
HAL Id: hal-01102610
https://hal.science/hal-01102610v2

Preprint submitted on 29 Jan 2015 (v2), last revised 12 Feb 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Profinite Techniques for Probabilistic Automata and the
Optimality of the Markov Monoid Algorithm

Nathanaël Fijalkow

To cite this version:
Nathanaël Fijalkow. Profinite Techniques for Probabilistic Automata and the Optimality of the
Markov Monoid Algorithm. 2015. �hal-01102610v2�

https://hal.science/hal-01102610v2
https://hal.archives-ouvertes.fr

Profinite Techniques for Probabilistic Automata
and the Optimality of the Markov Monoid Algorithm

Nathanaël Fijalkow

LIAFA, Paris 7, France
University of Warsaw, Poland

Abstract. We consider the value 1 problem for probabilistic automata over finite
words. This problem is known to be undecidable. However, different algorithms
have been proposed to partially solve it. The aim of this paper is to prove that one
such algorithm, called the Markov Monoid algorithm, is optimal.
To this end, we develop a profinite theory for probabilistic automata. This new
framework gives a topological account by constructing the free prostochastic
monoid. We use it in two ways. First, to characterize the computations realized
by the Markov Monoid algorithm, and second to prove its optimality.

1 Introduction

In 1963 Rabin [Rab63] introduced the notion of probabilistic automata, which
are finite automata with randomized transitions. This powerful model has been
widely studied since then and has applications, for instance in image process-
ing [CK97], computational biology [DEKM99] and speech processing [Moh97].
This paper follows a long line of work that studies the algorithmic properties of
probabilistic automata. For instance, Schützenberger [Sch61] proved in 1961
that language equivalence is decidable in polynomial time, and even faster
with randomized algorithms, which led to applications in software verifica-
tion [KMO+11].

However, many natural decision problems are undecidable; for example the
emptiness, the isolation and the value 1 problems are undecidable, as shown
in [Paz71,BMT77,GO10]. To overcome such undecidability results, a lot of ef-
fort went into finding subclasses of probabilistic automata for which natural de-
cision problems become decidable. For instance, Chadha et al. and Korthikanti
et al. look at restrictions implying that containment in ω-regular specifications
is decidable [KVAK10,CKV+11], and investigate whether assuming isolated
cut-points leads to decidability for the emptiness problem [CSV13].

In this paper, we consider the value 1 problem: it asks, given a probabilistic
automaton, whether there exist words accepted with probability arbitrarily close
to 1. This problem has been shown undecidable [GO10], but attracted a lot of at-
tention recently (see, for instance, [BBG12,CT12,FGO12,FGHO14,FGKO14]).

It has been shown in [FGKO14] that the so-called Markov Monoid algorithm
introduced in [FGO12] is the most correct algorithm of all the algorithms pro-
posed in these papers. Indeed, all proposed subclasses of probabilistic automata
turned out to be included in the subclass of leaktight automata, for which the
Markov Monoid algorithm correctly solves the value 1 problem.

The aim of this paper is to prove that the Markov Monoid algorithm is opti-
mal.

What is an optimality argument? It consists in constructing a maximal sub-
class of probabilistic automata for which the problem is decidable. We can re-
verse the point of view, and equivalently construct an optimal algorithm, i.e. an
algorithm that correctly solves a subset of the instances, such that no algorithm
correctly solves a superset of these instances. However, it is clear that no such
strong statement holds, as one can always from any algorithm obtain a better
algorithm by precomputing finitely many instances. Hence our optimality argu-
ment has to be weaker.

We show that the Markov Monoid algorithm is in some sense optimal, by
showing that no algorithm can correctly solve substantially more instances than
the Markov Monoid algorithm. To this end, we first characterize the computa-
tions of the Markov Monoid algorithm: roughly speaking, it captures exactly all
polynomial behaviours. We then show that no algorithm can capture both poly-
nomial and super-polynomial behaviours, supporting the claim that the Markov
Monoid algorithm is optimal.

To make sense of the notion of convergence speeds, we rely on topologi-
cal techniques. We develop a profinite theory for probabilistic automata, called
prostochastic theory. This is inspired by the profinite approach for (classical)
automata [Pin09,GGP10], and for distance automata as developed in Szymon
Toruńczyk’s PhD thesis [Tor11].

Section 3 is devoted to constructing the free prostochastic monoid and show-
ing some of its properties. In particular, we define the acceptance of a pros-
tochastic word by a probabilistic automaton, and show that the value 1 problem
reformulates as the emptiness problem for probabilistic automata over pros-
tochastic words. The free prostochastic monoid is represented in Figure 1, as
a diamond. It contains the set of finite words, represented on the bottom of the
picture, and the sets of polynomial and super-polynomial prostochastic words.

Our main result is the following (the missing definitions are given in Sec-
tion 2 and 4):

Theorem 1. [Optimality of the Markov Monoid algorithm]

Polynomial
Prostochastic

Super
Polynomial
Prostochastic Markov

Monoid
algorithm

Undecidable

ε
a b

aa ab ba bb

aωP bωP

(aωP b)ωP (baωP)ωP

(abωP)ωP aωP b
(bωP a)ωSP

(aωP b)ωSP

(baωP)ωSP

Fig. 1. The Free Prostochastic Monoid.

1. (Characterization) The Markov Monoid algorithm answers “YES” on input
A if, and only if, there exists a polynomial prostochastic word accepted by
A,

2. (Undecidability) The following problem is undecidable: given a probabilis-
tic automatonA as input, determine whether there exists a super-polynomial
prostochastic word accepted by A.

To construct prostochastic words, we define two limit operators: an operator
ωP , where P stands for “polynomial”, and an operator ωSP , where SP stands
for “super-polynomial”.

The polynomial prostochastic words are built using concatenation and the
operator ωP . On an intuitive level, this does not allow for different convergence
speeds to compete. Indeed, part of the proof consists in showing that the poly-
nomial prostochastic words are fast, a notion made precise in Section 4.3. On
the other hand, the super-polynomial prostochastic words are built using both
operators ωP and ωSP , which allows for two convergence speeds to interfere,
leading to undecidability.

We prove the first half of the theorem above in Section 4.4, and the second
half in Section 4.5.

Acknowledgments

This paper and its author owe a lot to Szymon Toruńczyk’s PhD thesis and its
author, to Sam van Gool for his expertise on Profinite Theory, to Mikołaj Bo-
jańczyk for his insightful remarks and to Jean-Éric Pin for his numerous ques-
tions and comments. The opportunity to present partial results on this topic in
several scientific meetings has been a fruitful experience, and I thank everyone
that took part in it.

2 Probabilistic Automata and the Value 1 Problem

We work with finite words over a finite alphabet A. The set of real numbers is
denoted R.

A matrix is stochastic if every entry is non-negative and each line sums
up to 1. For a finite set Q (thought of as a set of states) and E ⊆ R, we de-
noteMQ×Q(E) the set of matrices over E. The restriction to stochastic matri-
ces is denoted SQ×Q(E). We consider the `1-norm || · || defined by ||M || =
maxj

∑
iM(i, j). It induces a topology onMQ×Q(R) and SQ×Q(R). The fol-

lowing classical properties will be useful:

Fact 1

– For every M ∈ SQ×Q(R), we have ||M || = 1,
– For M,M ′ ∈MQ×Q(R), we have ||M ·M ′|| ≤ ||M || · ||M ′||,
– The space SQ×Q(R) is compact (so also complete).

Definition 1 (Probabilistic automaton). A probabilistic automaton is given by
a finite set of states Q, a transition function φ : A → SQ×Q({0, 12 , 1}), a
stochastic vector of initial states I and a boolean vector of final states F .

A transition function φ : A → SQ×Q({0, 12 , 1}) naturally induces a mor-
phism φ : A∗ → SQ×Q({0, 12 , 1}). We denote by PA(s

w−→ t) the probability to
go from state s to state t reading w on the automaton A, i.e. φ(w)(s, t).

The acceptance probability of a word w ∈ A∗ by A is I · φ(w) · F , which
we denote by PA(w). In words, it is the probability that a run ends in a final
state from (i.e. a state from F), starting from the initial distribution given by I .

Definition 2 (Value). The value of a probabilistic automaton A, denoted by
val(A), is the supremum acceptance probability over all input words:

val(A) = sup
w∈A∗

PA(w) .

We are interested in the following decision problem:

Problem 1 (Value 1 Problem). Given a probabilistic automaton A, determine
whether val(A) = 1.

An equivalent formulation of the value 1 problem is as follows: given a
probabilistic automaton A, is it true that for all ε > 0, there exists a word w
such that PA(w) ≥ 1− ε?

The value 1 problem can also be reformulated using the notion of isolated
cut-point introduced by Rabin in his seminal paper [Rab63]: an automaton has
value 1 if and only if the cut-point 1 is not isolated.

Unfortunately:

Theorem 2 ([GO10]). The value 1 problem is undecidable.

A series of papers ([GO10,CT12,FGO12,FGHO14,FGKO14]) tackled the
following question, with different approaches and techniques:

“To what extent is the value 1 problem undecidable?”

One line of work was to construct algorithms to solve the problem on some
subclass of probabilistic automata ([GO10,CT12,FGO12,FGKO14]). As proved
in [FGKO14], the Markov Monoid algorithm is the most correct algorithm of all
the algorithms proposed in these papers: all subclasses considered are included
in the subclass of leaktight automata, for which the Markov Monoid algorithm
correctly solves the value 1 problem.

Another route was to consider variants of the problem, by abstracting away
the numerical values [FGHO14], but this does not lead to decidability.

In this paper, our aim is different. The objective is to draw a decidability
barrier for the value 1 problem, through a precise understanding of both the
Markov Monoid algorithm and the undecidability result.

3 The Prostochastic Theory

In this section, we develop a profinite theory for probabilistic automata. The
main point here is to construct the free prostochastic monoid, which allows to
reformulate the value 1 problem as an emptiness problem over prostochastic
words. The prostochastic theory is then used as a formalism to prove the opti-
mality of the Markov Monoid algorithm, in the next section.

3.1 The Free Prostochastic Monoid
A profinite monoid is a monoid for which two elements can be distinguished
by a morphism into a finite monoid, i.e. by a finite automaton. To define pros-
tochastic monoids, we use a stronger distinguishing feature, namely probabilis-
tic automata, which correspond to stochastic matrices over the reals.

Definition 3 (Prostochastic Monoid). A monoid P is prostochastic if for every
s 6= t ∈ P , there exists a morphism ψ : P → SQ×Q(R) such that ψ(s) 6= ψ(t).

A prostochastic monoidP is naturally equipped with the prostochastic topol-
ogy, which is the smallest that makes continuous every morphism ψ : P →
SQ×Q(R).

There are much more prostochastic monoids than profinite monoids. Indeed,
SQ×Q(R) is prostochastic, but not profinite in general.

Lemma 1 (Prostochastic Monoids are Compact and Topological). Every pros-
tochastic monoid P is compact and topological, i.e. the product function{

P × P → P
(s, t) 7→ s · t

is continuous.

Proof. Consider a prostochastic monoid P , we show that it embeds into M =∏
ψ:P→SQ×Q(R) SQ×Q(R). We equip M with the product topology induced by

the topology on SQ×Q(R), it is a compact space thanks to Tychonoff’s theorem.
Consider the map ι : P → M defined by ι(s) = (ψ(s))ψ:P→SQ×Q(R), it is
a continuous injection. The continuity follows from the definition of both the
prostochastic topology and the product topology, and the injectivity from the
definition of the prostochastic monoid. Observe that ι(P) is closed, as it is equal
to: ⋂

φ 6=ψ
{m ∈M | mφ = φ(s) and mψ = ψ(s) for some s ∈ P} .

It follows that ι(P) is compact, and so is P .
The continuity of the product in M follows from the continuity of the prod-

uct in SQ×Q(R), which implies the continuity of the product in P .

The main theorem of the prostochastic theory is the existence and unique-
ness of a space, called the free prostochastic monoid, that satisfies a Universal
Property. The statement is the same as in the profinite theory, replacing “profi-
nite monoid” by “prostochastic monoid”.

Theorem 3 (Existence of the Free Prostochastic Monoid). For every finite
alphabet A,

1. There exists a prostochastic monoid PA∗ and a continuous injection ι :
A→ PA∗ such that every φ : A→M , whereM is a prostochastic monoid,
extends uniquely to a continuous morphism φ̂ : PA∗ →M .

2. All prostochastic monoids satisfying this property are homeomorphic.

The unique prostochastic monoid satisfying the Universal Property stated in
item 1. is called the free prostochastic monoid, and denoted PA∗.

The uniqueness argument (item 2.) is a consequence of the Universal Prop-
erty (item 1.), following standard arguments. The remainder of this subsection
focuses on the existence part of this theorem (item 1.).

Before proceeding with the construction, we review the well-known situa-
tion in the profinite theory. There are several different constructions of the free
profinite monoid, we consider two of them:

1. A simple yet abstract construction, as a subset of
∏
φ:A→M M ,

2. A more pedestrian construction, as the completion of A∗ equipped with an
appropriate profinite distance,

Note that the uniqueness argument implies that the two constructions are equiv-
alent. There are a number of extensions for classes of languages beyond regular
languages. However, it has already been observed that these constructions lead
to unappealing objects, for instance where the product function is not continu-
ous.

To obtain a well-behaved prostochastic theory, we depart from this and con-
struct a profinite theory of probabilistic automata rather than probabilistic lan-
guages, following the first construction. We further discuss in Subsection 3.2
this fine point, and how to construct the free prostochastic monoid following
the second construction, as the completion of A∗ equipped with a prostochastic
distance.

We proceed with a construction of the free prostochastic monoid. Consider
X =

∏
φ:A→M M , equipped with the product topology induced by the pros-

tochastic topologies for each prostochastic monoid. Thanks to Tychonoff’s theo-
rem, it is compact. Denote ι : A→ X the map defined by ι(a) = (φ(a))φ:A→M ,
it is a continuous injection.

Denote PA∗ = ι(A∗), the closure of ι(A∗) ⊆ X . Note that it is a monoid
as the closure of a monoid.

We fix some notational conventions now. We denote sequences of finite
words by u,v,w, By definition, an element of PA∗ is obtained as the limit
of a sequence ι(u), in which case we say that u induces u. The elements of
PA∗ are denoted u, v, We sometimes implicitely assume that u is induced
by u = (un)n∈N, and the same for v, w,

Definition 4 (Converging Sequences and Equivalence). A sequence u is con-
verging if ι(u) converges (in X).

Two converging sequences u and v are equivalent if they induce the same
element of PA∗, i.e. if lim ι(u) = lim ι(v).

Unravelling the definitions, we obtain the following:

– a sequence u is converging if, and only if, for every φ : A→ SQ×Q(R), the
sequence of stochastic matrices φ(u) converges (in SQ×Q(R)),

– two converging sequences u and v are equivalent if, and only if, for every
φ : A→ SQ×Q(R), we have limφ(u) = limφ(v).

Observe that the second point implies that PA∗ is a prostochastic monoid.
Furthermore, the topology induced byX coincides with the prostochastic topol-
ogy.

We now argue that PA∗ satisfies the Universal Property. Indeed, for φ :
A→M , define φ̂ : PA∗ →M by φ̂(u) = limφ(u), where u is some sequence
inducing u. This is well-defined and induces a continuous morphism, extending
φ. The uniqueness is clear.

This concludes the proof of Theorem 3.

3.2 Discussions

In this subsection, we discuss how to extend the other construction of the free
profinite monoid. This reveals a subtlety: the construction above is different
from the free profinite monoid with respect to the class of probabilistic lan-
guages.

We first describe a naïve approach to construct the free prostochastic monoid
as the completion of A∗ with an appropriate prostochastic distance, which will
turn out to induce a different monoid with less appealing properties; for instance,
its product is not continuous.

Recall that for the profinite distance, two words are close if there exists a
small automaton that accepts one and rejects the other. One can define a pros-
tochastic distance similarly.

Denote L the class of probabilistic languages, i.e. the languages of the form
L>

1
2 (A) = {w ∈ A∗ | PA(w) > 1

2} for some probabilistic automaton A. We
say that two words u and v are N -separated with respect to L if there exists a
probabilistic automaton A of size N such that u ∈ L> 1

2 (A) and v /∈ L> 1
2 (A).

Define dL(u, v) as 2−N , whereN is minimal such that u and v areN -separated.
The function dL is indeed a metric. One can define the completion of A∗

equipped with the distance dL, as a candidate for the free prostochastic monoid.
However, for this metric the product{

A∗ ×A∗ → A∗

(u, v) 7→ u · v

is not continuous, hence in particular this space is not prostochastic. This is not
a surprise:

Theorem 4 ([GGP10]). Let L be a Boolean algebra of languages. Consider
the completion of A∗ equipped with the distance dL, its product is continuous
if, and only if, L contains only regular languages.

In light of this theorem, in order to obtain a well-behaved prostochastic the-
ory, we need to move away from this construction relying on a class of lan-
guages. Instead of considering that a probabilistic automaton defines a language
L>

1
2 (A), in other words a function A∗ → {0, 1}, we consider the function

PA : A∗ → [0, 1].

We quickly describe a different approach to construct the free prostochastic
monoid as the completion of A∗ with an appropriate prostochastic distance.

Definition 5 (Prostochastic Distance). We say that two words u and v are
(N, η)-separated if there exists φ : A→ SQ×Q({0, 12 , 1}) such that

|Q| ≤ N and ||φ(u)− φ(v)|| ≥ η .

Define d(u, v) as 2−N , where N is minimal such that u and v are (N, 2−N)-
separated.

Informally, two words are close if there exists a morphism into a small prob-
abilistic automaton, that separates them by a large value. Hence the distance
involves a threshold between the size of the automaton, which should be small,
and the separation between the values, which should be large.

Unfortunately, the function d is not a metric, as it does not satisfy the triangle
inequality, but only a weaker version:

d(u, v) ≤ 2 ·max{d(u,w), d(w, v)} .

Still, one can define the completion of A∗ equipped with the distance d. The
product function is uniformly continuous, and one can prove that this indeed
gives rise to a prostochastic monoid satisfying the Universal Property, hence
homeomorphic to the first construction.

3.3 Reformulation of the Value 1 Problem

The aim of this subsection is to reformulate the value 1 problem, which talks
about sequences of finite words, into an emptiness problem over prostochastic
words.

Definition 6 (Prostochastic Language of a Probabilistic Automaton). Let
A be a probabilistic automaton and u a prostochastic word. We say that u
is accepted by A if u is induced by some converging sequence u such that
limPA(u) = 1.

We denote by L(A) the set of prostochastic words accepted by A.

Note that u is accepted by A if, and only if, all sequences u inducing u
satisfy limPA(u) = 1: it does not depend on the chosen representative.

Theorem 5 (The Value 1 Problem and the Emptiness Problem over Pros-
tochastic Words). LetA be a probabilistic automaton. The following are equiv-
alent:

– val(A) = 1,
– L(A) is non-empty.

Proof. Assume val(A) = 1, then there exists a sequence of words u such that
limPA(u) = 1. We see u as a sequence of prostochastic words. By compactness
of PA∗ it contains a converging subsequence, which without loss of generality
we assume is u itself. The prostochastic word induced by u belongs to L(A).

Conversely, let u be a prostochastic word accepted by A. Consider a se-
quence u inducing u. By definition, we have limPA(u) = 1, implying that
val(A) = 1.

4 Optimality of the Markov Monoid Algorithm

In this section, we use the prostochastic theory developed in the previous section
to prove the optimality of the Markov Monoid algorithm. We first present the
algorithm in Subsection 4.1, introduced in [FGO12]. We introduce two limit op-
erators in Subsection 4.2, and our main technical tool, the fast sequences, in Sub-
section 4.3. We give in Subsection 4.4 a characterization of the Markov Monoid
algorithm using polynomial prostochastic words, and the Subsection 4.5 shows
an undecidability result for super-polynomial prostochastic words.

4.1 The Algorithm

The Markov Monoid algorithm was introduced in [FGO12]. The presentation
that we give here is different yet equivalent. ConsiderA a probabilistic automa-
ton, the Markov Monoid algorithm consists in computing, through a saturation
process, the Markov Monoid of A.

It is a monoid of boolean matrices: all numerical values are projected away
to boolean values. Formally, for M ∈ SQ×Q(R), define its boolean projec-
tion π(M), as the boolean matrix such that π(M)(s, t) = 1 if M(s, t) > 0,

and π(M)(s, t) = 0 otherwise. Hence to define the Markov Monoid, one can
consider the underlying non-deterministic automaton π(A) instead of the prob-
abilistic automaton A.

The Markov Monoid of π(A) contains the transition monoid of π(A), which
is the monoid generated by {π(φ(a)) | a ∈ A} and closed under (boolean
matrix) products. Informally speaking, the transition monoid accounts for the
boolean action of every finite word. Formally, for a word w ∈ A∗, the element
〈w〉 of the transition monoid of π(A) satisfies the following: 〈w〉(s, t) = 1 if,
and only if there exists a run from s to t reading w on π(A).

The Markov Monoid generalizes the transition monoid by introducing a new
operator, the stabilization. On the intuitive level first: let M ∈ SQ×Q(R), it
can be interpreted as a Markov chain; its boolean projection π(M) give the
structural properties of this Markov chain. The stabilization π(M)] accounts
for limnM

n, i.e. the behaviour of the Markov chain M in the limit. The formal
definition of the stabilization operator relies on basic concepts from Markov
chain theory.

Definition 7 (Stabilization). Let M be a boolean matrix. It is idempotent if
M ·M =M .

Assume M is idempotent, then we say that t ∈ Q is M -recurrent if for all
s ∈ Q, if M(s, t) = 1, then M(t, s) = 1.

The stabilization operator is defined only on idempotent elements:

M](s, t) =

{
1 if M(s, t) = 1 and t is M -recurrent,
0 otherwise.

The definition of the stabilization matches the intuition that in the Markov
chain limnM

n, the probability to be in non-recurrent states converges to 0. This
will be made precise in Subsection 4.4.

Definition 8 (Markov Monoid). The Markov Monoid of A is the smallest set
of boolean matrices containing {π(φ(a)) | a ∈ A} and closed under product
and stabilization of idempotents.

We give an equivalent presentation through ω-expressions, described by the
following grammar:

E −→ a | E · E | Eω .

We define an interpretation 〈·〉 of ω-expressions into boolean matrices:

– 〈a〉 is π(φ(a)),

– 〈E1 · E2〉 is 〈E1〉 · 〈E2〉,
– 〈Eω〉 is 〈E〉], only defined if 〈E〉 is idempotent.

Then the Markov Monoid is {〈E〉 | E an ω-expression}.
The Markov Monoid algorithm computes the Markov Monoid, and looks

for value 1 witnesses:

Definition 9 (Value 1 Witnesses). A boolean matrix M is a value 1 witness if:
for all s ∈ I , t ∈ Q, if M(s, t) = 1, then t ∈ F .

The Markov Monoid algorithm answers “YES” if there exists a value 1
witness in the Markov Monoid, and “NO” otherwise. The following has been
proved in [FGO12]:

Theorem 6 ([FGO12]).

– If the Markov Monoid algorithm answers “YES” on input A, then the prob-
abilistic automaton A has value 1,

– The converse does not hold in general: there exists a probabilistic automa-
ton that has value 1, such that the Markov Monoid algorithm answers “NO”,

– The Markov Monoid algorithm can be implemented in PSPACE.

4.2 Limit Operators for Prostochastic Words

We show in this subsection how to construct non-trivial prostochastic words. In
particular, we want to define a limit operator that accounts for the stabilization
operation from the Markov Monoid. To this end, we need to better understand
convergence speeds phenomena: different limit behaviours can occur, depending
on how fast the underlying Markov chains converge.

We will define two limit operators: an operator ωP , where P stands for
“polynomial”, and an operator ωSP , where SP stands for “super-polynomial”.
First, we analyze the automaton represented in Figure 2, which was introduced
in [GO10].

As explained in [FGO12,FGKO14], if x > 1
2 , we have limn PA((ba

n)2
n
) =

1, but limn PA((ba
n)n) < 1. This exhibits two different behaviours; the first

one shall be accounted for by (baωP)ωSP , inducing a super-polynomial pros-
tochastic word, the second by (baωP)ωP , inducing a polynomial prostochastic
word.

Informally speaking, this automaton consists of two symmetric parts, left
and right. The left part leads to the accepting state, and the right part to the re-
jecting sink. To reach the accepting state with arbitrarily high probability, one
needs to “tip the scales” to the left. Consider the following experiment, which

p0

L1

qF

R1

⊥a

b, 12

a, 1− xb

a, x

a, b

b, 12

a, x b

a, 1− x

a, b

Fig. 2. Automaton accepting a super-polynomial prostochastic word but no polynomial ones.

consists in reading b and then a long sequence of a’s. It results in the following
situation: with high probability, the current state is p0, with small probability
it is L1, and with even smaller probability it is R1. To construct a sequence of
words with arbitrarily high probability of being accepted, one has to play with
this difference, and repeat the previous experiment many times. As shown by
precise calculations, what matters is that this experiment is repeated exponen-
tially more than the length of the experiment, leading to the sequence of words
((ban)2

n
)n∈N.

We now turn to the definitions of ωP and ωSP . Consider the two functions
fP , fSP : N→ N defined as follows:

– fP (n) = k!, where k is maximal such that k! ≤ n,
– fSP (n) = k!, where k is maximal such that k! ≤ nlog(n).

The function fP grows linearly: roughly, fP (n) ∼ n, and the function fE grows
super-polynomially: roughly, fSP (n) ∼ nlog(n). Both choices of n and nlog(n)

are arbitrary; one could replace n by any polynomial, and nlog(n) by any func-
tion both super-polynomial and sub-exponential.

The functions fP and fSP are factorial-like: for all p ∈ N, there exists
k ∈ N, such that for all n ≥ k, we have p | f(n), i.e. p divides f(n). The
choice of factorial-like functions comes from the following classical result from
Markov chain theory.

Lemma 2 (Powers of a Stochastic Matrix). Let M ∈ SQ×Q(R). There exists
M∞ ∈ SQ×Q(R) such that:

– for all f : N → N factorial-like, the sequence (Mf(n))n∈N converges to
M∞,

– there exist two constants K and C > 1 such that

||Mf(n) −M∞|| ≤ K · C−f(n) ,
– if π(M) is idempotent, then π(M∞) = π(M)].

The two operators ωP and ωSP take as input a sequence of finite words, and
output a sequence of finite words. Formally, let u be a sequence of finite words,
define:

uωP = (ufP (n·|un|)
n)n∈N ; uωSP = (ufSP (n·|un|)

n)n∈N .

It is not true in general that if u converges, then uωP converges, nor uωSP .
In the next subsection, we will show that a sufficient condition is that u is fast.

4.3 Fast Sequences

This subsection introduces fast sequences, as the key technical tool for the proofs
to follow.

Definition 10 (Fast Sequences). A sequence of finite words u is fast if it con-
verges (we denote u the prostochastic word it induces), and for every φ : A →
SQ×Q(R), there exist a polynomial P and C > 1 such that for every n,

||φ(un)− φ̂(u)|| ≤ P (|un|) · C−|un| .
A prostochastic word is fast if it is induced by some fast sequence. We de-

note by PA∗f the set of fast prostochastic words. The next lemmas show the
following:

– PA∗f is a submonoid of PA∗: in other words, the concatenation of two fast
prostochastic words is a fast prostochastic word,

– ωP is an operator PA∗f → PA∗f ,
– ωSP is an operator PA∗f → PA∗.

Lemma 3 (Concatenation and Fast Sequences). Let u,v be two fast sequences.
The sequence u · v = (un · vn)n∈N is fast.

Proof. Let φ : A→ SQ×Q(R) and n.

||φ(un) · φ(vn)− φ̂(u) · φ̂(v)||
= ||φ(un) · (φ(vn)− φ̂(v))− (φ̂(u)− φ(un)) · φ̂(v)||
≤ ||φ(un)|| · ||φ(vn)− φ̂(v)||+ ||φ̂(u)− φ(un)|| · ||φ̂(v)||
= ||φ(vn)− φ̂(v)||+ ||φ̂(u)− φ(un)||

Since u and v are fast, the previous inequality implies that u · v is fast.

Lemma 4 (Limit Operators and Fast Sequences). Let u,v be two equivalent
fast sequences. Then:

– uωP and vωP are fast and equivalent,
– uωSP and vωSP converge and are equivalent.

Proof. Let φ : A→ SQ×Q(R) and f ∈ {fP , fSP }.
Thanks to Lemma 2, the sequence (φ̂(u)f(n·|un|))n∈N converges to φ̂(u)∞,

there exists two constants K and C1 > 1 such that for every n, we have
||φ̂(u)f(n·|un|) − φ̂(u)∞|| ≤ K · C−f(n·|un|)1 .

We proceed in two steps, using the following inequality, which holds for
every n:

||φ(uf(n·|un|)n)− φ̂(u)∞||
≤ ||φ(un)f(n·|un|) − φ̂(u)f(n·|un|)||
+ ||φ̂(u)f(n·|un|) − φ̂(u)∞|| .

For the left part, we rely on the following equality, where x and y may not
commute:

xN − yN =

N−1∑
k=0

xN−k−1 · (x− y) · yk .

Let N = f(n · |un|), this gives:

||φ(un)N − φ̂(u)N || =

||
N−1∑
k=0

φ(un)
N−k−1 · (φ(un)− φ̂(u)) · φ̂k(u)||

≤
N−1∑
k=0

||φ(un)N−k−1|| · ||φ(un)− φ̂(u)|| · ||φ̂k(u)||

≤
N−1∑
k=0

||φ(un)||N−k−1 · ||φ(un)− φ̂(u)|| · ||φ̂(u)||k

= N · ||φ(un)− φ̂(u)|| .

Since u is fast, there exist a polynomial P and C2 > 1 such that ||φ(un) −
φ̂(u)|| ≤ P (|un|) · C−|un|2 . Altogether, we have

||φ(uf(n·|un|)n)− φ̂(u)∞||
≤ f(n · |un|) · P (|un|) · C−|un|2 +K · C−f(n·|un|)1 .

It follows that (φ(uf(n·|un|)n))n∈N converges to φ̂(u)∞, so both sequences
uωP and uωE converge.

Furthermore, since u and v are equivalent, we have limφ(uωP) = limφ(vωP),
implying that uωP and vωP are equivalent. The same goes for ωSP .

For f = fP , we have f(n · |un|) ≤ n · |un|, so there exist some polynomial
Q and C > 1 such that ||φ(uf(n·|un|)n)− φ̂(u)∞|| ≤ Q(|un|) ·C−|un|, implying
that uωP is fast.

We define an interpretation · of ω-expressions into prostochastic words:

– a is prostochastic word induced by the constant sequence of the one-letter
word a,

– E1 · E2 = E1 · E2,
– Eω = E

ωP .

Definition 11 (Polynomial and Super-polynomial Prostochastic Words). The
set of polynomial prostochastic words is

{E | E is an ω-expression} .

The set of super-polynomial prostochastic words is

{EωSP | E is an ω-expression} .

4.4 A Characterization with Polynomial Prostochastic Words

The aim of this subsection is to prove that for given a probabilistic automaton
A, for every ω-expression E, the element 〈E〉 of the Markov Monoid of A is
a value 1 witness if, and only if, the polynomial prostochastic word E is ac-
cepted byA. This implies the following characterization of the Markov Monoid
algorithm:

The Markov Monoid algorithm answers “YES”
on input A

if, and only if,
there exists a polynomial prostochastic word

accepted by A.

This is the first item of Theorem 1. It follows from the following proposition.

Proposition 1. For all ω-expressions E, for every φ : A→ SQ×Q(R), we have

π(φ̂(E)) = 〈E〉 .

Consequently, the element 〈E〉 of the Markov Monoid is a value 1 witness
if, and only if, the polynomial prostochastic word E is accepted by A.

We prove the first part of Proposition 1 by induction on the ω-expression E,
which now essentially amounts to gather the results from the previous sections.
The second part is a direct corollary of the first part.

The base case is a ∈ A, clear.
The product case: let E = E1 · E2, and φ : A→ SQ×Q(R).
We prove that π(φ̂(E)) = 〈E〉. Indeed, by definition φ̂(E) = φ̂(E1) · φ̂(E2)

and 〈E〉 = 〈E1〉·〈E2〉, so the conclusion follows from the induction hypothesis.
The iteration case: let E = Fω, and φ : A→ SQ×Q(R).
We prove that π(φ̂(E)) = 〈E〉. This follows from the definitions, the induc-

tion hypothesis and Lemma 2.
The proof of Proposition 1 is complete. It implies the first item of Theo-

rem 1.

4.5 Undecidability for Super-polynomial Prostochastic Words

The aim of this subsection is to show that undecidability is around the corner:

The following problem is undecidable:
given a probabilistic automaton A,

determine whether there exists
a super-polynomial prostochastic word accepted by A.

This is the second item of Theorem 1.

Proof. We construct a reduction from the emptiness problem of probabilistic au-
tomata over finite words, proved to be undecidable in [Paz71]. Let A be a prob-
abilistic automaton, we ask if there exists a finite word w such that PA(w) > 1

2 .
We construct a probabilistic automaton B such that the following holds:

there exists a finite word w such that PA(w) > 1
2

if, and only if,
there exists a super-polynomial prostochastic word

accepted by B.

The reduction is essentially as in [GO10], where they proved the undecid-
ability of the value 1 problem. It is illustrated in Figure 3. In the original proof,
it was enough to prove the existence of any prostochastic word accepted by B.
The challenge here is to improve the construction and the proof to show the
existence of a super-polynomial prostochastic word accepted by B.

p0q0, LA
F

qF

q0, R A
F

⊥

A, end

check, 12

check

∗
end

end

check, 1
2

check

∗

end

end

Fig. 3. Reduction.

The automaton B is very similar to the one presented in Figure 2, except
that the role of the letter a is now replaced by the simulation of a word in A.

We fix the notations: the set of states of A is Q, its transition function is φ,
without loss of generality we assume that it has a unique initial state q0 (which
has no ingoing transitions), and the set of final states is F .

The alphabet of B isB = A]{check, end}, its set of states isQ×{L,R}]
{p0,⊥, qF }, its transition function is φ′, the only initial state is p0 and the only

final state is qF . We define φ′ as follows:

φ′(p0, a) = p0 for a ∈ A
φ′(p0, end) = p0

φ′(p0, check) = 1
2 · (q0, L) + 1

2 · (q0, R)
φ′((q, d), a) = (φ(q, a), d) for a ∈ A
φ′((q0, L), check) = qF

φ′((q, L), end) = q0 if q ∈ F
φ′((q, L), end) = p0 if q /∈ F
φ′((q0, R), check) = ⊥
φ′((q,R), end) = p0 if q ∈ F
φ′((q,R), end) = q0 if q /∈ F
φ′(qF , ∗) = qF

φ′(⊥, ∗) = ⊥

Assume that there exists a finite word w such that PA(w) > 1
2 , then we

claim that (check · (w · end)ωP)ωSP is accepted by B. Denote x = PA(w).
We have

PA(p0
check·(w·end)k−−−−−−−−−→ (q0, L)) =

1

2
· xk ,

and
PA(p0

check·(w·end)k−−−−−−−−−→ (q0, R)) =
1

2
· (1− x)k .

We fix an integerN and analyze the action of reading (check · (w ·end)k)N :
there are N “rounds”, each of them corresponding to reading check · (w · end)k
from p0. In a round, there are three outcomes: winning (that is, remaining in
(q0, L)) with probability pk = 1

2 · xk, losing (that is, remaining in (q0, R)) with
probability qk = 1

2 · (1 − x)k, or going to the next round (that is, reaching p0)
with probability 1 − (pn + qn). If a round is won or lost, then the next check
leads to an accepting or rejecting sink; otherwise it goes on to the next round,
for N rounds. Hence:

PA((check · (w · end)k)N)

=
N−1∑
i=1

(1− (pk + qk))
i−1 · pk

= pk ·
1− (1− (pk + qk))

N−1

1− (1− (pk + qk))

=
1

1 + qk
pk

·
(
1− (1− (pk + qk))

N−1)

We now set k = fP (n · (|w|+ 1)) and N = fE(n · (1 + k · (|w|+ 1))). A
simple calculation shows that the sequence ((1− (pk+ qk))

N−1)n∈N converges
to 0 as n goes to infinity. Furthermore, qkpk = (1−xx)k, which converges to 0 as n
goes to infinity since x > 1

2 . It follows that the acceptance probability converges
to 1 as n goes to infinity. Consequently:

lim
n
PA((check · (w · end)k)N) = 1 ,

i.e. (check · (w · end)ωP)ωSP is accepted by B.

Conversely, assume that for all finite words w, we have PA(w) ≤ 1
2 . We

claim that every finite word in B∗ is accepted by B with probability at most 1
2 .

First of all, using simple observations we restrict ourselves to words of the form

w = check · w1 · end · w2 · end · · · wn · end · w′,

with wi ∈ A∗ and w′ ∈ B∗. Since PA(wi) ≤ 1
2 for every i, it follows that in B,

after reading the last letter end in w before w′, the probability to be in (q0, L) is
smaller or equal than the probability to be in (q0, R). This implies the claim. It
follows that the value of B is not 1, so B accepts no prostochastic words thanks
to Theorem 5.

This concludes the optimality argument for the Markov Monoid algorithm,
which consisted in first characterizing its computations using polynomial pros-
tochastic words, and then showing that considering super-polynomial prostochas-
tic words leads to undecidability.

Conclusion and Perspectives

In this paper, we developed a profinite theory for probabilistic automata, called
the prostochastic theory, and used it to formalize an optimality argument for
the Markov Monoid algorithm. To the best of our knowledge, this is the first
optimality argument for algorithms working on probabilistic automata.

This opens new perspectives. One of them is to further develop the pros-
tochastic theory, for instance to better understand the class of fast prostochastic
words, and another is to push our result, using the prostochastic theory to con-
struct an optimal algorithm for approximating the value.

References

[AGK+10] Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der
Heide, and Paul G. Spirakis, editors. Automata, Languages and Programming, 37th

International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Pro-
ceedings, Part II, volume 6199 of Lecture Notes in Computer Science. Springer,
2010.

[BBG12] Christel Baier, Nathalie Bertrand, and Marcus Größer. Probabilistic ω-automata.
Journal of the ACM, 59(1):1, 2012.

[BMT77] Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some recursive unsolvable
problems relating to isolated cutpoints in probabilistic automata. In Arto Salomaa
and Magnus Steinby, editors, Automata, Languages and Programming, Fourth Col-
loquium, University of Turku, Finland, July 18-22, 1977, Proceedings, volume 52 of
Lecture Notes in Computer Science, pages 87–94. Springer, 1977.

[CK97] Karel Culik and Jarkko Kari. Digital images and formal languages, pages 599–616.
Springer-Verlag New York, Inc., 1997.

[CKV+11] Rohit Chadha, Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and
YoungMin Kwon. Model checking MDPs with a unique compact invariant set of
distributions. In QEST, pages 121–130. IEEE Computer Society, 2011.

[CSV13] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Probabilistic automata
with isolated cut-points. In Krishnendu Chatterjee and Jiri Sgall, editors, MFCS,
volume 8087 of Lecture Notes in Computer Science, pages 254–265. Springer, 2013.

[CT12] Krishnendu Chatterjee and Mathieu Tracol. Decidable problems for probabilistic
automata on infinite words. In Proceedings of the 27th Annual IEEE Symposium
on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012
[DBL12], pages 185–194.

[DBL12] Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society, 2012.

[DEKM99] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, July 1999.

[FGHO14] Nathanaël Fijalkow, Hugo Gimbert, Florian Horn, and Youssouf Oualhadj. Two
recursively inseparable problems for probabilistic automata. In Erzsébet Csuhaj-
Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations
of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of Lecture Notes in
Computer Science, pages 267–278. Springer, 2014.

[FGKO14] Nathanaël Fijalkow, Hugo Gimbert, Edon Kelmendi, and Youssouf Oualhadj. De-
ciding the value 1 problem for probabilistic leaktight automata. submitted, 2014.

[FGO12] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Deciding the value 1
problem for probabilistic leaktight automata. In Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia,
June 25-28, 2012 [DBL12], pages 295–304.

[GGP10] Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. A topological approach to recog-
nition. In Abramsky et al. [AGK+10], pages 151–162.

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: De-
cidable and undecidable problems. In Abramsky et al. [AGK+10], pages 527–538.

[KMO+11] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James Wor-
rell. Language equivalence for probabilistic automata. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer Science,
pages 526–540. Springer, 2011.

[KVAK10] Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin Kwon.
Reasoning about MDPs as transformers of probability distributions. In QEST, pages
199–208. IEEE Computer Society, 2010.

[Moh97] Mehryar Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23:269–311, June 1997.

[Paz71] Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.
[Pin09] Jean-Éric Pin. Profinite methods in automata theory. In Susanne Albers and Jean-

Yves Marion, editors, 26th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings,
volume 3 of LIPIcs, pages 31–50. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany, 2009.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963.

[Sch61] Marcel Paul Schützenberger. On the definition of a family of automata. Information
and Control, 4(2-3):245–270, 1961.

[Tor11] Szymon Toruńczyk. Languages of profinite words and the limitedness problem. PhD
thesis, University of Warsaw, 2011.

