R). Denote P =
M |Q|!. Then the sequence (Pn)n∈N converges exponentially fast to a matrix

Mω , satisfying:

π(Mω)(s, t) =

{
1 if π(P )(s, t) = 1 and t is π(P )-recurrent,

0 otherwise.

The proof of Theorem 5 is given in Subsection 4.4.
The following lemma shows that the ω operator is well defined by fast se-

quences. The second item shows that ω commutes with morphisms.

Lemma 2. (Limit operator for fast sequences) Let u,v be two equivalent fast

sequences, inducing the fast prostochastic word u. Then the sequences u
ω and

v
ω are fast and equivalent, inducing the fast prostochastic word denoted uω.

Furthermore, for every morphism φ : A∗ → SQ×Q(R), we have φ̂(uω) =

φ̂(u)ω.

Proof. Let φ : A→ SQ×Q(R).

Observe that the sequence (φ̂(u)f(n))n∈N is a subsequence of (φ̂(u)|Q|·n)n∈N,
so Theorem 5 implies that it converges exponentially fast to φ̂(u)ω . It follows
that there exists a constant C1 > 1 such that for all n large enough, we have

||φ̂(u)f(n) − φ̂(u)ω|| ≤ C
−f(n)
1 .

We proceed in two steps, using the following inequality, which holds for
every n:

||φ(uf(n)n )− φ̂(u)ω|| ≤ ||φ(un)
f(n) − φ̂(u)f(n)||+ ||φ̂(u)f(n) − φ̂(u)ω||.



For the left part, we rely on the following equality, where x and y may not
commute:

xN − yN =
N−1∑

k=0

xN−k−1 · (x− y) · yk.

Let N = f(n), this gives:

||φ(un)
N − φ̂(u)N ||

= ||
N−1∑

k=0

φ(un)
N−k−1 · (φ(un)− φ̂(u)) · φ̂(u)k||

≤

N−1∑

k=0

||φ(un)
N−k−1|| · ||φ(un)− φ̂(u)|| · ||φ̂(u)k||

≤

N−1∑

k=0

||φ(un)||
N−k−1

︸ ︷︷ ︸
=1

·||φ(un)− φ̂(u)|| · ||φ̂(u)||k︸ ︷︷ ︸
=1

= N · ||φ(un)− φ̂(u)||.

Since u is fast, there exists a constant C2 > 1 such that ||φ(un)−φ̂(u)|| ≤ C−n
2 .

Altogether, we have

||φ(uf(n)n )− φ̂(u)ω|| ≤ f(n) · C−n
2 + C

−f(n)
1 .

To conclude, observe that for all n large enough, we have n
log(n) ≤ f(n) ≤ n. It

follows that the sequence u
ω is fast, and that φ(uω) converges to φ̂(u)ω .

Furthermore, since u and v are equivalent, we have lim φ(u) = lim φ(v),
i.e. φ̂(u) = φ̂(v), so φ̂(u)ω = φ̂(v)ω , i.e. limφ(uω) = lim φ(vω), This implies
that uω and v

ω are equivalent.

Let u be a fast prostochastic word, we define the prostochastic word uω

as induced by u
ω , for some sequence u inducing u. Thanks to Lemma 2, the

prostochastic word uω is well defined, and fast.
We can now define polynomial prostochastic words.
First, ω-expressions are described by the following grammar:

E −→ a | E ·E | Eω.

We define an interpretation · of ω-expressions into fast prostochastic words:

– a is prostochastic word induced by the constant sequence of the one letter
word a,



– E1 ·E2 = E1 ·E2,
– Eω = E

ω
.

The following definition of polynomial prostochastic words is in one-to-one
correspondence with the definition of polynomial sequences of finite words.

Definition 11. (Polynomial prostochastic word) The set of polynomial pros-

tochastic words is {E | E is an ω-expression}.

Remark 2. Why the term polynomial?
Consider an ω-expression E, say (aωb)ω , and the prostochastic word (aωb)ω ,

which is induced by the sequence of finite words ((af(n)b)f(n))n∈N. Roughly
speaking f(n) ∼ n, so this sequence represents a polynomial behaviour. Fur-
thermore, the proofs above yield the following robustness property: all con-
verging sequences of finite words ((ag(n)b)h(n))n∈N, where g, h : N → N are
subexponential functions, are equivalent, so they induce the same polynomial
prostochastic word (aωb)ω . We say that a function g : N → N is subexponen-
tial if for all constants C > 1 we have limn g(n) · C

−n = 0; all polynomial
functions are subexponential.

This justifies the terminology; we say that the polynomial prostochastic
words represent all polynomial behaviours.

4.4 Powers of a Stochastic Matrix

In this subsection, we prove Theorem 5.
Let M ∈ SQ×Q(R), consider P = M |Q|. It is easy to see that π(P ) is

idempotent. We decompose P as illustrated in Figure 1, by indexing states in
the following way:

– first, π(P )-transient states,
– then, π(P )-recurrent states, grouped by recurrence class.

In this decomposition, we have the following properties:

– for all m-transient states s ∈ Q, we have
∑

t m-transient Q(s, t) < 1, so
||Q|| < 1,

– the matrices Ji are irreducible: for all states s, t ∈ Q corresponding to the
same Ji, we have Ji(s, t) > 0.

The power Pn of P is represented in Figure 2.
This decomposition allows to treat separately the three blocks:

1. the block Qn: thanks to the observation above ||Q|| < 1, which combined
with ||Qn|| ≤ ||Q||n implies that (Qn)n∈N converges to 0 exponentially
fast,
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Fig. 1. Decomposition of P .

2. the block
∑n−1

k=0 Q
k ·R · Jn−1−k,

3. the block Jn: it is handled by Lemma 3.

We first focus on item 3., and show that the sequence (Jn)n∈N converges
exponentially fast. Each block Ji is handled separately by the following lemma.

Lemma 3. (Powers of an irreducible stochastic matrix) Let J ∈ SQ×Q(R) irre-

ducible: for all states s, t ∈ Q, we have J(s, t) > 0. Then the sequence (Jn)n∈N
converges exponentially fast to a matrix J∞.

Furthermore, J∞ is irreducible.

This lemma is a classical result from Markov chain theory, sometimes called
“the Convergence Theorem”; see for instance [7].

We now consider item 2., and show that the sequence (
∑n−1

k=0 Q
k · R ·

Jn−1−k)n∈N converges exponentially fast. Observe that since ||Q|| < 1, the
matrix I − Q is invertible; denote N = (I − Q)−1, it is equal to

∑
k≥0Q

k.
Denote J∞ = limn J

n, which exists thanks to Lemma 3.
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Fig. 2. Decomposition of Pn.

We have:

||

n−1∑

k=0

Qk · R · Jn−1−k −N ·R · J∞||

= ||

n−1∑

k=0

[
Qk · R ·

(
Jn−1−k − J∞

)
+Qk · R · J∞

]
−N · R · J∞||

= ||

n−1∑

k=0

Qk ·R ·
(
Jn−1−k − J∞

)
+

(
n−1∑

k=0

Qk −N

)
·R · J∞||

≤ ||
n−1∑

k=0

Qk ·R ·
(
Jn−1−k − J∞

)
||+ ||

(
n−1∑

k=0

Qk −N

)
·R · J∞||.



We first consider the right term:

||

(
n−1∑

k=0

Qk −N

)
· R · J∞||

= ||


∑

k≥n

Qk


 ·R · J∞||

≤ ||
∑

k≥n

Qk|| · ||R||︸︷︷︸
≤1

· ||J∞||︸ ︷︷ ︸
=1

= ||Qn ·N ||

≤ ||N || · ||Q||n.

Thus, this term converges exponentially fast to 0.
We then consider the left term. Thanks to Lemma 3, there exists a constant

C > 1 such that for all p ∈ N, we have ||Jp − J∞|| ≤ C−p.

||

n−1∑

k=0

Qk ·R ·
(
Jn−1−k − J∞

)
||

≤
n−1∑

k=0

||Q||k · ||R||︸︷︷︸
≤1

·||Jn−1−k − J∞||

≤
n−1∑

k=0

||Q||k · ||Jn−1−k − J∞||

=

n/2∑

k=0

||Q||k︸ ︷︷ ︸
≤1

·||Jn−1−k − J∞||+

n−1∑

k=n/2+1

||Q||k · ||Jn−1−k − J∞||︸ ︷︷ ︸
≤2

≤
C−(n/2+1) − C−n

1− C
+ 2 ·

||Q||n/2+1 − ||Q||n

1− ||Q||

≤ 2 ·

(
C−(n/2+1)

1− C
+

||Q||n/2+1

1− ||Q||

)
.

Thus, this term converges exponentially fast to 0.
We proved that (Pn)n∈N converges exponentially fast to a matrix Mω . We

conclude the proof of Theorem 5 by observing that:

π(Mω)(s, t) =

{
1 if π(P )(s, t) = 1 and t is π(P )-recurrent,

0 otherwise.



Assume first that π(Mω)(s, t) = 1, i.e.Mω(s, t) > 0. It already implies that
t is π(P )-recurrent, looking at the decomposition of Pn. Since Mω = limn P

n,
it follows that for n large enough, we have Pn(s, t) > 0. The matrix π(P ) is
idempotent, so we have for all n ∈ N the equality π(Pn) = π(P ), implying
that P (s, t) > 0, i.e. π(P )(s, t) = 1.

Conversely, assume that π(P )(s, t) = 1 and t is π(P )-recurrent. Observe
that for all n ∈ N we have Pn+1(s, t) ≥ P (s, t) · Pn(t, t). For n converging
towards infinity, this implies Mω(s, t) ≥ P (s, t) ·Mω(t, t). Note that P (s, t) >
0, andMω(t, t) > 0 since t is π(P )-recurrent and thanks to Lemma 3. It follows
that Mω(s, t) > 0, i.e. π(Mω)(s, t) = 1.

4.5 Reformulating the Characterisation

For proof purposes, we give an equivalent presentation of the Markov Monoid
through ω-expressions. Given a probabilistic automaton A, we define an inter-
pretation 〈·〉 of ω-expressions into Boolean matrices:

– 〈a〉 is π(φ(a)),
– 〈E1 · E2〉 is 〈E1〉 · 〈E2〉,
– 〈Eω〉 is 〈E〉♯, only defined if 〈E〉 is idempotent.

Then the Markov Monoid of A is {〈E〉 | E an ω-expression}.

The following theorem is a reformulation of Theorem 1, using the pros-
tochastic theory. It clearly implies Theorem 1: indeed, a polynomial prostochas-
tic word induces a polynomial sequence, and vice-versa.

Theorem 6. (Characterisation of the Markov Monoid algorithm) The Markov

Monoid algorithm answers “YES” on input A if, and only if, there exists a poly-

nomial prostochastic word accepted by A.

The proof relies on the notion of reification, used in the following proposi-
tion, from which follows Theorem 6.

Definition 12. (Reification) Let A be a probabilistic automaton.

A sequence (un)n∈N of words reifies a Boolean matrix m if for all states

s, t ∈ Q, the sequence
(
PA(s

un−→ t)
)
n∈N

converges and:

m(s, t) = 1 ⇐⇒ lim
n
PA(s

un−→ t) > 0.

Proposition 1. (Characterisation of the Markov Monoid algorithm) For every

ω-expression E, for every φ : A→ SQ×Q(R), we have

π(φ̂(E)) = 〈E〉.

Consequently, for every probabilistic automaton A:



– any sequence inducing the polynomial prostochastic word E reifies 〈E〉,

– the element 〈E〉 of the Markov Monoid is a value 1 witness if, and only if,

the polynomial prostochastic word E is accepted by A.

Proof. We prove the first part of Proposition 1 by induction on the ω-expression
E, which essentially amounts to gather the results from Section 4.

The base case is a ∈ A, clear.
The product case: let E = E1 · E2, and φ : A→ SQ×Q(R).
We prove that π(φ̂(E)) = 〈E〉. By definition E = E1 · E2, so φ̂(E) =

φ̂(E1) · φ̂(E2) because φ̂ is a morphism, and π(φ̂(E)) = π(φ̂(E1)) · π(φ̂(E2)).
Also by definition, we have 〈E〉 = 〈E1〉 · 〈E2〉, so the conclusion follows from
the induction hypothesis.

The iteration case: let E = Fω , and φ : A→ SQ×Q(R).
We prove that π(φ̂(E)) = 〈E〉. By definition, E = F

ω
, so φ̂(E) = φ̂(F

ω
),

which is equal to φ̂(F )ω thanks to Lemma 2. Now, π(φ̂(F )ω) = π(φ̂(F ))♯

thanks to Theorem 5. By induction hypothesis, π(φ̂(F )) = 〈F 〉, which con-
cludes.

We prove the second part. Consider a sequence u inducing the polynomial
prostochastic word E. Thanks to the first item, π(φ̂(E)) = 〈E〉, implying that
π(lim φ(u)) = 〈E〉, which means that u reifies E.

We prove the third part.
Assume that 〈E〉 is a value 1 witness, i.e. for all states t ∈ Q, if 〈E〉(q0, t) =

1, then t ∈ F . So for t /∈ F , we have lim φ(u)(q0, t) = 0. Since we have
limφ(u)(q0, Q) = 1, it follows that limφ(u)(q0, F ) = 1, so φ̂(E)(q0, F ) = 1,
i.e. the polynomial prostochastic word E is accepted by A.

Conversely, assume that the polynomial prostochastic word E is accepted
by A. Since it is induced by u, it follows that lim φ(u)(q0, F ) = 1. Consider a
state t ∈ Q such that 〈E〉(q0, t) = 1. It follows that π(lim φ(u))(q0, t) = 1, so
limφ(u)(q0, t) > 0. Since lim φ(u)(q0, F ) = 1, this implies that t ∈ F , hence
〈E〉 is a value 1 witness.

5 Towards an Optimality Argument

It was shown in [3] that the Markov Monoid algorithm subsumes all previous
known algorithms to solve the value 1 problem. Indeed, it was proved that it
is correct for the subclass of leaktight automata, and that the class of leaktight
automata strictly contains all subclasses for which the value 1 problem has been
shown to be decidable.



At this point, the Markov Monoid algorithm is the best algorithm so far.
But can we go further? If we cannot, then what is an optimality argument? It
consists in constructing a maximal subclass of probabilistic automata for which
the problem is decidable. We can reverse the point of view, and equivalently
construct an optimal algorithm, i.e. an algorithm that correctly solves a subset
of the instances, such that no algorithm correctly solves a superset of these in-
stances. However, it is clear that no such strong statement holds, as one can
always from any algorithm obtain a better algorithm by precomputing finitely
many instances.

Since there is no strong optimality argument, we can only give a subjective
argument. We argue that the combination of our characterisation from Section 3
and the undecidability of the following problem, called the two-tier value 1
problem, supports the claim that the Markov Monoid algorithm is in some sense

optimal.

Theorem 7. (Undecidability of the two-tier value 1 problem) The following

problem is undecidable: given a probabilistic automaton A, determine whether

there exist two finite words u, v such that limn PA((u · vn)2
n
) = 1.

Note that the two-tier value 1 problem is a priori much easier than the value
1 problem, as it restricts the set of sequences of finite words to very simple
sequences. We call such sequences two-tier, because they exhibit two different
behaviours: the word v is repeated a linear number of times, namely n, while
the word u · vn is repeated an exponential number of times, namely 2n. The
proof is obtained using the same reduction as for the undecidability of the value
1 problem, from [6], with a refined analysis.

To conclude:

– The characterisation says that the Markov Monoid algorithm captures ex-
actly all polynomial behaviours.

– The undecidability result says that the undecidability of the value 1 problem
arises when polynomial and exponential behaviours are combined.

So, the Markov Monoid algorithm is optimal in the sense that it captures a large

set of behaviours, namely polynomial behaviours, and that no algorithm can
capture both polynomial and exponential behaviours.
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