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CONSTRUCTIVE APPROXIMATION IN DE

BRANGES–ROVNYAK SPACES

OMAR EL-FALLAH, EMMANUEL FRICAIN, KARIM KELLAY,

JAVAD MASHREGHI, AND THOMAS RANSFORD

ABSTRACT. In most classical holomorphic function spaces on the unit

disk in which the polynomials are dense, a function f can be approxi-

mated in norm by its dilates fr(z) := f (rz) (r < 1). We show that this

is not the case for the de Branges–Rovnyak spaces H (b). More pre-

cisely, we exhibit a space H (b) in which the polynomials are dense and

a function f ∈ H (b) such that limr→1− ‖ fr‖H (b) = ∞.

On the positive side, we prove the following approximation theorem

for Toeplitz operators on general de Branges–Rovnyak spaces H (b).
If (hn) is a sequence in H∞ such that ‖hn‖H∞ ≤ 1 and hn(0) → 1, then

‖Thn
f − f‖H (b) → 0 for all f ∈ H (b). Using this result, we give the

first constructive proof that, if b is a non-extreme point of the unit ball of

H∞, then the polynomials are dense in H (b).

1. INTRODUCTION

The de Branges–Rovnyak spaces are a family of subspaces H (b) of the

Hardy space H2, parametrized by elements b of the closed unit ball of H∞.

We shall give the precise definition in §2. In general H (b) is not closed in

H2, but it carries its own norm ‖ · ‖H (b) making it a Hilbert space.

The spaces H (b) were introduced by de Branges and Rovnyak in the

appendix of [2] and further studied in their book [3]. The initial motivation

was to provide canonical model spaces for certain types of contractions on

Hilbert spaces. Subsequently it was realized that these spaces have several

interesting connections with other topics in complex analysis and operator

theory. For background information we refer to the books of de Branges

and Rovnyak [3], Sarason [6], and the forthcoming monograph of Fricain

and Mashreghi [5].
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The general theory of H (b)-spaces splits into two cases, according to

whether b is an extreme point or a non-extreme point of the unit ball of

H∞. For example, if b is non-extreme, then H (b) contains all functions

holomorphic in a neighborhood of the closed unit disk D, whereas if b is

extreme, then H (b) contains very few such functions. In particular, H (b)
contains the polynomials if and only if b is non-extreme, and in this case,

the polynomials are dense in H (b). Proofs of all these facts can be found

in Sarason’s book [6].

The density of polynomials in the non-extreme case is proved in [6] by

showing that their orthogonal complement in H (b) is zero. The proof is

non-constructive in the sense that it gives no clue how to find polynomial

approximants to a given function. We know of no published work describ-

ing constructive methods of polynomial approximation in H (b), and it is

surely of interest to have such methods available.

Perhaps the most natural approach is to try using dilations. Writing

fr(z) := f (rz), the idea is to approximate f by fr for some r < 1, and then

fr by the partial sums of its Taylor series. This idea works in many function

spaces, but, as we shall see, it fails dismally in H (b), at least for certain

choices of b. Indeed, it can happen that limr→1− ‖ fr‖H (b) =∞, even though

f ∈ H (b). We shall prove this in §3, thereby answering a question posed

in [1].

This phenomenon has other negative consequences, among them the sur-

prising fact that the formula for ‖ f‖H (b) in terms of the Taylor coefficients

of f (see (8) below), previously known to hold for f holomorphic on a

neighborhood of D, actually breaks down for general f ∈ H (b). It also

shows that, in general, neither the Taylor partial sums of f , nor their Cesàro

means need converge to f in H (b).
So, to construct polynomial approximants to functions in H (b), a dif-

ferent idea is needed. In §4, we establish a rather general approximation

theorem for Toeplitz operators in H (b), valid for all b, both extreme and

non-extreme. Then, in §5, we use this result to derive a constructive method

for polynomial approximation in H (b) in the case when b is non-extreme.

2. BACKGROUND ON H (b)-SPACES

Given ψ ∈ L∞(T), the corresponding Toeplitz operator Tψ : H2 → H2 is

defined by

Tψ f := P+(ψ f ) ( f ∈ H2),

where P+ : L2(T) → H2 denotes the orthogonal projection of L2(T) onto

H2. Clearly Tψ is a bounded operator on H2 with ‖Tψ‖ ≤ ‖ψ‖L∞(T). (In

fact, by a theorem of Brown and Halmos, ‖Tψ‖= ‖ψ‖L∞(T), but we do not

need this.) If h ∈ H∞, then Th is simply the operator of multiplication by h
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and its adjoint is Th. Consequently, if h,k ∈ H∞, then ThTk = Thk = TkTh, a

useful fact that we shall exploit frequently in what follows.

Definition 2.1. Let b ∈ H∞ with ‖b‖H∞ ≤ 1. The associated de Branges–

Rovnyak space H (b) is the image of H2 under the operator (I −TbTb)
1/2.

We define a norm on H (b) making (I −TbTb)
1/2 a partial isometry from

H2 onto H (b), namely

‖(I −TbTb)
1/2 f‖H (b) := ‖ f‖H2 ( f ∈ H2 ⊖ker(I −TbTb)

1/2)).

This is the definition of H (b) as given in [6]. The original definition of

de Branges and Rovnyak, based on the notion of complementary space, is

different but equivalent. An explanation of the equivalence can be found in

[6, pp.7–8]. A third approach is to start from the positive kernel

kb
w(z) :=

1−b(w)b(z)

1−wz
(z,w ∈ D),

and to define H (b) as the reproducing kernel Hilbert space associated with

this kernel.

As mentioned in the introduction, the theory of H (b)-spaces is pervaded

by a fundamental dichotomy, namely whether b is or is not an extreme point

of the unit ball of H∞. This dichotomy is illustrated by following result.

Theorem 2.2. Let b ∈ H∞ with ‖b‖H∞ ≤ 1. The following statements are

equivalent:

(i) b is a non-extreme point of the unit ball of H∞;

(ii) log(1−|b|2) ∈ L1(T);
(iii) H (b) contains all functions holomorphic in a neighborhood of D;

(iv) H (b) contains all polynomials.

Proof. The equivalence between (i) and (ii) is proved in [4, Theorem 7.9].

That (i) implies (iii) is proved in [6, §IV-6]. Clearly (iii) implies (iv).

Finally, that (iv) implies (i) is proved as follows. If (i) fails, then b is ex-

treme, and by [6, §V-1] the only functions in H (b) having a holomorphic

continuation across the whole the unit circle are the rational functions in

ker(Tb). Since b 6≡ 0, it cannot be the case that ker(Tb) contains all polyno-

mials, therefore neither does H (b). Hence (iv) fails too. �

Henceforth we shall simply say that b is ‘extreme’ or ‘non-extreme’, it

being understood that this relative to the unit ball of H∞.

From the equivalence between (i) and (ii), it follows that, if b is non-

extreme, then there is an outer function a such that a(0)> 0 and |a|2+ |b|2 =
1 a.e. on T (see [6, §IV-1]). The function a is uniquely determined by b. We

shall call (b,a) a pair. The following result gives a useful characterization

of H (b) in this case.
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Theorem 2.3 ([6, §IV-1]). Let b be non-extreme, let (b,a) be a pair and let

f ∈ H2. Then f ∈ H (b) if and only if Tb f ∈ Ta(H
2). In this case, there

exists a unique function f+ ∈ H2 such that Tb f = Ta f+, and

(1) ‖ f‖2
H (b) = ‖ f‖2

H2 +‖ f+‖2
H2.

We end this section with an example that was studied in [7]. Let

(2) b0(z) :=
τz

1− τ2z
,

where τ := (
√

5 − 1)/2. The equivalence between (i) and (ii) in Theo-

rem 2.2 shows that b0 is non-extreme, and a calculation shows that the

function a0 making (b0,a0) a pair is given by

a0(z) =
τ(1− z)

1− τ2z
.

It was shown in [7] that b0 has the special property that ‖ fr‖H (b0)≤‖ f‖H (b0)

for all f ∈ H (b0) and all r < 1. Using a standard argument of reproducing

kernel Hilbert spaces, it is easy to see that this implies that limr→1− ‖ fr −
f‖H (b0) = 0. As we shall see in the next section, this property is not shared

by general b.

3. DILATION IN H (b)

Our principal goal in this section is to prove the following theorem.

Theorem 3.1. Let b := b0B2, where b0 is the function given by (2), and B

is the Blaschke product with zeros at wn := 1−8−n (n ≥ 1). Let

f (z) := ∑
n≥1

4−n/(1−wnz) (z ∈ D).

Then b is non-extreme, f ∈ H (b), and we have

(3) lim
r→1−

|( fr)
+(0)|= ∞ and lim

r→1−
‖ fr‖H (b) = ∞.

Notice that, by Theorem 2.3, if b is non-extreme and f ∈ H (b), then

‖ f‖H (b) ≥ ‖ f+‖H2 ≥ | f+(0)|.
Thus the second conclusion in (3) is actually a consequence of the first. We

shall therefore concentrate our attention on the first conclusion.

To simplify the notation in what follows, we shall write kw(z) := 1/(1−
wz), the Cauchy kernel. It is the reproducing kernel for H2 in the sense

that f (w) = 〈 f ,kw〉H2 for all f ∈ H2 and w ∈ D. In particular, ‖kw‖2
H2 =

〈kw,kw〉H2 = kw(w) = 1/(1−|w|2). We remark that kw has the useful prop-

erty that Th(kw) = h(w)kw for all h ∈ H∞. Indeed, given g ∈ H2, we have

〈g,Th(kw)〉H2 = 〈hg,kw〉H2 = h(w)g(w) = h(w)〈g,kw〉H2 = 〈g,h(w)kw〉H2.
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The proof of Theorem 3.1 depends on two lemmas. The first lemma

provides a class of functions f for which ( fr)
+(0) is readily identifiable.

Lemma 3.2. Let b be non-extreme, let (b,a) be a pair and let φ := b/a. Let

f := ∑
n≥1

cnkwn
,

where (wn)n≥1 are zeros of b and (cn)n≥1 are scalars with ∑n |cn|(1 −
|wn|)−1/2 < ∞. Then f ∈ H (b) and

(4) ( fr)
+(0) = ∑

n≥1

cnφ(rwn) (0 < r < 1).

Proof. The series defining f clearly converges absolutely in H2. Also, since

Tbkwn
= b(wn)kwn

= 0 for all n, we have Tb f = 0, and consequently f ∈
H (b) by Theorem 2.3.

Now fix r ∈ (0,1) and consider

g := ∑
n≥1

cnφ(rwn)kwn
.

As (φ(rwn))n≥1 is a bounded sequence, this series also converges absolutely

in H2, and a simple calculation gives Tb( fr) = Ta(gr). Thus fr ∈H (b) and

( fr)
+ = gr. In particular (4) holds. �

The second lemma is a technical result about Blaschke products.

Lemma 3.3. Let B be an infinite Blaschke product whose zeros (wn)n≥1 lie

in (0,1) and satisfy

(5) 0 < α ≤ 1−wn+1

1−wn

≤ β <
1

2
(n ≥ 1).

Then there exists a constant C > 0 such that

|B(rwn)| ≥C (wn ≤ r ≤ wn+1, n ≥ 1).

Proof. We have

|B(rwn)|=
∞

∏
k=1

ρ(wk,rwn),

where ρ is the pseudo-hyperbolic metric on D, namely ρ(z,w) := |z −
w|/|1−wz|. The condition (5) implies that wn−1 < wn for all n, and even

that wn−1 < w2
n. Indeed, we have

(6) 1−w2
n ≤ 2(1−wn)≤ 2β (1−wn−1)< 1−wn−1.
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It follows that, if r ∈ [wn,wn+1], then rwn ∈ [w2
n,wnwn+1]⊂ (wn−1,wn), and

consequently

(7)

|B(rwn)| ≥
(n−2

∏
k=1

ρ(wk,wn−1)
)
×ρ(wn−1,w

2
n)×ρ(wn,wnwn+1)×

( ∞

∏
k=n+1

ρ(wk,wn)
)
.

Thus the lemma will be proved if we can show that each of the four terms

on the right-hand side of (7) is bounded below by a positive constant inde-

pendent of n.

By [4, Theorem 9.2], the condition (5) implies that the sequence (wn) is

uniformly separated, in other words, that there exists a constant C′ > 0 such

that

∏
k 6= j

ρ(wk,w j)≥C′ ( j ≥ 1).

Applying this with j = n− 1 and j = n takes care of the first and fourth

terms in (7).

For the second term in (7), note that (6) gives w2
n −wn−1 ≥ (1−2β )(1−

wn−1), and clearly also 1−w2
nwn−1 ≤ 1−w2

n−1 ≤ 2(1−wn−1), whence

ρ(wn−1,w
2
n) =

w2
n −wn−1

1−w2
nwn−1

≥ 1−2β

2
.

Finally, for the third term in (7), we observe that wn −wnwn+1 ≥ w1(1−
wn+1) and also 1 − w2

nwn+1 = (1− wn) + (wn −w2
n) + (w2

n − w2
nwn+1) ≤

3(1−wn), whence

ρ(wn,wnwn+1) =
wn −wnwn+1

1−w2
nwn+1

≥ w1

3

1−wn+1

1−wn
≥ w1

3
α. �

Proof of Theorem 3.1. As remarked in §2, the function b0 is non-extreme

and the function a0 making (b0,a0) a pair satisfies φ0 := b0/a0 = z/(1− z).
As b and b0 have the same outer factors, it follows that b is non-extreme and

the function a making (b,a) a pair is just a0. Hence φ := b/a = B2b0/a0 =
B2φ0.

By Lemma 3.2, we have f ∈ H (b). The lemma also gives that

( fr)
+(0) = ∑

n≥1

4−nφ(rwn) = ∑
n≥1

4−nB(rwn)
2 rwn

1− rwn
.

As the terms in this series are non-negative, each one of them provides a

lower bound for the sum. Given r ∈ [w1,1), we choose n so that wn ≤ r ≤
wn+1. By Lemma 3.3 we have |B(rwn)| ≥ C > 0, where C is a constant

independent of r and n. Thus

( fr)
+(0)≥ 4−nC2 rwn

1− rwn
≥ 4−nC2 w2

n

1−w2
n

≍ 2n ≍ (1− r)−1/3.
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In particular ( fr)
+(0) → ∞ as r → 1−, as claimed. Finally, as remarked

earlier, this implies that ‖ fr‖H (b) → ∞ as r → 1−. �

We now present some consequences of this result.

Corollary 3.4. Let b, f be as in Theorem 3.1. Then the Taylor partial sums

sn( f ) of f and their Cesàro means σn( f ) satisfy

limsup
n→∞

‖sn( f )‖H (b) = ∞ and limsup
n→∞

‖σn( f )‖H (b) = ∞.

Proof. Let us write f (z) = ∑∞
k=0 akzk. For each z ∈ D, each r ∈ (0,1) and

each N ≥ 0,

N

∑
n=0

(1− r)rn
n

∑
k=0

akzk =
N

∑
k=0

akzk
N

∑
n=k

(1− r)rn =
N

∑
k=0

akzk(rk − rN+1).

Letting N → ∞, we deduce that ∑n≥0(1− r)rnsn( f ) = fr, the convergence

of the series being pointwise in D. Now, if ‖sn( f )‖H (b) ≤ M for all n, then

the series also converges in the norm of H (b), and we have

‖ fr‖H (b) = ‖ ∑
n≥0

(1− r)rnsn( f )‖H (b) ≤ ∑
n≥0

(1− r)rnM = M.

This contradicts the fact that ‖ fr‖H (b) → ∞ as r → 1−. We conclude that

the sequence of norms ‖sn( f )‖H (b) is unbounded.

The argument for σn( f ) is similar, this time using the elementary identity

fr = ∑n≥0(n+1)(1− r)2rnσn( f ). �

Let b be non-extreme, let (b,a) be a pair and let φ := b/a, say φ(z) =

∑ j≥0 φ̂( j)z j. It was shown in [1, Theorem 4.1] that, if f is holomorphic in

a neighborhood of D, say f (z) = ∑k≥0 f̂ (k)zk, then the series ∑ j≥0 f̂ ( j +

k)φ̂( j) converges absolutely for each k, and

(8) ‖ f‖2
H (b) = ∑

k≥0

| f̂ (k)|2+ ∑
k≥0

∣∣∣∑
j≥0

f̂ ( j+ k)φ̂( j)
∣∣∣
2

.

It was left open whether the same formula holds for all f ∈ H (b). Using

Theorem 3.1, we can now show that it does not.

Corollary 3.5. Let b, f be as in Theorem 3.1. Then ∑ j≥0 f̂ ( j)φ̂( j) diverges.

Proof. For r ∈ (0,1), the dilated function fr is holomorphic in a neighbor-

hood of D, and the argument in [1] that establishes the formula (8) shows

that

( fr)
+(0) = ∑

j≥0

r j f̂ ( j)φ̂( j).
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If b, f are as in Theorem 3.1, then ( fr)
+(0)→ ∞ as r → 1−, in other words,

lim
r→1−

∑
j≥0

r j f̂ ( j)φ̂( j) = ∞.

By Abel’s theorem, it follows that the series ∑ j≥0 f̂ ( j)φ̂( j) diverges. �

In Theorem 3.1, we chose b0 so as to have a simple concrete example.

With a more astute choice, we can prove more, obtaining examples where

‖ fr‖H (b) grows ‘fast’. There is a limit on how fast it can grow: it was

shown in [1, Theorem 5.2] that, if b is non-extreme and f ∈ H (b), then

log+‖ fr‖H (b) = o((1− r)−1) as r → 1−. We now prove that this estimate

is sharp.

Theorem 3.6. Let γ : (0,1) → (1,∞) be a function such that logγ(r) =
o((1− r)−1). Then there exist b non-extreme and f ∈ H (b) such that

‖ fr‖H (b) ≥ γ(r) for all r in some interval (r0,1).

Proof. Let φ1 be any function in the Smirnov class N+ that is positive and

increasing on (0,1). To say that φ1 ∈ N+ means that we can write φ1 =
b1/a1, where a1,b1 ∈ H∞ and a1 is outer. Multiplying a1 and b1 by an ap-

propriately chosen outer function, we may further ensure that |a|2+ |b|2 = 1

a.e. on T and that a1(0)> 0, in other words, that (b1,a1) is a pair. Repeating

the proof of Theorem 3.1 with b0 replaced by b1 (but with the same B), we

obtain f ∈ H (b) such that

( fr)
+(0)≥C2(1− r)2/3φ1(16r−15) (w1 < r < 1).

Since logγ(r) = o((1− r)−1), it is possible to choose φ1 so that right-hand

side exceeds γ(r) for all r sufficiently close to 1. For these r, we therefore

have

‖ fr‖H (b) ≥ ( fr)
+(0)≥ γ(r). �

4. TOEPLITZ APPROXIMATION IN H (b)

Our goal in this section is to establish the following approximation theo-

rem for Toeplitz operators on H (b). It is valid for all b, both extreme and

non-extreme.

Theorem 4.1. Let (hn)n≥1 ⊂H∞ be such that ‖hn‖H∞ ≤ 1 and limn→∞ hn(0)=
1. Then, given b in the unit ball of H∞ and f ∈H (b), we have Thn

f ∈H (b)
for all n and

lim
n→∞

‖Thn
f − f‖H (b) = 0.
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The proof of this theorem requires a little more background on de Branges–

Rovnyak spaces, which we now briefly summarize.

Let b ∈ H∞ with ‖b‖H∞ ≤ 1. We define the space H (b) in the same way

as H (b), but with the roles of b and b interchanged. Thus H (b) is the

image of H2 under the operator (I −TbTb)
1/2, with norm defined by

‖(I −TbTb)
1/2 f‖

H (b) := ‖ f‖H2 ( f ∈ H2 ⊖ker(I −TbTb)
1/2)).

The spaces H (b) and H (b) are related through the following theorem.

Theorem 4.2 ([6, §II-4]). Let b be an element of the unit ball of H∞ and let

f ∈ H2. Then f ∈ H (b) if and only Tb f ∈ H (b), and in this case

‖ f‖2
H (b) = ‖ f‖2

H2 +‖Tb f‖2
H (b)

.

The advantage of H (b) over H (b), for our purposes at least, is that it

has another description making it a little more amenable.

Theorem 4.3 ([6, §III-2]). Let b ∈ H∞ with ‖b‖H∞ ≤ 1. Let ρ := 1−|b|2 on

T, let H2(ρ) be the closure of the polynomials in L2(T, ρ dθ/2π) and let

Jρ : H2 → H2(ρ) be the natural inclusion. Then J∗ρ is an isometry of H2(ρ)

onto H (b).

Note that, in this last result, if b is an inner function, then ρ ≡ 0 and the

whole situation is degenerate. However this causes no problem since, if b

is inner, then we clearly have H (b) = {0} anyway.

Using this result, we can prove a version of Theorem 4.1 for H (b).

Theorem 4.4. Let (hn)n≥1 ⊂H∞ be such that ‖hn‖H∞ ≤ 1 and limn→∞ hn(0)=
1. Then, given b in the unit ball of H∞ and f ∈H (b), we have Thn

f ∈H (b)
for all n and

lim
n→∞

‖Thn
f − f‖

H (b) = 0.

Proof. Let ρ := 1−|b|2 on T, and define H2(ρ) and Jρ as in the preceding

theorem. Given h ∈ H∞, let Mh : H2(ρ)→ H2(ρ) be the operator of multi-

plication by h, namely Mhg := hg (g ∈ H2(ρ)). Note that MhJρ = JρTh, so,

taking adjoints, we have

(9) J∗ρM∗
h = ThJ∗ρ .

Now let f ∈ H (b). By Theorem 4.3, there exists g ∈ H2(ρ) such that

f = J∗ρg. Using (9), we have Thn
f = Thn

J∗ρg = J∗ρM∗
hn

g. As J∗ρ is an isometry

of H2(ρ) onto H (b), it follows that Thn
f ∈ H (b) and that

‖Thn
f − f‖

H (b) = ‖M∗
hn

g−g‖H2(ρ).



10 EL-FALLAH, FRICAIN, KELLAY, MASHREGHI, AND RANSFORD

It therefore remains to show that limn→∞‖M∗
hn

g−g‖H2(ρ) = 0 for all g ∈
H2(ρ). It suffices to prove this when g ∈H∞, because H∞ is dense in H2(ρ)
and the operators M∗

hn
are uniformly bounded in norm (by 1). Now, given

g ∈ H∞, we have

‖M∗
hn

g−g‖2
H2(ρ) = ‖M∗

hn
g‖2

H2(ρ)+‖g‖2
H2(ρ)−2Re〈M∗

hn
g,g〉H2(ρ)

≤ 2‖g‖2
H2(ρ)−2Re〈g,hng〉H2(ρ)

= 2

∫ 2π

0
|g(eiθ )|2

(
1−Rehn(e

iθ )
)

ρ(eiθ )
dθ

2π

≤ 2‖g‖2
H∞

∫ 2π

0

(
1−Rehn(e

iθ )
) dθ

2π

= 2‖g‖2
H∞(1−Rehn(0)).

As the right-hand side tends to zero, the proof is complete. �

Finally, we deduce the corresponding result for H (b).

Proof of Theorem 4.1. Let f ∈ H (b). By Theorem 4.2 we have Tb f ∈
H (b). For each n, we have TbThn

f = Thn
Tb f ∈ H (b), and hence Thn

f ∈
H (b). Also, by Theorem 4.2 again,

‖Thn
f − f‖2

H (b) = ‖Thn
f − f‖2

H2 +‖Thn
Tb f −Tb f‖2

H (b)
.

The second term on the right-hand side tends to zero by Theorem 4.4. The

first term can be written as ‖Thn
f − f‖2

H (b0)
where b0 ≡ 0, so it too tends to

zero by the same theorem. �

Remark. Let h ∈ H∞ with ‖h‖H∞ ≤ 1. An inspection of the proof of The-

orems 4.1 and 4.4 shows that, if f ∈ H (b), with say Tb f = J∗ρg where

g ∈ H2(ρ), then, for all f̃ , g̃ ∈ H∞ we have

‖Th f − f‖2
H (b)≤ 4‖ f − f̃ ‖2

H2+4‖g− g̃‖2
H2(ρ)+2(‖ f̃‖2

H∞ +‖g̃‖2
H∞)(1−Reh(0)).

In principle, this can be used to estimate the rate of convergence in Theo-

rem 4.1. However, this estimate depends on how rapidly f and g can be

approximated by bounded functions, and in practice this may be difficult to

determine in the case of g, since g is not given explicitly.

5. POLYNOMIAL APPROXIMATION IN H (b)

In this final section we present a constructive proof that polynomials are

dense in H (b) when b is non-extreme.
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Theorem 5.1. Let b be non-extreme and let (b,a) be a pair. For n ≥ 1, let

hn be the outer function satisfying hn(0)> 0 and |hn|= min{1,n|a|} a.e. on

T, explicitly:

hn(z) := exp
(∫ 2π

0

eiθ + z

eiθ − z
log

(
min{1,n|a(eiθ)|}

) dθ

2π

)
(z ∈ D).

Given f ∈ H (b), let (pn) be a sequence of polynomials such that ‖ f −
pn‖H2 < 1/n2. Then Thn

pn is a polynomial for each n, and

lim
n→∞

‖Thn
pn − f‖H (b) = 0.

There are many possible choices for the polynomials (pn). For example,

they may be taken to be appropriately chosen Taylor partial sums of f .

The proof of Theorem 5.1 is based upon the Toeplitz approximation the-

orem of the previous section and the following lemma.

Lemma 5.2. Let b be non-extreme and let (b,a) be a pair. If h ∈ aH∞,

then Th is a bounded operator from H2 into H (b) and ‖Th‖H2→H (b) ≤
‖h/a‖H∞ .

Proof. Let h = ah0, where h0 ∈ H∞. For f ∈ H2, we have

TbTh f = TbTaTh0
f = TaTh0

Tb f ,

so, by Theorem 2.3, Th f ∈ H (b) and (Th f )+ = Th0
Tb f . Consequently

‖Th f‖2
H (b) = ‖Th f‖2

H2 +‖Th0
Tb f‖2

H2

= ‖Th0
Ta f‖2

H2 +‖Th0
Tb f‖2

H2

≤ ‖h0‖2
H∞(‖Ta f‖2

H2 +‖Tb f‖2
H2)

≤ ‖h0‖2
H∞‖ f‖2

H2,

the last inequality coming from the fact that |a|2+ |b|2 = 1 a.e. on T. �

Proof of Theorem 5.1. For k> deg pn, we have 〈Thn
pn,z

k〉H2 = 〈pn,z
khn〉H2 =

0. It follows that Thn
pn is a polynomial (of degree no greater than that of

pn). Also

‖Thn
pn − f‖H (b) ≤ ‖Thn

(pn − f )‖H (b)+‖Thn
f − f‖H (b).

Now, |hn| ≤ n|a| a.e. on T, and as both hn and a are outer functions, it

follows that hn/a ∈ H∞ with ‖hn/a‖H∞ ≤ n. Hence, by Lemma 5.2 and the

choice of pn, we have

‖Thn
(pn − f )‖H (b) ≤ ‖hn/a‖H∞‖pn − f‖H2 ≤ n(1/n2),



12 EL-FALLAH, FRICAIN, KELLAY, MASHREGHI, AND RANSFORD

and so ‖Thn
(pn − f )‖H (b) → 0. Also |hn| ≤ 1 a.e. on T, so again, since

hn is an outer function, we have ‖hn‖H∞ ≤ 1. Further, by the dominated

convergence theorem

hn(0) = exp
(∫ 2π

0
log

(
min{1,n|a(eiθ)|}

) dθ

2π

)
→ exp(0) = 1 as n → ∞,

so by Theorem 4.1 we have ‖Thn
f − f‖H (b) → 0. Combining these facts,

we obtain the desired conclusion that ‖Thn
pn − f‖H (b) → 0.

�
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(QC), G1V 0A6, CANADA

E-mail address: ransford@mat.ulaval.ca


