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Complexity of the cluster deletion problem on subclasses of chordal

graphs and cographs∗

Flavia Bonomo† Guillermo Duran‡ Mario Valencia-Pabon§

Abstract

We consider the following vertex-partition problem on graphs: given a graph with real
nonnegative edge weights, partition the vertices into clusters (in this case cliques) to minimize
the total weight of edges out of the clusters. This optimization problem is known to be an
NP-complete problem even for unweighted graphs and has been studied extensively in the
scope of fixed-parameter tractability (FPT), where it is commonly known as the CLUSTER
DELETION problem. Many of the recently-developed FPT algorithms rely on being able
to solve CLUSTER DELETION in polynomial-time on restricted graph structures. In this
paper, the complexity of the CLUSTER DELETION problem is investigated for the family
of chordal graphs. It is shown that this problem is NP-complete for edge-weighted split
graphs, edge-weighted interval graphs and edge-unweighted chordal graphs. We also prove that
the CLUSTER DELETION is an NP-complete problem for edge-weighted cographs. Some
polynomial-time solvable cases are also identified, in particular CLUSTER DELETION for
unweighted split graphs, unweighted proper interval graphs and weighted block graphs.

Keywords: Block graphs, Cliques, Edge-deletion, Cluster deletion, Interval graphs, Split
graphs, Submodular functions, Chordal graphs, Cographs, NP-completeness.

1 Introduction

Clustering is an important task in process of data analysis which can be viewed as a data modeling
technique that provides an attractive mechanism to automatically find the hidden structure of large
data sets. The input to the problem is typically a set of elements and pairwise similarity values
between elements. The goal is to partition the elements into subsets, which are called clusters,
so that two meta-criteria are satisfied: Homogeneity–elements inside a cluster are highly similar
to each other; and separation–elements from different clusters have low similarity to each other.
In the graph theoretic approach to clustering, one builds from the raw data a similarity graph
whose vertices corresponds to elements and there is an edge between two vertices if and only if
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the similarity of their corresponding elements exceeds a predefined threshold [11, 12]. Cluster
graphs have been used in a variety of applications whenever clustering of objects is studied or when
consistent data is sought among noisy or error-prone data [1, 4]. Ideally, the resulting graph would
be a cluster graph, that is, a graph in which every connected component is a clique (i.e. a complete
subgraph). In practice, it is only close to being such, since similarity data is experimental and thus,
error-prone.

The cluster deletion problem asks for the minimum number of edges that can be removed from
an input graph to make the resulting graph a cluster graph. There exist several results for the
cluster deletion problem (see for example [3, 17, 14] and references therein). The cluster deletion
problem is known to be NP-complete [17] for general graphs. Moreover, Shamir et al. [17] showed
that it remains NP-hard when enforcing that the input graph should be clustered into exactly
d ≥ 3 components. They also showed that when the input graph should be clustered into exactly 2
components, the problem is polynomial-time solvable. Komusiewicz et al. [14] proved that cluster
deletion is hard for C4-free graphs with maximum degree 4, and they gave a O(n1.5 log2 n) time
algorithm for solving cluster deletion on graphs with maximum degree 3. Based on results obtained
by Demaine et al. [5] concerning a variant of a clustering problem, Dessmark et al. [6] provided a
polynomial O(log n)-approximation algorithm for the edge-weighted version of the cluster deletion
problem. They also showed that for the edge-unweighted version of cluster deletion on general
graphs, the greedy algorithm that finds iteratively maximum cliques gives a 2-approximation algo-
rithm to the optimal cluster deletion. The complexity of such an algorithm relies on the complexity
of iteratively finding maximum cliques, so it is a polynomial-time approximation algorithm for
certain graph classes. Recently, Gao et al. [9] showed that the greedy algorithm that finds it-
eratively maximum cliques, gives an optimal solution for the class of graphs known as cographs.
It implies that the cluster deletion problem is polynomial-time solvable on unweighted cographs.
Moreover, Gao et al. [9] showed that the cluster deletion problem is NP-hard on (C5, P5)-free
graphs, on (2K2, 3K1)-free graphs and on (C5, P5,bull, 4-pan, fork, co-gem, co-4-pan)-free graphs.
For weighted graphs, the cluster deletion problem can be solved in polynomial time on the class of
triangle-free graphs, since it is equivalent to maximum weighted matching [7]. The cluster deletion
problem has been studied extensively in the scope of fixed-parameter tractability (FPT). Many of
the recently-developed FPT algorithms rely on being able to solve cluster deletion in polynomial-
time on restricted graph structures [3].

This paper is organized as follows. In Section 2, we prove that the weighted cluster deletion
problem is NP-complete in a subclass of split graphs and even under certain restrictions for the
weights, and that it is polynomial-time solvable for unweighted split graphs. In Section 3, we
prove that the unweighted cluster deletion problem is NP-complete in a subclass of chordal graphs,
namely P5-free chordal graphs. In Section 4, we prove that the weighted cluster deletion problem
is polynomial-time solvable on block graphs, when the weights are nonnegative. In Section 5, we
show that the weighted cluster deletion problem is NP-complete on interval graphs and, more-
over, on complete split graphs. On the positive side, we show that the unweighted problem is
polynomial-time solvable for proper interval graphs, and that the weighted cluster deletion prob-
lem is polynomial-time solvable on a subclass of proper interval graphs known as paths of cliques.
As a corollary of the complexity on complete split graphs, it is shown that the weighted cluster
deletion problem is NP-complete on cographs, in contrast to the polynomial-time algorithm given
in [9] for the unweighted case.

We conclude this introduction with some definitions. Let G = (V,E) be a graph. For each
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vertex v ∈ V , we denote by N(v) = {u : vu ∈ E} the set of neighbors of v in G. Two vertices v
and w are called true twins if N(v)∪ {v} = N(w)∪ {w}. A graph G is called weighted if there is a
weight function w : E → R+ associated with it. For the algorithms involving weighted graphs, we
will assume that the weights are rational (or belong to any ordered field in which we can perform
the operations algorithmically). An unweighted graph is a graph in which each edge has a weight
equal to 1. A graph is chordal, if and only if it does not contain a cycle of length at least four as
an induced subgraph. Given a vertex partition S = C1, . . . , Ck of a graph G, we call the weight of
S to the sum of the weight of all edges e = uv such that u ∈ Ci, v ∈ Cj , with i 6= j. The cluster
deletion problem of a (un)weighted graph G can be redefined as the problem of finding a clique
partition of G with minimum weight.

2 Split graphs

A graph G = (V,E) is a split graph, if and only if there is a partition of the vertices V of G into
a clique K and an independent set I. Another necessary and sufficient condition for a graph G to
be a split graph is that G and its complement G are chordal graphs (see [8]).

In this section we prove the NP-completeness of the weighted cluster deletion problem for split
graphs by reduction from the exact cover by 3-sets problem (X3C problem for short). The formal
definition of the X3C problem can be stated as follows:

Instance: A set X with 3q elements and a collection C of 3-element subsets of X.

Question: Does C contain an exact cover for X? In other words, is there a subset C ′ ⊆ C, such
that every element of X occurs in exactly one member of C ′?

The X3C problem is known to be NP-complete [10].

We analyze in this section a subclass of the split graphs, namely the class of those split graphs
where each vertex of the independent set I is adjacent to exactly p vertices of the clique K. We
call these graphs the p-split graphs, where p ≥ 1.

Theorem 1 (NP-completeness on weighted 3-split graphs). The cluster deletion problem is NP-
complete for weighted 3-split graphs, even if the weight of all the internal edges of the clique is 1
and the weight of the edges between the clique and the stable set is uniform.

Proof. It is not hard to see that the cluster deletion problem is in NP, since we can easily verify
in polynomial time whether a vertex partition of a graph is a clique partition or not, and if it has
weight less that a given value k. Let X = {x1, . . . , x3q} and C = {c1, . . . , cm} be an instance of the
X3C problem, where each element ci ∈ C is a 3-element subset of X, with m ≥ q ≥ 1. We want to
know if there exists a subset C ′ ⊆ C with size q such that each element in X belongs to exactly one
of the elements in C ′. We will construct an edge-weighted split graph G = (KX ∪IC , E), where KX

induces a clique with 3q vertices and IC induces an independent set with m vertices. In fact, for each
element xi ∈ X there is a vertex vxi in KX and for each 3-subset cj ∈ C there is a vertex vcj ∈ IC .
The edge set E is formed as follows: E = EX ∪ EC , where EX = {vxivxj : i 6= j, vxi , vxj ∈ KX}
and EC = {vcjvxj1 , vcjvxj2 , vcjvxj3 : vcj ∈ IC , vxj1 , vxj2 , vxj3 ∈ KX , cj ∈ C and cj = {xj1 , xj2 , xj3}}.
Finally, the weight of each edge in EX is equal to 1 and the weight of each edge in EC is equal to
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β, where β = 3q. Clearly, G is an split graph and its construction is done in polynomial time. Let
W =

(
3q
2

)
− 3q+ 3(m− q)β. We will show that there exists a subset C ′ ⊆ C, with |C ′| = q, exactly

covering X if and only if G has a clique partition where the sum of the weights of edges outside
the cliques is at most W . In other words, there exists a solution for the X3C problem if and only
if there exists an optimal solution for the cluster deletion problem for G with weight at most W .

Assume first that there exists C ′ ⊆ C, with C ′ = {c′1, . . . , c′q} such that c′i ∩ c′j = ∅ whenever
i 6= j, and

⋃
c′j∈C′

c′j = X. The clique partition for G can be constructed as follows: for each c′j ∈ C ′,
with c′j = {xj1 , xj2 , xj3}, choose the clique {vc′j , vxj1 , vxj2 , vxj3} in G. Each one of the remaining

m− q vertices in IC form a clique with size one. It is easy to see that the sum of the edge weights
outside those cliques is exactly equal to W .

Conversely, assume that G has a clique partition with weight at most W . We should to prove
that there exists C ′ ⊆ C, with |C ′| = q, such that C ′ is an exact cover for X. For this, we analyze
first the structure of the optimal solutions of the cluster deletion problem for G.

Claim 1. Let S be a clique partition of G which is an optimal solution for the cluster deletion
problem in G. If there exists a clique in S formed only by vertices in KX then, there is no solution
to the X3C problem.

First, notice that it is not possible to have two cliques, say A1, A2 ∈ S, formed only by vertices
in KX . Otherwise, set S′ = S \ {A1, A2} ∪ {A1 ∪ A2}. Clearly, the weight of S′ is |A1|.|A2| ≥ 1
less than the weight of S, which is a contradiction to the optimally of S. On the other hand, every
clique of S contains at most one vertex of I, so there are m cliques (possibly singletons) containing
one vertex of I each. Let S = A1, B1, . . . , Bm be the clique partition of G and let WS be the
weight of S. Assume that the clique A1 is formed only by vertices in KX . Clearly, each clique Bj ,
1 ≤ j ≤ m, contains a vertex in IC and zero, one, two or three vertices in KX . We consider the
following cases:

• Suppose there exists Bj = {vcj , vxj1 , vxj2} in S such that there is vy ∈ A1 with vy be adjacent
to vcj , where vcj ∈ IC and vy, vxj1 , vxj2 ∈ KX . Let S′ be the clique partition obtained by
setting B′j ← Bj∪{vy} and A′1 ← A1\{vy}, where S′ = S\{A1, Bj}∪{A′1, B′j}. Let WS′ be the
weight of S′. It is not difficult to see that WS′ = WS−(β+2)+(|A1|−1) = WS + |A1|−β−3.
However, β = 3q and |A1| ≤ 3q − 2. Therefore, WS′ < WS , which contradicts the optimality
of S.

• Similarly to the previous case, suppose there exists Bj = {vcj , vxj1} (resp. Bj = {vcj}) in
S such that there is vy ∈ A1 with vy be adjacent to vcj , where vcj ∈ IC and vy, vxj1 ∈ KX

(resp. vy ∈ KX) . By setting B′j ← Bj ∪ {vy} and A′1 ← A1 \ {vy}, we obtain a new clique
partition S′ = S \ {A1, Bj} ∪ {A′1, B′j} which weight WS′ = WS + |A1| − β − 2 < WS (resp.
WS′ = WS + |A1| − β − 1 < WS), which is a contradiction to the optimality of S.

As S is an optimal solution, no vertex in IC is adjacent to any vertex in A1, but by construction,
it implies that X is not covered by C, and thus, there is no solution for the X3C problem. This
ends the proof of this claim. ♦

By the previous claim, if
⋃

cj∈C cj = X then, an optimal solution S for the cluster deletion
problem of G must be of the form B1, . . . , Bm, where each clique Bj contains exactly one vertex
vcj ∈ IC , for 1 ≤ j ≤ m. Now, we can deduce the following result on S.
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Claim 2. Let S = B1, . . . , Bm be an optimal solution of the cluster deletion problem for G. Let
m = t1 + t2 + t3 + t4, with ti ≥ 0, for 1 ≤ i ≤ 4, where t1 (resp. t2, t3, t4) represents the number of
cliques Bj in S formed by a vertex in IC and by three (resp. two, one, zero) vertices in KX . Then,
(i) t1 > 0; (ii) Let vcj be a vertex in IC such that it belongs to a clique Bj of S with |Bj | = k,
with 1 < k ≤ 3. Then, for each vertex x ∈ N(vcj ) such that x 6∈ Bj, we have that x must belong to
another clique Bi of S with |Bi| > k.

Suppose that t1 = 0. If t2 6= 0 then, there is a clique Bj = {vcj , vxj1 , vxj2} in S. By construction,
vcj has another neighbor vy ∈ KX . If vy ∈ Bi, with |Bi| = 3 (resp. |Bi| = 2) then, we can construct
another clique partition S′ by setting B′j ← Bj ∪ {vy} and B′i ← Bi \ {vy} and where S′ = (S \
{Bi, Bj})∪{B′j∪B′i}. Notice that the weight WS′ of S′ is equal to WS−(β+2)+β+1 = WS−1 < WS

(resp. WS − (β + 2) + β = WS − 2 < WS) which contradicts the optimality of S. If t1 = t2 = 0
then, there are Bj , Bi, Bs ∈ S such that Bj = {vcj , vxj}, Bi = {vci , vxi} and Bs = {vcs , vxs} where
{vxj , vxi , vxs} are the three neighbors of vcj . By setting B′j ← Bj ∪ {vxi , vxj}, B′i ← Bi \ {vxi},
B′s ← Bs\{vxs}, and by constructing the partition S′ = S \{Bj , Bi, Bs}∪{B′j , B′i, B′s} we have that
the weight WS′ of S′ is equal to WS− (2β+ 3) + 2β = WS−3 < WS , which is again a contradiction
to the optimality of S. Therefore, t1 > 0 and thus (i) holds. In an analogous way, we can show
(ii), which ends the proof of this claim. ♦

Now, let S = B1, . . . , Bm be an optimal clique partition of G with weight WS . By Claim 1
we know that each clique Bi in S contains exactly one vertex in IC and that there are t1 (res.
t2, t3, t4) cliques in S having exactly three (resp. two, one, zero) vertices in KX . By Claim
2, we know that t1 > 0 and t2, t3, t4 ≥ 0. Therefore, the weight WS of S can be written as:
WS =

(
3q
2

)
− (3t1 + t2) + (t2 + 2t3 + 3t4)β. Moreover, m = t1 + t2 + t3 + t4 and 3q = 3t1 + 2t2 + t3.

It is not difficult to see that 3(m− q) = t2 + 2t3 + 3t4 and that 3t1 + t2 = 3q− t2− t3 which implies
that 3q ≥ 3t1 + t2. Therefore, W ≤ WS with equality only if t2 = t3 = 0 in which case, t1 = q.
Therefore, if S has weight W then, there is a solution to the X3C problem which ends the proof of
this theorem.

For the unweighted case, we will show next that the problem can be easily solved on split graphs.

Theorem 2 (Polynomiality on unweighted split graphs). The cluster deletion problem is
polynomial-time solvable for unweighted split graphs. Indeed, if (K, I) is a split partition of the
graph G such that K is a maximal clique of G, then {K}∪{{v} : v ∈ I} is an optimal solution un-
less there is a vertex v1 in I adjacent to all but one vertex w in K, and that vertex w has a neighbor
v2 in I. In that case, an optimal solution is {{v1} ∪ (K −{w}), {w, v2}} ∪ {{v} : v ∈ I, v 6= v1, v2}.

Proof. Let G be a split graph and let (K, I) be a split partition of G such that K is a maximal
clique of G. We can see the problem as the problem of maximizing the internal edges in a clique
partition S (it is equivalent to the problem of minimizing the edges joining distinct cliques of S).
In order to break ties, we will maximize the internal edges that join two vertices of K in G. We
will call the standard partition to S0 = {K} ∪ {{v} : v ∈ I}.

Suppose that we have an optimal solution S with respect to the criterion that is strictly better
than S0. If S contains a clique A ( K such that |A| = a ≥ 1 and a clique B containing one vertex
of I and b ≥ 1 vertices of K, then S′ = S \ {A,B}∪{A∪ (B ∩K), B ∩ I}, with respect to S, has ab
new internal edges that join two vertices of K in G and looses b edges that join vertices of K with
vertices of I, so it is either strictly better than S or it is preferable by the breaking ties criterion, a
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contradiction to the optimality of S. So, we may assume that every clique of S contains a vertex
of I.

Suppose now that the clique A has a vertex of I and a ≥ 2 vertices of K, and the clique B has
a vertex of I and b ≥ 2 vertices of K. Then S′ = S \ {A,B} ∪ {(A ∩K) ∪ (B ∩K), A ∩ I,B ∩ I},
with respect to S, has ab new internal edges that join two vertices of K in G and looses a+ b edges
that join vertices of K with vertices of I, so as a and b are at least 2, S′ is either strictly better
than S or it is preferable by the breaking ties criterion, a contradiction to the optimality of S.

Suppose now that there are three cliques A,B,C having a vertex of I each and a, b, c ≥ 1 vertices
of K, respectively. Then S′ = S \ {A,B,C} ∪ {(A ∩K) ∪ (B ∩K) ∪ (C ∩K), A ∩ I,B ∩ I, C ∩ I},
with respect to S, has ab+ ac+ bc new internal edges that join two vertices of K in G and looses
a + b + c edges that join vertices of K with vertices of I, so as ab ≥ a, bc ≥ b, and ca ≥ c, S′ is
either strictly better than S or it is preferable by the breaking ties criterion, a contradiction to the
optimality of S.

Then S has exactly two cliques containing vertices of K, each of them contains a vertex of I, and
at least one of them has only one vertex of K. So, there is a vertex v1 in I adjacent to all but one
vertex w in K, and that vertex w has a neighbor v2 in I, and S = {{v1}∪(K−{w}), {w, v2}}∪{{v} :
v ∈ I, v 6= v1, v2}.

3 Chordal graphs

Chordal graphs form an extensively studied class of graphs, as their peculiar clique-based structure
allows an efficient solution for algorithmic problems. A very nice survey by Blair and Peyton on
chordal graphs properties can be found in [2].

In order to prove the main result of this section, we will show first a simple general lemma.

Lemma 1 (True twins). Let G be graph and v, w be true twins in G. Then, for every optimal
solution of the unweighted cluster deletion problem, v and w belong to the same clique of the
partition.

Proof. Suppose, on the contrary, that there is an optimal clique partition S such that v belongs to
a clique C1 and w to a different clique C2. Without loss of generality, we may assume |C1| ≤ |C2|.
But then S′ = S\{C1, C2}∪{C1\{v}, C2∪{v}} has strictly less weight than S, a contradiction.

Theorem 3 (NP-completeness on unweighted chordal graphs). The cluster deletion problem is
NP-complete for unweighted P5-free chordal graphs.

Proof. The proof of this theorem is similar to the proof of Theorem 1. The reduction is done again
from the X3C problem. Let X = {x1, . . . , x3q} and C = {c1, . . . , cm} be an instance of the X3C
problem, where each element ci ∈ C is a 3-element subset of X, with m ≥ q ≥ 1. We want to
know if there exists a subset C ′ ⊆ C with size q such that each element in X belongs to exactly
one of the elements in C ′. We construct a graph G = (V,E) as follows. The set of vertices V
is formed by the subsets KX ,Kc1 , . . . ,Kcm , where KX = {vxi : xi ∈ X} is the subset of vertices
representing the elements of X. Let β = 3q. For each 3-subset ci ∈ C, we construct a set of vertices
Kci = {vci,1 , . . . , vci,β} with cardinality β. The set of edges is constructed as follows: KX induces
a clique of size β, and also each Kci induces a clique of size β, for 1 ≤ i ≤ m. Finally, for each
ci ∈ C such that ci = {xi1 , xi2 , xi3}, we add all the edges between the vertices of the clique Kci

to the vertices vxi1 , vxi2 , vxi3 ∈ KX . Clearly, this construction is done in polynomial time and the
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obtained graph G is an unweighted P5-free chordal graph. Now, since for each 1 ≤ i ≤ m, all the
β vertices of the clique Kci are true twins, by Lemma 1 they must belong to the same clique in
an optimal partition S. Therefore, we can contract each clique Kci , with 1 ≤ i ≤ m, into a single
vertex ci and replace each subset of β edges between Kci and the vertex vxij ∈ KX by a single
edge with weight β, where 1 ≤ j ≤ 3 and xij ∈ ci. This is exactly the weighted split graph used in
Theorem 1.

4 Block graphs

A graph G is a block graph if it is a connected graph and every block (i.e. maximal 2-connected
component) is a clique. Block graphs are a subclass of chordal graphs.

The first result in this section concerns weighted 1-split graphs, a particular subclass of block
graphs. We will use submodular functions minimization in order to solve the cluster deletion
problem on 1-split graphs, and then we will reduce the problem on weighted block graphs to the
problem on weighted 1-split graphs.

Given a finite nonempty set V of cardinality n, a function f defined on all the subsets of V
is called submodular if it satisfies f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), for every X,Y ⊆ V . In
[13] and [16] are presented combinatorial polynomial-time algorithms for finding a minimizer of a
general submodular function, provided that an oracle for evaluating the function value is available.
The number of oracle calls is bounded by a polynomial in the size of the underlying set.

Theorem 4 (Polynomiality on weighted 1-split graphs). Cluster deletion is polynomial time solv-
able for weighted 1-split graphs, provided that the weights of the internal edges of the clique are
nonnegative.

Proof. In the cluster deletion problem of a 1-split graph whose split partition is (K, I), the solution
has at most one clique K1 that has no intersection with I, some pairs {v, u} with v ∈ K and u ∈ I,
and some isolated vertices from I. Each vertex of I has at most one neighbor in K, and if {v, u}
belongs to the solution, then u is one of the neighbors of v in I maximizing the weight of the edge
vu. Indeed, we can preprocess the graph, identifying a subset of vertices of I that will be trivial
cliques in the solution, and leaving a graph in which each vertex of K has at most one neighbor
in I. If the subset K0 of vertices of K having no neighbors in I is nonempty, it will be part of
the clique K1 in the solution. We will name the set K \ K0 as {v1, . . . , vr} and their respective
neighbors in I as {u1, . . . , ur}. So, a candidate solution is totally determined by the subset S of
{1, . . . , r} such that the solution is {{vi, ui}}i 6∈S ∪ {K1 ∪ {vi : i ∈ S}} ∪ {{ui}}i∈S . The subset S is
not necessarily a proper subset of {1, . . . , r} and it could be empty. We will prove that the function
f that assigns to S the difference of weight between the candidate solution associated with S and
the solution associated with the empty set is submodular, and thus the set S that minimizes that
function can be found in polynomial time. The function f can be computed in polynomial time for
a subset S, and is defined as

f(S) =
∑
i∈S

w(viui)−
∑
i,j∈S

w(vivj)−
∑

i∈S,z∈K0

w(viz)

Let S, T ⊆ {1, . . . , r}. We will show that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), provided
that the weights of the edges joining two vertices of K are nonnegative. It is easy to see that∑

i∈S w(viui) +
∑

i∈T w(viui) =
∑

i∈S∪T w(viui) +
∑

i∈S∩T w(viui) and that
∑

i∈S,z∈K0
w(viz) +
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∑
i∈T,z∈K0

w(viz) =
∑

i∈S∪T,z∈K0
w(viz) +

∑
i∈S∩T,z∈K0

w(viz). So we have to show that∑
i,j∈S w(vivj) +

∑
i,j∈T w(vivj) ≤

∑
i,j∈S∪T w(vivj) +

∑
i,j∈S∩T w(vivj), but

∑
i,j∈S∪T w(vivj) +∑

i,j∈S∩T w(vivj)−
∑

i,j∈S w(vivj)−
∑

i,j∈T w(vivj) =
∑

i∈S\T,j∈T\S w(vivj) ≥ 0.
If the weight of the internal edges is 1, the algorithm is very simple. We name the vertices

in K \ K0 as {v1, . . . , vr} and their respective neighbors in I as {u1, . . . , ur}, in such a way that
w(v1u1) ≤ · · · ≤ w(vrur). Then the only sets that are candidates to minimize f are the empty set
and the sets {1, . . . , j}, for 1 ≤ j ≤ r.

Based on the solution of cluster deletion for weighted 1-split graphs, we will solve the problem
for weighted block graphs, when the weight of the edges is nonnegative.

Theorem 5 (Polynomiality on weighted block graphs). Cluster deletion is polynomial time solvable
for weighted block graphs, when the weight of the edges is nonnegative.

Proof. LetG = (V,E) be a weighted block graph, such that the weight w of the edges is nonnegative.
An end-block of a graph is a block containing exactly one cut-vertex. It is known that every
connected graph that is not 2-connected has an end-block. Inductively, the blocks of G can be
enumerated as B1, . . . , Br in such a way that Bi is an end-block of the graph induced by Bi ∪
Bi+1 ∪ · · · ∪ Br. We will process the blocks in that order by solving each time a subproblem and
reducing iteratively the graph to a simpler graph. Then we will reconstruct the solution for the
original graph based on the solution of each subproblem and the recursive solution of the reduced
graph.

By the way of choosing the order of the blocks, when processing the block Bi for i < r, it
will have exactly one cut-vertex v joining Bi with non-processed blocks. The graph G0 will be
G, we will create a graph Gi from Gi−1 by replacing the connected component of Gi−1 \ {v} that
contains Bi \ {v} by a vertex u adjacent to v and we will assign to the edge vu a suitable weight.
It means, inductively, that when processing block Bi, the connected component H of Gi−1 \ {v}
that contains Bi \{v} is a 1-split graph, and so is the graph induced by V (H)∪{v}. We will define
w(uv) =

∑
y∈H,vy∈E w(vy) + w(SH) − w(SH∪{v}), where SH∪{v} and SH are optimal solutions for

the cluster deletion problem on the 1-split graph induced by V (H) ∪ {v}, and H, respectively.
Notice that we can find SH∪{v} and SH by Theorem 4.

Claim 3. Let Si be an optimal solution of the cluster deletion problem for Gi. If {u, v} ∈ Si, then
Si \ {{u, v}} ∪ SH∪{v} is an optimal solution for Gi−1. If {u, v} 6∈ Si, then Si \ {{u}} ∪ SH is an
optimal solution for Gi−1.

Let Si−1 be an optimal solution of the cluster deletion problem for Gi−1. Let S1
i−1 the subset

of cliques of Si−1 containing vertices of H and S2
i−1 = Si−1 \ S1

i−1. We have that either v belongs
to a clique in S1

i−1 or not. As v is a cut-vertex of Gi−1, it is clear that in the first case S1
i−1 is

an optimal solution for the cluster deletion problem on the graph induced by V (H) ∪ {v}, while
in the second case S1

i−1 is an optimal solution for the cluster deletion problem on the graph H.
On the other hand, in the first case, S2

i−1 ∪ {v, u} will be a feasible solution for Gi, with weight
w(Si−1) − w(SH∪{v}), while in the second case, S2

i−1 ∪ {u} will be a feasible solution for Gi, with
weight w(Si−1)−w(SH)−

∑
y∈H,vy∈E w(vy)+w(uv) = w(Si−1)−w(SH∪{v}). So, if Si is an optimal

solution of the cluster deletion problem for Gi, then w(Si) ≤ w(Si−1) − w(SH∪{v}), which implies
w(Si) + w(SH∪{v}) ≤ w(Si−1).

Now, let us see that the weight of the solutions proposed for Gi−1 in each case is exactly
w(Si) + w(SH∪{v}), which makes them respectively optimal.
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If {u, v} ∈ Si, it is easy to see that w(Si\{{u, v}}∪SH∪{v}) = w(Si)+w(SH∪{v}). If {u, v} 6∈ Si,
when considering Si\{{u}}∪SH in Gi−1, we do not have to delete the edge uv, but we have to delete
every edge joining v with vertices in H, so w(Si\{{u}}∪SH) = w(Si)−w(uv)+

∑
y∈H,vy∈E w(vy)+

w(SH) = w(Si) + w(SH∪{v}). This ends the proof of this claim. ♦
Finally, when processing block Br, the graph Gr−1 is completely reduced to a 1-split graph, so

we can also apply the algorithm of Theorem 4 in order to obtain an optimal partition for Gr−1,
and then recursively construct the solution for the graph G0 = G, following the ideas in the Claim.

If the graph G is unweighted, then the 1-split graphs in which we need to solve the subproblems
have weight 1 in every internal edge. In that case, as we noticed in Theorem 4, the algorithm is
very simple.

5 Interval graphs

Other interesting subclasses of chordal graphs are interval graphs. A graph G is an interval graph
if G is the intersection graph of a finite family of intervals of the real line, and it is a proper interval
graph if it admits an intersection model in which no interval properly contains another. A unit
interval graph is the intersection graph of a finite family of intervals of the real line, all of the same
length. Proper interval graphs and unit interval graphs coincide, and they are exactly the claw-free
interval graphs [15] (the claw is the complete bipartite graph K1,3).

A restricted subclass of unit interval graphs is the class of paths of cliques. A graph is a path of
cliques if after identifying true twins into a single vertex, the resulting graph is a single path. That
is, its vertex set can be partitioned into sets A1, . . . , An in such a way that for each pair of vertices
v, w, such that v ∈ Ai and w ∈ Aj , they are adjacent if and only if either i = j or i = j + 1 or
i = j − 1. They also appear in the literature as line graphs of multipaths.

We will prove the next result with an approach similar to the proof od Theorem 4. We will
define an initial solution and then we will code every other solution by a subset of a set. Finally,
we will show that the function that assigns to every subset the difference of weights between its
associated solution and the initial one is submodular.

Theorem 6 (Polynomiality on weighted paths of cliques). The cluster deletion problem is
polynomial-time solvable for weighted paths of cliques, when the weights are nonnegative.

Proof. Let A1, . . . , An be the vertex set partition of a path of cliques G. Without loss of generality
we can assume that n is even, by adding if necessary a set An+1 with only one vertex adjacent
to every vertex in An with edges of weight zero. Let n = 2r and define the initial solution as the
cliques A2k−1∪A2k for 1 ≤ k ≤ r. Every vertex of Ai, for 1 < i < n, has two possibilities. Either it
will be part of a clique contained in Ai−1 ∪Ai or it will be part of a clique contained in Ai ∪Ai+1.
So, an arbitrary solution is completely defined by the subset S of V (G) \ (A1 ∪An) that, from the
initial solution, are moved into a clique contained in A2j ∪ A2j+1 for some integer 1 ≤ j ≤ r − 1.
We will define f(S) for a subset S of V (G) \ (A1 ∪An) as the difference between the weight of the
solution associated with S and the weight of the initial solution. The optimal solution will be given
by the subset S that minimizes function f . We will show now that S is a submodular function and
so a minimizer can be found in strongly polynomial time.
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The function f can be expressed as f(S) =
∑

1≤k≤r f
k(S), where

fk(S) =
∑

v∈S∩A2k
u∈A2k−1

w(vu) +
∑

v∈S∩A2k−1
u∈A2k

w(vu) +
∑

v∈S∩A2k−1

u∈A2k−1\S

w(vu) +
∑

v∈S∩A2k
u∈A2k\S

w(vu)−
∑

v∈S∩A2k
u∈S∩A2k+1

w(vu)−
∑

v∈S∩A2k−1
u∈S∩A2k

w(vu)

where in order to simplify the expression, we let A2r+1 = ∅. Notice that the last term in the sum
avoids the double counting of the first two terms.

For each value of k, define fk1 (S), . . . , fk6 (S) as the six terms of fk(S). It is easy to see that for
i = 1, 2 and S, T subsets of V (G) \ (A1 ∪An), it holds fki (S) + fki (T ) = fki (S ∪T ) + fki (S ∩T ). We
will prove that, for i = 3, . . . , 6, fki (S) + fki (T ) ≥ fki (S ∪ T ) + fki (S ∩ T ).

For S, T subsets of V (G) \ (A1 ∪ An), and by decomposing S as (S \ T ) ∪ (S ∩ T ) (resp. T as
(T \S)∪(S∩T )); V (G)\S as (T \S)∪(V (G)\(S∪T )) (resp. V (G)\T as (S\T )∪(V (G)\(S∪T )));
S ∪ T as (S \ T )∪ (T \ S)∪ (S ∩ T ); and V (G) \ (S ∩ T ) as (T \ S)∪ (S \ T )∪ (V (G) \ (S ∪ T )), it
can be see that

fk3 (S) + fk3 (T )− fk3 (S ∪ T )− fk3 (S ∩ T ) = 2
∑

v∈(S\T )∩A2k−1

u∈(T\S)∩A2k−1

w(vu) ≥ 0

because the weights are nonnegative, so fk3 is submodular. The proof for fk4 is identical.
Recall that fk5 (S) = −

∑
v∈S∩A2k,u∈S∩A2k+1

w(vu). By using again the decomposition S as

(S \ T )∪ (S ∩ T ) (resp. T as (T \ S)∪ (S ∩ T )); and S ∪ T as (S \ T )∪ (T \ S)∪ (S ∩ T ), it can be
see that

fk5 (S) + fk5 (T )− fk5 (S ∪ T )− fk5 (S ∩ T ) =
∑

v∈(S\T )∩A2k

u∈(T\S)∩A2k+1

w(vu) +
∑

v∈(T\S)∩A2k

u∈(S\T )∩A2k+1

w(vu) ≥ 0

because the weights are nonnegative, so fk5 is submodular. The proof for fk6 is identical. Finally,
the sum of submodular functions is submodular, and this completes the proof.

A split graph is called complete if each vertex of the stable set is adjacent to all vertices of the
clique. By slightly modifying the proof of Theorem 1, we can prove the following.

Theorem 7 (NP-completeness on weighted complete split graphs). The cluster deletion problem
is NP-complete for weighted complete split graphs, even if the weight of all the internal edges of the
clique is 1.

Proof. We will reduce once more time the X3C problem. Let X = {x1, . . . , x3q} and C =
{c1, . . . , cm} be an instance of the X3C problem, where each element ci ∈ C is a 3-element sub-
set of X, with m ≥ q ≥ 1. We want to know if there exists a subset C ′ ⊆ C with size q
such that each element in X belongs to exactly one of the elements in C ′. We will construct
an edge-weighted complete split graph G = (KX ∪ IC , E), where KX induces a clique with 3q
vertices and IC induces an independent set with m vertices. In fact, for each element xi ∈ X
there is a vertex vxi in KX and for each 3-subset cj ∈ C there is a vertex vcj ∈ IC . The edge
set E is formed as follows: E = EX ∪ EC ∪ EC̄ , where EX = {vxivxj : i 6= j, vxi , vxj ∈ KX},
EC = {vcjvxj1 , vcjvxj2 , vcjvxj3 : vcj ∈ IC , vxj1 , vxj2 , vxj3 ∈ KX , cj ∈ C and cj = {xj1 , xj2 , xj3}},
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and EC̄ = {vcjvxi : vcj ∈ IC , vxi ∈ KX , i 6∈ {j1, j2, j3}, cj ∈ C and cj = {xj1 , xj2 , xj3}}. Finally,
the weight of each edge in EX ∪ EC̄ is equal to 1, and the weight of each edge in EC is equal to
β =

(
3q
2

)
+ 3m(q − 1) + 1. Clearly, G is a complete split graph and its construction is done in

polynomial time. Let W =
(

3q
2

)
− 3q + 3(m − q)β + 3m(q − 1). We will show that there exists

a subset C ′ ⊆ C, with |C ′| = q, exactly covering X if and only if G has a clique partition where
the sum of the weights of edges outside the cliques is at most W . In other words, there exists a
solution for the X3C problem if and only if there exists an optimal solution for the cluster deletion
problem for G with weight at most W .

Assume first that there exists C ′ ⊆ C, with C ′ = {c′1, . . . , c′q} such that c′i ∩ c′j = ∅ whenever
i 6= j, and

⋃
c′j∈C′

c′j = X. The clique partition for G can be constructed as follows: for each c′j ∈ C ′,
with c′j = {xj1 , xj2 , xj3}, choose the clique {vc′j , vxj1 , vxj2 , vxj3} in G. Each one of the remaining

m− q vertices in IC form a clique with size one. It is easy to see that the sum of the edge weights
outside those cliques is exactly equal to W .

Conversely, assume that G has a clique partition with weight at most W . We should to prove
that there exists C ′ ⊆ C, with |C ′| = q, such that C ′ is an exact cover for X. For this, we analyze
first the structure of such a solution. Notice that β is greater than the sum of the weights of all
the edges in EX ∪ EC̄ , so a solution with weight W should delete exactly 3(m − q) edges of EC .
It cannot delete less than 3(m − q) because each vertex of KX can be in the same clique with at
most one vertex of IC . So, every vertex of KX is in a clique with one vertex of IC , and joined to
that vertex by an edge of the set EC . Than means that all the edges of EC̄ are deleted and that
each clique contains at most three vertices of KX . By the value of W , we can see that each clique
should contain exactly three vertices of KX , and following the lines of the proof of Theorem 1, such
a solution corresponds to a solution of the X3C instance, which ends the proof of this theorem.

Complete split graphs are also interval graphs, but (in general) they are not unit interval graphs,
as if the stable set is of size at least three and the complete set is nonempty, they contain a claw
(the complete bipartite graph K1,3), that is not a unit interval graph. So, we have the following
corollary.

Corollary 1 (NP-completeness on weighted interval graphs). The cluster deletion problem is NP-
complete for weighted interval graphs.

For unweighted unit interval graphs instead, we will show that the cluster deletion problem is
polynomial-time solvable. First, we need to state some known results and show a lemma describing
the structure of an optimal solution.

Theorem 8 (Roberts, 1969 [15]). A graph G is a unit interval graph if and only if its vertices can
be linearly ordered such that, for each clique M of G, the vertices contained in M are consecutive.

Such an ordering is called a canonical ordering of the vertices.

Lemma 2 (Consecutiveness for unweighted unit interval graphs). Let G be an unweighted unit
interval graph and v1, . . . , vn be a canonical ordering of the vertices of G. Then there is an optimal
solution of the cluster deletion problem for G, such that each clique of the solution consists of
consecutive vertices in that ordering.

Proof. Let us define, for each clique B of the optimal solution S, m(B) = max{j : vj ∈ B}. Now,
let B1, . . . , Bk be the cliques of the solution ordered by m increasingly. Suppose that not all the
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cliques consist of consecutive vertices, and let i minimum such that either i < m(B1) and vi 6∈ B1,
or m(Bj−1) < i < m(Bj) but vi 6∈ Bj , for some j. Let j′ such that vi ∈ Bj′ . Then, by the choice
of i, all the vertices of Bj′ have subindex greater than i and j′ > j so m(Bj′) > m(Bj). Since
vi is adjacent to vm(Bj′ )

and G is a proper interval graph with canonical ordering v1, . . . , vn, the

vertices vi, . . . , vm(Bj′ )
form a clique and, in particular, Bj′ ∪{vm(Bj)} is a clique and vi is adjacent

to vm(Bj). So, independently of i being greater os less than the minimum index of a vertex in Bj ,
Bj ∪{vi} is a clique. Then, either |Bj | ≥ |B′j | and S \{Bj , Bj′}∪{Bj ∪{vi}, Bj′ \{vi}} is a solution
strictly better than S, or |Bj | < |B′j | and S \{Bj , Bj′}∪{Bj \{vm(Bj)}, Bj′ ∪{vm(Bj)}} is a solution
strictly better than S, a contradiction in both cases.

Theorem 9 (Polynomiality on unweighted unit interval graphs). The cluster deletion problem can
be solved in polynomial time on unweighted unit interval graphs.

Proof. By using Lemma 2, we can easily develop a dynamic programming algorithm. For i =
0, 1, . . . , n, let f(i) be the value of an optimal cluster deletion solution for the subgraph of G
induced by v1, . . . , vi. Then f(0) = f(1) = 0 and, for i > 1, f(i) will be the minimum over all the
possible cliques containing vi, i.e., {vj , . . . , vi} where either j = i or vjvi ∈ E(G), of f(j − 1) plus
the amount of vertices joining {v1, . . . , vj−1} with {vj , . . . , vi} (this is 0 if j = 1). By keeping also
the number j realizing the minimum f(i), we can also reconstruct the partition itself.

General interval graphs do not have the same clique structure as unit interval graphs. And for
weighted unit interval graphs, Lemma 2 does not hold. An example of this is the graph P 2

6 , whose
vertices are v1, . . . , v6 and vi is adjacent to vj if and only if 1 ≤ |i − j| ≤ 2. It is easy to see that
the only possible canonical orderings for P 2

6 are v1, . . . , v6 or v6, v5, . . . , v1. Let w be defined on the
edges of P 2

6 such that w(v2v4) = w(v3v5) = 100 and w(e) = 1 for every other edge e. Any solution
to the cluster deletion problem that does not contain {v2, v4} and {v3, v5} as cliques has weight at
least 100, so the optimal solution is to have {v2, v4}, {v3, v5}, and isolated vertices, with a weight
equal to 7.

The example shows that the idea of Theorem 9 cannot be generalized in a straightforward way.
It remains as an open question the computational complexity of the cluster deletion problem on
unweighted interval graphs and on weighted unit interval graphs.

Complete split graphs are also cographs (i.e. P4-free graphs, that are not necessarily chordal as
they may contain C4 as induced subgraph). The cluster deletion problem on unweighted cographs
was solved in polynomial time by Gao et al. in [9]. As a corollary of Theorem 7, we have this
complexity result for the weighted case.

Corollary 2 (NP-completeness on weighted cographs). The cluster deletion problem is NP-
complete for weighted cographs.

6 Further results and open problems

We showed in Theorem 1 that the cluster deletion problem is NP-complete for weighted 3-split
graphs even if the weight of all the internal edges of the clique is 1 and the weight of the edges
between the clique and the stable set is uniform. We have seen also in Theorem 4 that the cluster
deletion problem is polynomial-time solvable for weighted 1-split graphs. As for 2-split graphs, we
will show next that, under the conditions of Theorem 1 (the weight of all the internal edges of the
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clique is 1 and the weight of the edges between the clique and the stable set is uniform) the problem
is polynomial-time solvable.

Theorem (Polynomiality on restricted weighted 2-split graphs). The cluster deletion problem is
polynomial-time solvable for weighted 2-split graphs, if the weight of all the internal edges of the
clique is 1 and the weight of the edges between the clique and the stable set is uniform.

Proof. Let G be a 2-split graph with split partition (K, I), and β be the weight of the edges between
K and I. Let us create a graph G′ with vertex set K ′, where K ′ is the subset of vertices of K that
have at least one neighbor in I, and such that two vertices are adjacent in G′ if they have a common
neighbor of I in G. Minimizing the sum of the external edges of a clique partition of G is equivalent
to maximizing the sum of the internal edges of the clique partition. There are three possible class
of cliques in G: those containing one vertex of I and two vertices of K, those containing one
vertex of I and one vertex of K, or those completely included in K, and by optimality, there is
just one of such cliques. Then the sum of internal edges will be a(2β + 1) + bβ + c(c − 1)/2 (∗),
where 0 ≤ a ≤ ν(G′) (ν(G′) is the value of a maximum matching of G′), 0 ≤ b ≤ |K ′| − 2a, and
c = |K| − 2a − b. It is easy to see that in an optimal solution, either a = ν(G′) or b = 0. In the
first case, after the substitution a = ν(G′), the coefficient of b in the expression (∗) is positive, so
the maximum is attained either by b = 0 or by b = |K ′| − 2ν(G′). In the second case, after the
substitution b = 0, the coefficient of a in the expression (∗) is positive, so the maximum is attained
either by a = 0 or by a = ν(G′). So the problem is reduced to solve maximum matching in G′ and
then compute the value of (∗) for the three possible optimal solutions a = 0, b = 0; a = ν(G′), b = 0;
and a = ν(G′), b = |K ′| − 2ν(G′).

We leave as an open problem the computational complexity of the cluster deletion problem in
general weighted 2-split graphs, or even when the weight of all the internal edges of the clique is 1
but the weight of the edges between the clique and the stable set is arbitrary and not necessarily
uniform.
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