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Introduction

A cluster graph is a graph in which every connected component is a clique (i.e. a complete subgraph).

Cluster graphs have been used in a variety of applications whenever clustering of objects is studied or when consistent data is sought among noisy or error-prone data [START_REF] Bansal | Correlation clustering[END_REF]. The cluster deletion problem asks for the minimum number of edges that can be removed from an input graph to make the resulting graph a cluster graph. There exist several results for the cluster deletion problem (see for example [START_REF] Böcker | Even faster parametrized cluster deletion and cluster editing[END_REF][START_REF] Shamir | Cluster graph modification problems[END_REF][START_REF] Komusiewicz | Cluster editing with locally bounded modifications[END_REF] and references therein). The cluster deletion problem is known to be NPcomplete [START_REF] Shamir | Cluster graph modification problems[END_REF]. Recently, Gao et al. [START_REF] Gao | The cluster deletion problem for cographs[END_REF] have shown that the greedy algorithm that finds iteratively maximum cliques, gives an optimal solution for the class of graphs known as cographs. It implies that the cluster deletion problem is polynomial-time solvable on cographs.

A vertex coloring of a graph is an assignment of positive integers to the vertices of the graph such that adjacent vertices receive different integers. The sum of a vertex coloring of a graph is the sum of the integers assigned to the vertices. The minimum sum coloring problem ask for the 1 smallest sum that can be achieved by any vertex coloring of an input graph. The minimum sum coloring problem is motivated by applications in scheduling [START_REF] Bar-Noy | On chromatic sums and distributed resource allocation[END_REF][START_REF] Halldórsson | Sum coloring interval and k-claw free graphs with application to scheduling dependent jobs[END_REF] and VLSI design [START_REF] Szkaliczki | Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete[END_REF]. In [START_REF] Kubicka | An introduction to chromatic sums[END_REF] it is shown that the problem is NP-hard in general, but polynomial time solvable for trees. The dynamic programming algorithm for trees can be extended to partial k-trees, block graphs and cographs [START_REF] Jansen | Complexity results for the optimum cost chromatic partition problem[END_REF]. Recently, Bonomo and Valencia-Pabon [START_REF] Bonomo | Minimum Sum Coloring of P 4 -sparse graphs[END_REF][START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] have shown that the minimum sum coloring problem can be solved in polynomial time on a wide subclass of P 4 -sparse graphs.

A graph is P 4 -sparse if every 5-vertex subset contains at most one P 4 . The family of P 4 -sparse graphs generalize the family of cographs (i.e. P 4 -free graphs) and they can be recognized in linear time [START_REF] Jamison | Recognizing P 4 -sparse graphs in linear time[END_REF].

If G 1 and G 2 are two vertex disjoint graphs, then their union

G 1 ∪ G 2 is the graph with vertex set V (G 1 ∪ G 2 ) = V (G 1 ) ∪ V (G 2 ) and edge set E(G 1 ∪ G 2 ) = E(G 1 ) ∪ E(G 2 ). Similarly, their join G 1 ∨G 2 is the graph with V (G 1 ∨G 2 ) = V (G 1 )∪V (G 2 ) and E(G 1 ∨G 2 ) = E(G 1 )∪E(G 2 )∪{(x, y) : x ∈ V (G 1 ), y ∈ V (G 2 )}.
A spider is a graph whose vertex set can be partitioned into S, C and R, where S = {s 1 , . . . , s k } (k ≥ 2) is an independent set; C = {c 1 , . . . , c k } is a complete set; s i is adjacent to c j if and only if i = j (a thin spider ), or s i is adjacent to c j if and only if i = j (a thick spider ); R is allowed to be empty and if it is not, then all the vertices in R are adjacent to all the vertices in C and non-adjacent to all the vertices in S. Clearly, the complement of a thin spider is a thick spider, and vice-versa. The triple (S, C, R) is called the spider partition, and can be found in linear time [START_REF] Jamison | Recognizing P 4 -sparse graphs in linear time[END_REF]. The sets S, C and R are called the legs, body and head of the spider, respectively. The size of the spider will be |C|. P 4 -sparse graphs have a nice decomposition theorem as follows.

Theorem 1. [START_REF] Jamison | A tree representation for P 4 -sparse graphs[END_REF] If G is a non-trivial P 4 -sparse graph, then either G or G is not connected, or G is a spider.

To each P 4 -sparse graph G one can associate a corresponding decomposition rooted tree T in the following way. Each non-leaf node in the tree is labeled with either "∪" (union-nodes), or "∨" (join-nodes) or "SP" (spider-partition-nodes), and each leaf is labeled with a vertex of G. Each non-leaf node has two or more children. Let T x be the subtree of T rooted at node x and let V x be the set of vertices corresponding to the leaves in T x . Then, each node x of the tree corresponds to the graph G x = (V x , E x ). An union-node (join-node) corresponds to the disjoint union (join) of the P 4 -sparse graphs associated with its children. A spider-partition-node corresponds to the spider with spider-partition (S, C, R) where G[S], G[C], and G[R] are its children. Finally, the P 4 -sparse graph associated with the root of the tree is just G, the P 4 -sparse graph represented by this decomposition tree. The decomposition tree associated to a P 4 -sparse graph can be computed in linear time [START_REF] Jamison | A tree representation for P 4 -sparse graphs[END_REF].

Maximal sequences and optimal solutions

The following approach was used by Bonomo and Valencia-Pabon [START_REF] Bonomo | Minimum Sum Coloring of P 4 -sparse graphs[END_REF][START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] in order to deal with the minimum sum coloring (MSC) problem on P 4 -sparse graphs. A k-coloring of a graph G = (V, E) is a partition of the vertex set V into k independent sets S 1 , . . . , S k , where each vertex in S i is colored with color i, for 1 ≤ i ≤ k. So, for any such k-partition of V into independent sets, we can associate a non-negative sequence p such that p[i] = |S i | for i = 1, . . . , k and p[i] = 0 for i > k. In the sequel, we deal with finite-support non-negative integer sequences only. Let |p| = max{i : p[i] > 0}.

Definition 1. Let p and q be two integer sequences. We say that p dominates q, denoted by p q, if for all t ≥ 1 it holds that 1≤i≤t p

[i] ≥ 1≤i≤t q[i].
Let p be a sequence. We denote by p the sequence that results from p when we order it in a non-decreasing way. Clearly, p p.

The following lemma is the key for study the MSC problem on graphs.

Lemma 1 (Lemma 3 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF]). Let p and q be two sequences and let n = max{|p|, |q|}. If p q and

1≤i≤n p[i] = 1≤i≤n q[i], then it holds that 1≤i≤n i.p[i] ≤ 1≤i≤n i.q[i].
Notice that if the sequences represent partitions of the vertex set of a graph into independent sets, where the value of the i-th element of the sequence represents the size of the i-th independent set in the partition, then for the sum-coloring problem on graphs we can restrict us to study maximal sequences w.r.t. the partial order .

A similar approach has been used by Gao et al. [START_REF] Gao | The cluster deletion problem for cographs[END_REF] in order to deal with the cluster deletion problem on cographs. In fact, notice that an optimal solution of the cluster deletion problem in a graph G is a partition of the vertex set V into cliques M 1 , . . . , M t . So, for any partition of V into t cliques, we can associate a sequence p such that p [START_REF] Gao | The cluster deletion problem for cographs[END_REF] show the following result.

[i] = |M i | for i = 1, . . . ,
Theorem 2 (Theorem 4 in [START_REF] Gao | The cluster deletion problem for cographs[END_REF]). Let p and q be two integer partitions of some positive integer n, with p = q. If p q, then |p| ≤ |q|, and

|p| i=1 p[i] 2 > |q| i=1 q[i] 2 .
By Theorem 2, we can also restrict us to study maximal sequences w.r.t. the partial order in order to solve the cluster deletion problem on graphs. Notice also that maximal sequences for both problems (MSC and cluster deletion) are non-increasing sequences.

Clearly, there is a one-to-one correspondence between the maximal sequences corresponding to partitions of the vertex set of G into cliques and the maximal sequences corresponding to partitions of the vertex set of G into independent sets. Thus, by Theorem 2 and Lemma 1, there is a one-toone correspondence between the potentially optimal solutions for the cluster deletion problem of a graph G and the potentially optimal solutions for the minimum sum coloring of the complement graph G.

Nevertheless, when a graph G has more than one maximal sequence corresponding to partitions of its vertex set into cliques, the optimal solution for the cluster deletion problem of G and the optimal solution for the minimum sum coloring of its complement G may not correspond to the same sequence. We will provide an example of this in the next section.

This suggest that the computational complexity of the cluster deletion problem on a graph class G and the computational complexity of the minimum sum coloring problem on the class co-G (the class of complement graphs of graphs in G) can be different. But, to the best of our knowledge, there are not known examples of this behaviour.

Maximal sequences in P 4 -sparse graphs

The following results can be obtained directly from the definitions of union and join of graphs, and from the definition of a spider graph (see Section 1).

Proof. The results follows by Lemma 3 and by Lemma 12 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] concerning maximal sequences for the minimum sum coloring of thin spiders without head. Proof. The results follows by Lemma 3 and by Lemma 13 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] concerning maximal sequences for the minimum sum coloring of thick spiders without head.

Notice also that the trivial graph has only one maximal sequence p, with |p| = 1, where p[1] = 1. Therefore, we have the following two theorems whose proofs are similar to the ones of Theorem 2 and Theorem 3 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF], respectively. Theorem 3. Let G be a P 4 -sparse graph such that in its modular decomposition there are no thin spiders (S, C, R) with |C| ≥ 3 and R = Then, 1. G has a unique maximal sequence and an optimal solution for the cluster deletion problem of G can be computed from its modular decomposition in polynomial time.

2. In such an optimal solution, each M i is a maximum clique of G \ 1≤j<i M j .

Theorem 4. Let G be a P 4 -sparse graph on n vertices. Let t be the number of thin spiders (S, C, R) with |C| ≥ 3 and R = ∅ in the modular decomposition of G. Then, the number of maximal sequences of G is at most 2 t , and an optimal solution for the cluster deletion problem of G can be computed in 2 t P (n) time, where P (n) is a polynomial in n.

Notice that a cograph is a P 4 -sparse graph without spiders. Moreover, P 4 -sparse graphs having only spiders whose spider partition (S, C, R) is of size equal to 2 (i.e. |S| = |C| = 2) are known as P 4 -reducible graphs. The class of P 4 -reducible graphs was introduced by Jamison and Olariu [START_REF] Jamison | P 4 -reducible graphs -a class of uniquely tree-representable graphs[END_REF] as a generalization of cographs: a graph is P 4 -reducible if every vertex belongs to at most one P 4 . Finally, notice that thin spiders with size 2 are isomorphic to thick spiders with size 2. Therefore, by Theorem 3, we have the following corollary which generalizes the result by Gao et al. [START_REF] Gao | The cluster deletion problem for cographs[END_REF].

Corollary 1. Let G be a P 4 -reducible graph. Then, 1. G has a unique maximal sequence and an optimal solution for the cluster deletion problem of G can be computed from its modular decomposition in polynomial time.

2. In such an optimal solution, each M i is a maximum clique of G \ 1≤j<i M j .

Finally, we provide an example of a P 4 -sparse graph G having more than one maximal sequence and such that the optimal solution for the cluster deletion problem of G and the optimal solution for the minimum sum coloring of its complement G do not correspond to the same sequence.

Let N 3 be a thin spider of size 3 with no head (also known as net), and let G = (N 3 ∪N 3 )∨(K 1 ∪ K 1 ). By the theorems above, G has three different maximal sequences, namely p 1 = [3, 3, 2, 2, 2, 2], p 2 = [4, 3, 2, 2, 1, 1, 1], and p 3 = [4, 4, 1, 1, 1, 1, 1, 1]. The internal edges in the partition into cliques induced by each maximal sequence are, respectively, 10, 11 and 12. So, the number of removed edges are, respectively, 26, 25 and 24, being p 3 the sequence realizing the optimal solution. As for G, the sums of the colorings induced by each maximal sequence are, respectively, 45, 42 and 45, being in this case p 2 the sequence realizing the optimal solution.

Lemma 10 .

 10 Let G = (S, C, R) be a thin spider such that |C| ≥ 3 and R = ∅. Then, G has only two maximal sequences p 1 and p 2 , with |p 1 | = |C| and |p 2 | = |C| + 1, where p 1 [i] = 2 for 1 ≤ i ≤ |C|, and p 2 [1] = |C| and p 2 [i] = 1 for 2 ≤ i ≤ |C| + 1.

  t and p[i] = 0 for i > t. Notice that if M = (|M 1 |, . . . , |M t |) is an integer sequence associate to a partition into cliques of the set V , such that |M 1 | ≥ |M 2 | ≥ . . . ≥ |M t |, then M is an integer partition of the integer |V |. Gao et al.
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Lemma 2. Let G 1 and G 2 be graphs. Then,

Lemma 3. Let SP be a spider and (S, C, R) its spider partition. If SP is a thin (resp. thick) spider then, SP is a thick (resp. thin) spider with partition (C, S, R).

By Lemmas 2 and 3 we have that if G is a P 4 -sparse graph, then the complement graph G is also a P 4 -sparse graph. In fact, by using the tree decomposition of these graphs, we can deduce that union-nodes (resp. join-nodes) in G correspond to a join-nodes (resp. union-nodes) in G, and that thin spiders (resp. thick spiders) in G correspond to thick spiders (resp. thin spiders) in G.

The following operations between sequences were defined in [START_REF] Bonomo | Minimum Sum Coloring of P 4 -sparse graphs[END_REF][START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF]: Let p and q be two sequences.

• The join of p and q, denoted by p q, is the sequence that results by ordering in a non-increasing way the concatenation of sequences p and q.

• The sum of p and q, denoted by p + q, is the sequence such that its i-th value is equal to

• p and q are non-comparable, denoted by p||q, if p q and q p.

Moreover, in [START_REF] Bonomo | Minimum Sum Coloring of P 4 -sparse graphs[END_REF][START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] the following two lemmas have been obtained.

Lemma 4 (Lemma 4 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF]). Let p, p and q be sequences. If p p then p q p q.

Lemma 5 (Lemma 6 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF]). Let p, p and q be sequences. Then, p p if and only if p + q p + q.

In the sequel, maximal sequences of a graph G will correspond to potential solutions of the cluster deletion problem on G. Lemma 6. Let G 1 , G 2 be two vertex disjoints graphs, and let G = G 1 ∨ G 2 . Then, every maximal sequence p of G can be expressed as p = p 1 + p 2 , where p i is a maximal sequence of G i , for i = 1, 2.

Proof. The results follows by induction on |G|, by Lemma 2 on G, and by Lemma 7 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] concerning maximal sequences for the minimum sum coloring of the union of two graphs. Lemma 7. Let G 1 , G 2 be two vertex disjoints graphs, and let G = G 1 ∪ G 2 . Then, every maximal sequence p of G can be expressed as p = p 1 p 2 , where p i is a maximal sequence of G i , for i = 1, 2.

Proof. The results follows by induction on |G|, by Lemma 2 on G, and by Lemma 8 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] concerning maximal sequences for the minimum sum coloring of the join of two graphs. Lemma 8. Let G = (S, C, R) be a spider such that R = ∅. Then, the number of maximal sequences of G is equal to the number of maximal sequences of G[R]. Moreover, for each maximal sequence q of G[R] there exists only one maximal sequence q of G with |q | = |q|+|S| and where q

Proof. Notice that the spider G is a P 4 -sparse graph and so, G[R] (i.e. the subgraph of G induced by R) is also a P 4 -parse graph. Then, the result follows by induction on |G|, by Lemma 3 on G, and by Lemma 11 in [START_REF] Bonomo | On the Minimum Sum Coloring of P 4 -sparse graphs[END_REF] concerning maximal sequences for the minimum sum coloring of spiders.