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Introduction

Our main interest in this paper is Tanaka's equation

X x t = x + t 0 sgn(X x s )dW s ( 1 
)
where W is a standard Brownian motion and x ∈ R. Following [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF], our purpose here is to determine the set

P = {P ∞ = (P n ) n≥1 }
where each P ∞ = (P n ) n≥1 is a compatible [START_REF] Jan | Flows, coalescence and noise[END_REF] family of Feller semigroups acting respectively on C 0 (R n ) such that for each n the coordinates of the n point motion (Markov process) associated to P n are solutions of (1) driven by the same Brownian motion W n . The compatibility means that for all k ≤ n, any k coordinates of an n point motion (associated to P n ) form a k point motion and for any permutation

σ of {1, • • • , n}, if (X 1 , • • • , X n ) is the n point motion starting from (x 1 , • • • , x n ), then (X σ(1) , • • • , X σ(n) ) is the n point motion starting from (x σ(1) , • • • , x σ(n) ).
There is a one to one correspondance (see Section 2) between P and the set K = Law of K : K is a solution of the generalized Tanaka's SDE where the generalized Tanaka's SDE is defined as follows Definition 1.1. Let K be a stochastic flow of kernels and W be a real white noise. We say that (K, W ) is a solution of (the generalized) Tanaka's SDE

(T ) if for all s ≤ t, x ∈ R, f ∈ C 2 b (R) (f is C 2 on R and f ′ , f ′′ are bounded), a.s. K s,t f (x) = f (x) + t s K s,u (f ′ sgn)(x)dW s,u + 1 2 t s K s,u f ′′ (x)du (2) 
We say that K is a Wiener solution of (T ) if for all s ≤ t, F K s,t = σ(K u,v , s ≤ u ≤ v ≤ t) is contained in F W s,t = σ(W u,v , s ≤ u ≤ v ≤ t). Any flow of kernels K solving (T ) that is not Wiener, will be called a weak solution.

We recall that (W s,t ) s≤t is a real white noise if there exists a (unique) Brownian motion on the real line (W t ) t∈R such that W s,t = W t -W s for all s ≤ t. As a consequence of Definition 1.1, if (K, W ) solves (T ), then F W s,t ⊂ F K s,t for all s ≤ t (see Lemma 3.1 in [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF]) and so we may just say K solves (T ).

The main result of [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF] shows that K is in bijection with

M = m ∈ P([0, 1]), 1 0 x dm(x) = 1 2
where P([0, 1]) is the set of all probability measures on [0, 1]. This is summarized in the following Theorem 1.2. [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF] (1) Let m be a probability measure on [0, 1] with mean 1/2. There exist a stochastic flow of kernels (unique in law) K m and a real white noise W such that (K m , W ) solves (T ) and such that if

W + s,t = W s,t -inf u∈[s,t]
W s,u and τ s (x) = inf{r ≥ s : W s,r = -|x|}, then for all s ≤ t and x ∈ R, a.s.

K m s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + (U s,t δ W + s,t + (1 -U s,t )δ -W + s,t )1 {t>τs(x)
} where for each s < t, U s,t is independent of W and has for law m.

(2)

K s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + 1 2 (δ W + s,t + δ -W + s,t )1 {t>τs(x)} is the unique (up to modification) Wiener solution of (T ); it corresponds to m = δ1 2 . For m = 1 2 (δ 0 + δ 1 )
, K m is induced by a coalescing flow of mappings ϕ c i.e. K m = δ ϕ c . Moreover ϕ c is the law unique stochastic flow of mappings such that for all s ≤ t and x ∈ R a.s.

ϕ c s,t (x) = x + t 0 sgn(ϕ c s,u (x))dW s,u .
(3) For any flow K solution of (T ), there exists a unique probability measure m on [0, 1] with mean 1/2 such that

K law = K m .
In all this paper, a stochastic flow of kernels K on R is defined as in [START_REF] Jan | Flows, coalescence and noise[END_REF] with the additional assumption that (s, t, x, ω) → K s,t (x, ω) is measurable from {(s, t, x, ω), s ≤ t, x ∈ R, ω ∈ Ω} into P(R). This is important for the integrals in (2) to be defined.

Let us now describe the content of this paper and our contributions to the study of (T ). In Section 2, we explain the correspondance between Feller compatible solutions to [START_REF] Gall | Processus de Branchement et Superprocessus[END_REF] and flows solutions to (T ). The content of this section was implicit in [START_REF] Jan | Three examples of Brownian flows on R[END_REF] and [START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF]. We write it here since our proofs later will strongly rely on it. In Section 3, we briefly review the construction of the flows K m from [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF], thus sketching the proof of Theorem 1.2 [START_REF] Gall | Processus de Branchement et Superprocessus[END_REF]. In Section 4, we prove Theorem 1.2 [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF]. The idea to establish this fact for (T ) and other varieties of it which appeared in [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF][START_REF] Hajri | Tanaka's equation on the circle and stochastic flows[END_REF][START_REF] Jan | Three examples of Brownian flows on R[END_REF][START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF] was to show that whenever K is a Wiener solution, the Wiener chaos expansion of K 0,t f (x) is unique for f bounded and smooth enough (this was not explicitly written in [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF]). This idea was not easy to formulate especially when the one point motion is the Walsh process (see [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF]). The arguments used here, based only on martingale problems, are elementary; they apply for all examples considered in [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF][START_REF] Hajri | Tanaka's equation on the circle and stochastic flows[END_REF][START_REF] Jan | Three examples of Brownian flows on R[END_REF][START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF][START_REF] Hajri | Itô's formula for Walsh's Brownian motion and applications[END_REF] and also give the explicit chaos expansion of Wiener solutions in an easy way at least in the Brownian case (see Remark 4.3). They may also be applied for equations driven by noises with a less obvious theory of chaos expansion for example Lévy processes. The unicity in law of ϕ c will not be reproduced here (see Lemma 3.3 in [9]). In Section 5, we present an easy proof of Theorem 1.2 (3). The original proof of [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF] is based on a non trivial progressive modification of the flow and a deep result on Brownian filtrations (Lemma 4.11 [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF]). Here, we first reformulate this statement in terms of the compatible family of Feller semigroups associated to K. The proof is then achieved by means of the skew Brownian motion. The motivation behind the use of this process is the following observation: If (X, Y ) is the two point motion associated to ϕ c (resp. K W ) starting from (0, 0), then sgn(X t )Y t is a reflecting (resp. standard) Brownian motion. For any solution K, we prove the natural conjecture that sgn(X t )Y t is a skew Brownian motion. Its skewness parameter measures how far sgn(X t ) and sgn(Y t ) are from each other and in this way we are able to classify the laws of all the two point motions. Our arguments also apply for the works [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF][START_REF] Hajri | Tanaka's equation on the circle and stochastic flows[END_REF][START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF][START_REF] Hajri | Itô's formula for Walsh's Brownian motion and applications[END_REF]. Finally in Section 6, we write down the generators of the n-point motions associated to the flows K m and show their dependence on m.

Stochastic flows of kernels and weak solutions

In this section, we will explain the link between the usual Tanaka's equation ( 1) and the generalized one (T ). The main result is Proposition 2.1 below. It shows that each P ∞ ∈ P corresponds to a unique stochastic flow of kernels solution of (T ) and vice versa. The second half of the proposition is stated only for completeness and will not be used in this paper.

Proposition 2.1. (1) Let K be a solution of (T ) and let (P n ) n be its associated compatible family of Feller semigroups given by

P n t = E[K ⊗n 0,t ]. Then for all x 1 , • • • , x n ∈ R: if X = (X 1 , • • • , X n ) is the n-point mo- tion associated to P n started from (x 1 , • • • , x n ) and defined on (Ω n , A n , P n ),
there exists an (F X t ) t Brownian motion W n (on the same probability space) such that for all i,

X i t = x i + t 0 sgn(X i s )dW n s . (3) 
(2) Let (P n ) n be a compatible family of Feller semigroups acting respectively on C 0 (R n ) such that for each n and

x 1 , • • • , x n ∈ R: if X = (X 1 , • • • , X n )
is the Markov process associated to P n and started from

(x 1 , • • • , x n ) defined on (Ω n , A n , P n ),
there exists an (F X t ) t Brownian motion W n (on the same probability space) such that for each i, (X i , W n ) satisfies (3). Then there exist a stochastic flow of kernels K and a real white noise W such that (K, W ) solves (T ) and moreover

P n t = E[K ⊗n 0,t ].
Proof.

(1) Let (K, W ) be a solution of (T ) defined on (Ω, A, P) and let (W t ) t∈R be the unique Brownian motion on the real line such that

W s,t = W t -W s for all s ≤ t. For n ≥ 1, t ≥ 0, f ∈ C 0 (R n ), g ∈ C 0 (R) and (x, w) ∈ R n × R, define Q n t (f ⊗ g)(x, w) = E[K ⊗n 0,t f (x)g(w + W t )].
It is elementary to check that Q n is a Feller semigroup for all n. These semigroups are among the main tools in this paper, they were introduced in [4] Section 5.1. Fix (x 1 , • • • , x n ) ∈ R n and let (X, B) be the Markov process associated to Q n and started from (

x 1 , • • • , x n , 0). In particular, B is a Brownian motion. Write X = (X 1 , • • • , X n
), then we will prove that for each i,

X i t = x i + t 0 sgn(X i s )dB s . (4) 
Denote by A the generator of Q 2 and let

D = {f ∈ C 2 (R), f, f ′ , f ′′ ∈ C 0 (R), f ′ (0) = 0}. Note that D is dense in C 0 (R). Since (K, W ) solves (T ), Itô's formula shows that for all f ∈ D, g ∈ C 2 (R) such that g, g ′′ ∈ C 0 (R), we have f ⊗ g ∈ D(A) and A(f ⊗ g)(x, w) = 1 2 ∆(f ⊗ g)(x, w) + f ′ (x)sgn(x)g ′ (w)
where ∆ is the Laplacian on R 2 and so

f (X i t )g(B t ) - t 0 A(f ⊗ g)(X i s , B s )ds (5) 
is a martingale. By Itô's formula again

f (X i t )g(B t ) - 1 2 t 0 ∆(f ⊗ g)(X i s , B s )ds - t 0 f ′ (X i s )g ′ (B s )d X i , B s (6)
is also a martingale. Thus the difference ( 5) -( 6) is a martingale which is also a process of finite variation so it is identically zero, i.e.

t 0 (f ′ sgn)(X i s )g ′ (B s )ds = t 0 f ′ (X i s )g ′ (B s )d X i , B s .
An approximation argument shows that X i , B t = t 0 sgn(X i s )ds and consequently (4) holds in L 2 (P). To finish the proof, recall that B is an (F X,B t ) t Brownian motion and since F B t ⊂ F X t (from ( 4)), we deduce that B is an (F X t ) t Brownian motion.

(2) Let (P n,c ) n≥1 be the compatible family of Feller semigroups associated to (P n ) n≥1 by Theorem 4.1 [START_REF] Jan | Flows, coalescence and noise[END_REF] (note that condition (C) there is satisfied). Let X n = (X n,1 , • • • , X n,n ) be the Markov process associated to P n and started from (x 1 , • • • , x n ) ∈ R n and let W n be an (F X n t ) t Brownian motion such that for each i, (X i , W n ) satisfy [START_REF] Hajri | Tanaka's equation on the circle and stochastic flows[END_REF]. The Markov process

Y n = (Y n,1 , • • • , Y n,n ) associated to P n,c started from (x 1 , • • • , x n ) is
coalescing and the construction of Y n from X n shows that each Y n,i is solution of (1) driven by W n and in particular,

Y n,i , Y n,j t = t 0 sgn(Y n,i s )sgn(Y n,j s )ds (7) 
for all i, j. By Theorem 4.2 and 2.1 in [START_REF] Jan | Flows, coalescence and noise[END_REF], it is possible to construct on the same probability space a joint realization (K 1 , K 2 ) where K 1 and K 2 are two stochastic flows of kernels satisfying

K 1 law = δ ϕ , K 2 law = K and such that for all s ≤ t, x ∈ R, K 2 s,t (x) = E[K 1 s,t (x)|K 2 ]
a.s. We notice that Theorem 1.1 and Theorem 2.1 in [START_REF] Jan | Flows, coalescence and noise[END_REF] remain valid with the additional assumption that the flows of kernels are jointly measurable with respect to (s, t, x, ω) (see the lines before Lemma 1.10 in [START_REF] Jan | Flows, coalescence and noise[END_REF]). Now to conclude the proof of (2), we only need to check that K 1 (or ϕ) is solution of (T ). Define

W s,t = lim x→+∞,x∈Q (ϕ s,t (x) -x).
Using [START_REF] Jan | Three examples of Brownian flows on R[END_REF], we easily prove that W is a real white noise and (ϕ, W ) solves (T ).

3 Construction of flows associated to Tanaka's SDE

The content of this section is taken from [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF]. We fix a probability measure m on [0, 1] with mean 1/2, then using Kolmogorov extension theorem one can construct on a probability space (Ω, A, P) a process (U Note that (i)-(iii) uniquely define the law of (U

s 1 ,t 1 , • • • , U sn,tn , W ) for all s i < t i , 1 ≤ i ≤ n.
For s, x ∈ R, define

τ s (x) = inf{r ≥ s : W s,r = -|x|} and for x ∈ R, s ≤ t, let W + s,t = W t -min s,t , K m s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + (U s,t δ W + s,t + (1 -U s,t )δ -W + s,t )1 {t>τs(x)} .
Note that for all s ≤ t, K m s,t is jointly measurable with respect to (x, ω). Setting Ũs,t = lim sup n→∞ U sn,tn with (s n , t n ) = ( ⌊ns⌋+1 n , ⌊nt⌋-1 n ), we get a version of K m which is measurable from {(s, t, x, ω), s ≤ t, x ∈ R, ω ∈ Ω} into P(R). The new version (K m , W ) is a solution of (T ).

Unicity of the Wiener flow

In this section, we prove the unicty of the Wiener solution of (T ) and then discuss some extensions of the proof. Proposition 4.1. Let (K, W ) be a Wiener solution of (T ). Then for all s ≤ t, x ∈ R, with probability 1,

K s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + 1 2 (δ W + s,t + δ -W + s,t )1 {t>τs(x)} Proof.
We will use the Feller semigroup

Q t (f ⊗ g)(x, w) = E[K 0,t f (x)g(w + W t )].
Fix x ∈ R and t > 0. Since K is a Wiener solution, there exists a measurable function F t,x : C([0, t], R) → P(R) such that K 0,t (x) = F t,x (W u , u ≤ t). Let (X x , B) be the Markov process associated to Q and started from (x, 0). Then B is a Brownian motion which we denote by W and denote also K0,t (x) = F t,x (B u , u ≤ t) by K 0,t (x) to simplify notations. We will prove the following: For all measurable bounded f : R → R a.s.

K 0,t f (x) = E[f (X x t )|F W 0,t ]. (8) 
We will check that for all t 1 ≤ • • • ≤ t n-1 ≤ t n = t and all bounded functions f, g 1 , • • • , g n , we have

E K 0,t f (x) n i=1 g i (W t i ) = E f (X x t ) n i=1 g i (W t i ) . (9) 
This is easy to prove by induction on n. For n = 1, ( 9) is immediate from the definition of Q. Let us prove the result for n = 2. We have

E[K 0,t f (x)g 1 (W t 1 )g 2 (W t )] = E[K 0,t 1 (Q t-t 1 (f ⊗ g 2 )(•, W t 1 )(x)g 1 (W t 1 )].
On the other hand

E[f (X x t )g 1 (W t 1 )g 2 (W t )] = E[Q t-t 1 (f ⊗ g 2 )(X x t 1 , W t 1 )g 1 (W t 1 )
]. Now the equality between both quantities holds using a uniform approximation of Q t 2 -t 1 (f ⊗ g) by a linear combination of functions of the form h ⊗ k, h, k ∈ C 0 (R). Let us derive the expression of K 0,t (x). Proposition 2.1 [START_REF] Gall | Processus de Branchement et Superprocessus[END_REF] shows that X x is solution of (1) driven by W with initial condition X x 0 = x. As sgn(X x t ) is independent of W on the event {t > τ 0 (x)} and |X x t | = W + 0,t , the proof is finished.

Since the law of (X x , W ) is easy to describe here, we got an explicit expression of the Wiener solution. When the law of (X x , W ) is unique with X x a weak solution of an SDE driven by W and starting from x, the arguments above may be applied to prove that at least the Wiener solution to the generalized equation is unique whenever it exists. Let us discuss the example considered in [START_REF] Jan | Three examples of Brownian flows on R[END_REF].

Proposition 4.2. (3.1 of [START_REF] Jan | Three examples of Brownian flows on R[END_REF]) Given W -and W + two independent real white noises, there exists at most one Wiener flow K such that for all

s ≤ t, x ∈ R, f ∈ C 2 b (R), a.s. K s,t f (x) = f (x) + t s K s,u (f ′ 1 ]-∞,0] )(x)dW - s,u + t s K s,u (f ′ 1 ]0,∞[ )(x)dW + s,u + 1 2 t s K s,u f ′′ (x)du. ( 10 
)
Proof. Let W 1 and W 2 be two independent standard Brownian motions. For a given x, the SDE

dX x t = 1 {X x t ≤0} dW 1 t + 1 {X x t >0} dW 2 t , X x 0 = x ( 11 
)
has a weak solution and moreover the law Q x of (X x , W 1 , W 2 ) is unique (see Proposition 4.1 in [START_REF] Jan | Three examples of Brownian flows on R[END_REF]). Now let K 1 and K 2 be two Wiener solutions of (10), then K s,t (x, y) = K 1 s,t (x) ⊗ K 2 s,t (y) is a stochastic flow of kernels on R 2 and

Q 2 t (f ⊗ g ⊗ h)(x, y, w) = E[K 1 s,t f (x)K 2 s,t g(y)h(w + W t )]
where f, g ∈ C 0 (R), h ∈ C 0 (R 2 ) and x, y ∈ R, w ∈ R 2 defines a Feller semigroup on R 4 . Fix s = 0, t > 0, x ∈ R, and let (X, Y, B) be the Markov process associated to Q started from (x, x, 0), then B = (B 1 , B 2 ) is a two dimensional Brownian motion and following the proof of ( 8), we have for all f ∈ C 0 (R) a.s.

N 1 0,t f (x) = E[f (X t )|F B 0,t ], N 2 0,t f (x) = E[f (Y t )|F B 0,t ]
where (N 1 0,t (x), N 2 0,t (x)) is a copy of (K 1 0,t (x), K 2 0,t (x)). Using martingale problems as in the proof of Proposition 2.1 (1), we easily check that (X, B) and (Y, B) satisfy [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] and thus have law

Q x . Consequently, for all f ∈ C 0 (R), a.s. E[f (X t )|F B 0,t ] = E[f (Y t )|F B 0,t ] which yields that K 1 0,t (x) = K 2 0,t (x 
) a.s. The method described here applies also for the examples considered in [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF][START_REF] Hajri | Tanaka's equation on the circle and stochastic flows[END_REF][START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF][START_REF] Hajri | Itô's formula for Walsh's Brownian motion and applications[END_REF] but there the notion of weak solution starting from a single point should be defined carefully (see Definition 1.1 in [START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF]).

Remark 4.3. This remark is a consequence of Exercise 3.13 on page 204 [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]. Let (X x , W ) be a weak solution of (1) and let f : R → R be measurable and bounded. Fix t > 0 and define ψ(s, x) = p t-s f (x) for 0 < s < t, x ∈ R where p is the semigroup of the standard Brownian motion. Applying Itô's formula for the semimartingale (s, X x s ) and then letting s ↑ t, we see that

f (X x t ) = p t f (x) + t 0 [(p t-u f ) ′ sgn] (X x u )dW u .
Using (8), we get

K 0,t f (x) = p t f (x) + t 0 K 0,u ((p t-u f ) ′ sgn)(x)dW u .
Iterating this relation, we obtain the Wiener chaos expansion of K 0,t f (x).

The same method works without difficulty for the SDE [START_REF] Prokaj | Unfolding the Skorohod reflection of a semimartingale[END_REF] and the SDE considered in [START_REF] Hajri | Tanaka's equation on the circle and stochastic flows[END_REF]. For the SDEs studied in [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF][START_REF] Hajri | Stochastic flows and an interface SDE on metric graphs[END_REF], one could generalize the previous idea by establishing first an Itô's formula for (t, X t ) where X is a Walsh's Brownian motion and then proceeding as above.

Classification of weak solutions

In this section, we present an easy proof of Theorem 1.2 (3). So fix (K, W ) a solution of (T ). Since F W s,t ⊂ F K s,t for all s ≤ t, we can define K a Wiener stochastic flow obtained by filtering K with respect to σ(W ) (Lemma 3-2 (ii) in [START_REF] Jan | Flows, coalescence and noise[END_REF]). Thus by conditioning with respect to W , we see that ( K, W ) also solves (T ). By the result of the previous section K is therefore a modification of K W . Thus setting U s,t = K s,t (0, [0, ∞[), we deduce that for all s ≤ t and x ∈ R, a.s.

K s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + (U s,t δ W + s,t + (1 -U s,t )δ -W + s,t )1 {t>τs(x)} .
Set U t := U 0,t for t > 0. It remains to prove the following Proposition 5.1. For all t > 0, U t is independent of (W u ) u≥0 and the law of U t does not depend on t > 0. Denote by m the law of U t for t > 0, then K and K m have the same law.

The last claim is a direct consequence of the two first ones, since K and K m will define the same compatible family of Feller semigroups

P n t = E[K ⊗n 0,t ] = E[K m 0,t
⊗n ], n ≥ 1. Now the rest of this section will be devoted to the proof of this proposition. Denote by m t the law of U t for t > 0. The key observation is the following Lemma 5.2. The following assertions are equivalent (i) For all t > 0, U t is independent of (W u ) u≥0 and the law of U t does not depend on t > 0.

(ii) For all n ≥ 1, if (X 1 , • • • , X n ) is the n point motion associated to K started from (0, • • • , 0), then (sgn(X 1 t ), • • • , sgn(X n t )) is independent of |X 1 | (
which is also equal to any |X i |) for all t > 0 and the law of (sgn(X 1 t ), • • • , sgn(X n t )) does not depend on t > 0.

Proof. For n ≥ 1,

Q n t (f ⊗ g)(x, w) = E[K ⊗n 0,t f (x)g(w + W t )], f ∈ C 0 (R n ), g ∈ C 0 (R), x ∈ R n , w ∈ R defines a Feller semigroup on R n × R. Denote by (X 1 , • • • , X n , B
) the Markov process associated to Q n and started from (0, • • • , 0, 0). An easy induction similar to the proof of [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF] shows that for all N ≥ 1 and all bounded continuous functions f

1 , • • • , f N : R n → R, g 1 , • • • , g N : R → R, we have E N i=1 f i (X 1 t i , • • • , X n t i )g i (B t i ) = E N i=1 K 0,t i f i (0)g i (W t i ) . (12) 
By Proposition 4.1, X i is a solution of Tanaka's SDE driven by B and so )] for each N so that U t is independent of W and similarly the law of U t does not depend on t.

|X i t | = B + t := B t -inf 0≤u≤t B u for all i. Now (i) entails (ii) is clear using (12). Assume (ii), then by (12) E[U N t g(W )] = E[U N t ]E[g(W
For every N, (S N l ) l is a Markov chain started at 0 the law whose law is given by the transition probabilities

Q(0, 1) = 1 -Q(0, -1) = α k , Q(m, m + 1) = Q(m, m -1) = 1/2, m = 0.
In particular, 2 -N S N ⌊2 2N t⌋ t≥0 converges in finite dimensional distributions as N → ∞ to the skew Brownian motion with parameter α k (see [START_REF] Harrison | On skew Brownian motion[END_REF]). Now lim N →∞ T N ⌊2 2N t⌋ = t a.s. uniformly on compact sets (see [START_REF] Gall | Processus de Branchement et Superprocessus[END_REF] page 31). Since Z is continuous, Z T N ⌊2 2N t⌋ converges to Z t a.s. uniformly on compact sets. But

Z T N ⌊2 2N t⌋ = 2 -N S N
⌊2 2N t⌋ , so we deduce that Z is a skew Brownian motion with parameter α k .

By the fundamental result of [START_REF] Harrison | On skew Brownian motion[END_REF], V t = Z t -(2α k -1)L t (Z) is a standard Brownian motion where L t (Z) stands for the symmetric local time of Z and Z is also the unique strong solution to Z t = V t + (2α k -1)L t (Z). The next proposition gives more informations on the Brownian motion V Proposition 5.5. We have

Z t = t 0 sgn(X 1 s ) • • • sgn(X k s )dB s + (2α k -1)L t (Z).
In particular, Z t and V t = t 0 sgn(X 1 s ) • • • sgn(X k s )dB s define the same filtrations.

Proof. The claim follows exactly the proof of Proposition 3 in [START_REF] Prokaj | Unfolding the Skorohod reflection of a semimartingale[END_REF]. The slight difference here is that Z is obtained by flipping independently the excursions of B + with an i.i.d sequence {ξ l } such that P(ξ l = 1) = 1 -P(ξ l = 1) = α k , so that E[ξ 1 ] at the end of the proof of Proposition 3 [START_REF] Prokaj | Unfolding the Skorohod reflection of a semimartingale[END_REF] will be replaced with (2α k -1).

Note that since

E[sgn(X 1 t ) • • • sgn(X k t )] = 2α k -1, we see from (12) that α k = 1 2 1 + 1 0 (2x -1) k dm(x) .
This shows that the moments of m up to the order k are uniquely determined by the k point motions.

6 Generators of the n-point motions

In this section K = K m is a solution of Tanaka's SDE associated to m. Our purpose here is to write the generator of P n t = E[K ⊗n 0,t ] on a core of C 0 (R n ) and show its dependence on m.

For all

ǫ 1 , • • • , ǫ i ∈ {-1, 1}, set M ǫ 1 ,••• ,ǫ i = 1 0 α I (1 -α) i-I dm(α)
where I = Card{j ∈ [1, i] : ǫ j = 1}. Let D m be the set of all functions f : R n → R which are in C 0 (R n ) and satisfy the following assumptions

(i) For all E = E 1 × • • • × E n , with E i = R * + or R * -, f |E is the restriction on E of a C 2 function g (=g E ) on R n such that for all i, j, ∂g ∂x i , ∂ 2 g ∂x i ∂x j are in C 0 (R n ) and for all x ∈ ∂E, lim y→x,y∈E ∂ 2 f ∂x i ∂x j (y) = 0. (ii) For all x = (x 1 , • • • , x n ) ∈ R n if {x h , x h = 0} = {x i 1 , • • • , x i j } with i 1 ≤ • • • ≤ i j , then ǫ i 1 ,••• ,ǫ i j ∈{-1,1} M ǫ i 1 ,••• ,ǫ i j k∈{i 1 ,••• ,i j } ǫ k lim h→0+ ∂f ∂x k (y h (x)) = 0
where the l-th coordinate of y h (x) is given by ǫ

l h if l ∈ {i 1 , • • • , i j } and by x l otherwise. Note that D m is dense in C 0 (R n ) since it contains D ⊗ • • • ⊗ D with D = {f ∈ C 2 (R), f, f ′ , f ′′ ∈ C 0 (R), f ′ (0) = 0}.
We have the following Proposition 6.1. The generator of P n coincides on D m with A n where for f ∈ D m and x = (x 1 , • • • , x n ) ∈ R n , A n f (x) is defined by: If x i = 0 for all 1 ≤ i ≤ n, then

A n f (x) := 1 2 h,k sgn(x h )sgn(x k ) ∂ 2 f ∂x h ∂x k (x). If {x h , x h = 0} = {x i 1 , • • • , x i j } with i 1 ≤ • • • ≤ i j , then A n f (x 1 , • • • , x n ) := 1 2 ǫ i 1 ,••• ,ǫ i j ∈{-1,1} M ǫ i 1 ,••• ,ǫ i j h,k∈{i 1 ,••• ,i j } ǫ h ǫ k ∂ 2 f ∂x h ∂x k (x) + 1 2 ǫ i 1 ,••• ,ǫ i j ∈{-1,1} M ǫ i 1 ,••• ,ǫ i j h,k / ∈{i 1 ,••• ,i j } sgn(x h )sgn(x k ) ∂ 2 f ∂x h ∂x k (x) + ǫ i 1 ,••• ,ǫ i j ∈{-1,1} M ǫ i 1 ,••• ,ǫ i j h∈{i 1 ,••• ,i j },k / ∈{i 1 ,••• ,i j } ǫ h sgn(x k ) ∂ 2 f ∂x h ∂x k (x).
Proof. Denote τ 0 (y) by τ y . Since for all y = 0, lim t→0+ P(t > τ y )/t = 0, using the fact that U t is independent of W and has for law m, we have as t → 0+,

E[K ⊗n 0,t f (x)] = ǫ 1 ,••• ,ǫ i ∈{-1,1} M ǫ 1 ,••• ,ǫ i E[g ǫ 1 ,••• ,ǫ i (W t∧τy , W + t∧τy )] + o(t)
where y = 0 is fixed from now on such that |y| < |x i | for all x i = 0 and g which is also equal to A n f (x).

ǫ 1 ,M ǫ i 1 ,

 11 ••• ,ǫ i is defined on R * × R * + by g ǫ 1 ,••• ,ǫ i (a, b) = f C 1 (a, b), • • • , C n (a, b) with C i (a, b) = ǫ i b if i ∈ {i 1 , • • • , i j } and C i (a, b) = x i + sgn(x i )a if not. Let f be a C 2 extension of f |E as in (i) above where E = E 1 × • • • × E n and E i = R * + if x i > 0 or x i = 0 and ǫ i = 1, E i = R * -if x i < 0 or x i = 0 and ǫ i = -1. By Itô's formula applied to f , denoting g = g ǫ 1 ,••• ,ǫ i , we have E[g(W t∧τy , W + t∧τy )] = E , 0+)dL swhere L t = -min 0≤u≤t W u and ∆ is the Laplacian on R 2 . Since f ∈ D m , by (ii) for all s ≤ τ y we haveǫ 1 ,••• ,ǫ i ∈{-1,1} M ǫ 1 ,••• ,ǫ i ∂g ∂b (W s , 0+) = 0,and so lim t→0+ t -1 (E[K ⊗n 0,t f (x)] -f (x)) =ǫ i 1 ,••• ,ǫ i j ∈{-1,1}
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In the rest of this section n ≥ 1 is fixed and (X 1 , • • • , X n ) is the n point motion associated to K. We will prove (ii) in Lemma 5.2 for n which reduces to proving that for all 1

We will need the following lemma which is an easy consequence of the strong Markov property Lemma 5.3. For any ǫ > 0, define the stopping times τ ǫ 0 = 0,

Then, the sequence (sgn

Moreover for any l and ǫ ′ > 0, (sgn(X i σ ǫ l )) 1≤i≤k and (sgn(X i T )) 1≤i≤k have the same law where

where T is a stopping time as in the previous lemma, then we have the following