

Dry Etching of High [Al] AlGaAsSb Compounds Using Cl 2 /N 2 /Ar ICP RIE

Brice Adelin, Quentin Gaimard, Alexandre Larrue, Aurélie Lecestre, Pascal Dubreuil, Yves Rouillard, Guilhem Boissier, Aurore Vicet, Antoine Monmayrant, Olivier Gauthier-Lafaye

▶ To cite this version:

Brice Adelin, Quentin Gaimard, Alexandre Larrue, Aurélie Lecestre, Pascal Dubreuil, et al.. Dry Etching of High [Al] AlGaAsSb Compounds Using Cl $_2$ /N $_2$ /Ar ICP RIE. International Conference on Micro and Nano Engineering (MNE) 2014, Sep 2014, Lausanne, Switzerland. hal-01102417

HAL Id: hal-01102417

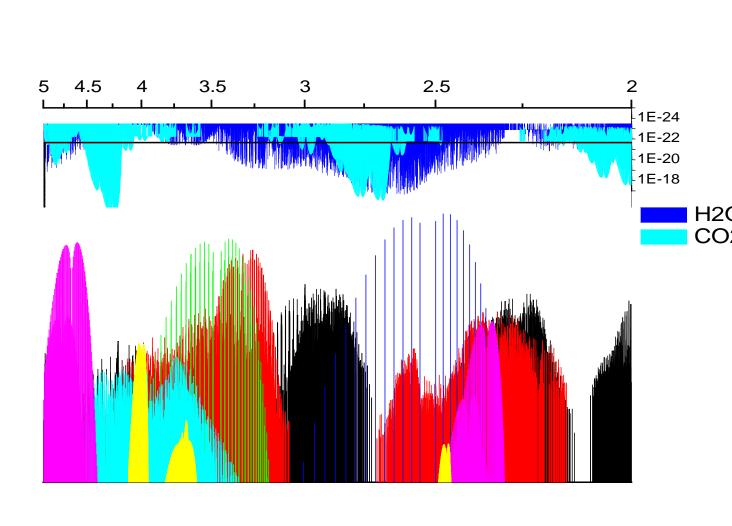
https://hal.science/hal-01102417

Submitted on 12 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dry Etching of High [Al] AlGaAsSb Compounds Using Cl₂/N₂/Ar ICP RIE


Adelin^{a,b,*}, Q. Gaimard^c, A. Larrue^{a,b}, A. Lecestre^{a,b}, <mark>P. Dubreuil^{a,b}, Y. Rouillard^c, G. Boissier^c, A. Vicet^c,</mark> A. Monmayrant^{a,b}, and O. Gauthier-Lafaye^{a,b}

d'électronique

^aLAAS-CNRS, 7 avenue du Colonel Roche, BP 54200, 31031 Toulouse cedex 4, France ^bUniversité de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; BP 54200, 31031 Toulouse cedex 4, France Institut d'Electronique du Sud (IES), Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier, France

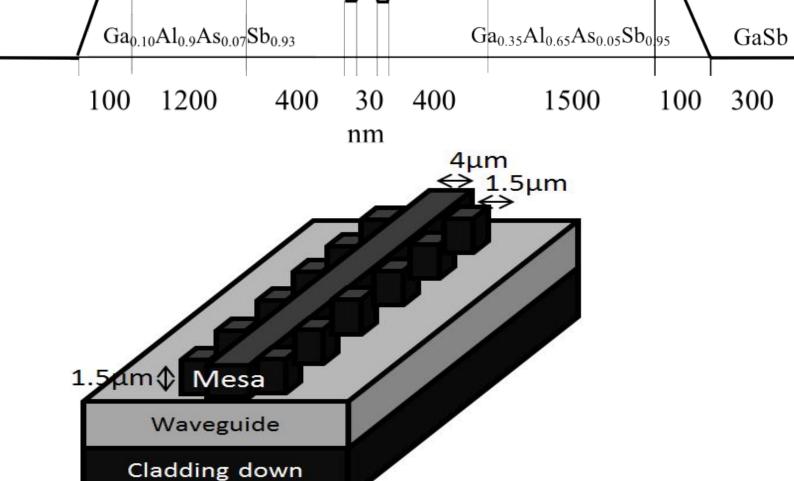
Context

GaSb based compound semiconductors emit in the mid-infrared range and present extremely good optoelectronic properties, with demonstrated bipolar laser diodes emitting from 2 to 3.5 µm with good performances. One key challenge remaining is the realization of high performance single mode emitters to enable H2O the realization of efficient trace gas detection systems. Such diodes are often made with a core waveguide embedded in claddings made of AlGaAsSb with high Al content. Deep etching of high Al content claddings is known to be a particular challenge for deep etching with high aspect ratio, and restricts the designs achievable for laser diodes fabrication.

We present our work on deep etching of sub-micron 1D and 2D periodic structures designed to achieve DFB effect in edge emitting mid infrared lasers. DFB cavities can be realized using several geometries. We investigated two thoroughly opposite ones. The first studied geometry relies on periodic modulation of a waveguide width, and requires smooth etching of narrow 1D trenches with a mostly open etch mask. The other investigated geometry relies on 2D photonic crystal cavities, and requires deep etching of sub-micron diameter holes with high aspect ratios, in a mostly closed mask.

Issue

Towards the realization of laser diodes all PhC electrically pumped in GaSb system


- Heterostructure AlGaAsSb / InGaAsSb for an emission around $2.3\mu m$ GaAl_{0.9}AsSb
- Etching of submicron patterns with high aspect ratio in the heterostructure: > Characteristic dimensions : $\emptyset \sim 375$
 - nm, H $\sim 3.5 \,\mu m$ > Aspect ratio : 1:9

Two 10 nm-thick $QWs:GaIn_{0.34}As_{0.06}Sb$ $Ga_{0.75}Al_{0.25}As_{0.027}Sb$ GaAl_{0.65}AsSb 400 1500 100 300 1200 30

nm

Towards the realization of side wall corrugated index coupled distributed feedback GaSb based laser diode

- Heterostructure AlGaAsSb / InGaAsSb for an emission around $2.3\mu m$
- 2nd order DFB laser Feedback from corrugated
- waveguide Shallower etching
- ■Smooth sidewalls
- Smooth etched bottom

Two 9 nm-thick QWs:

 $Ga_{0.34}In_{0.66}As_{0.11}Sb_{0.89} \\$

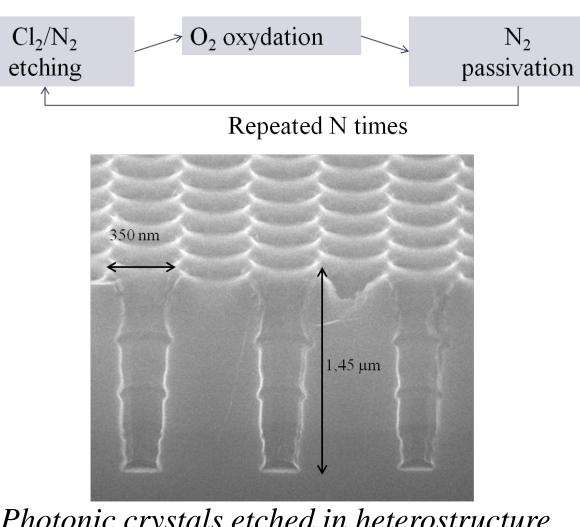
 $Ga_{0.75}Al_{0.25}As_{0.02}Sb_{0.98}$

Previous work

Realization of laser diodes all PhC electrically pumped in GaSb system

Masking strategy adopted

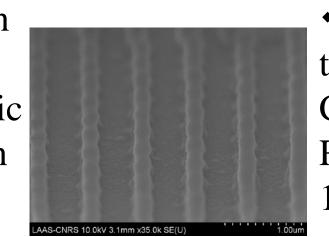
SiO₂ 200 nm Cr 50 nm SiO₂ 400nm SiO₂ 400nm Substrat/Heterostructure III-V Substrat/Heterostructure III-V

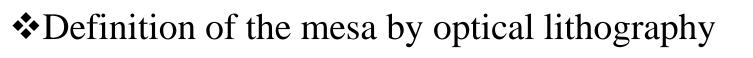

Tri-layer mask used to open the submicron patterns in *III-V substrate*

Photonic Crystals FIB cut after complete transfer in the mask

« Masking strategy for all ICP-RIE etching of high aspect ratio Photonic Crystals in GaAs » A. Larrue, and al., JNTE (2008)

"Inductively coupled plasma etching of high aspect ratio twodimensional photonic crystals in Al-rich AlGaAs and AlGaAsSb" A. Larrue, and al., JVSTB Vol. 29(2), pp. 021006 (2011)


Development of a multi-step etching process combining Cl₂/N₂, O₂ and N₂ ICP plasma etching


Photonic crystals etched in heterostructure AlGaAsInSb/AlGaAsSb

Realization of side wall corrugated index coupled distributed feedback GaSb based laser diode

Realization of the grating by holographic lithography in resist

Transfer of the grating by CHF₃/O₂ ICP-RIE through a $150 \, \mu m \, SiO_2$ mask

❖Dry etched with Cl2/N2/Ar ICP-RIE of the pattern through the top cladding. The etching is stopped on the top of the waveguide

System tool: SPTS ICP Omega201

Operating range:

 \Leftrightarrow Gas: CHF₃, CF₄, O₂, Cl₂, N₂, Ar

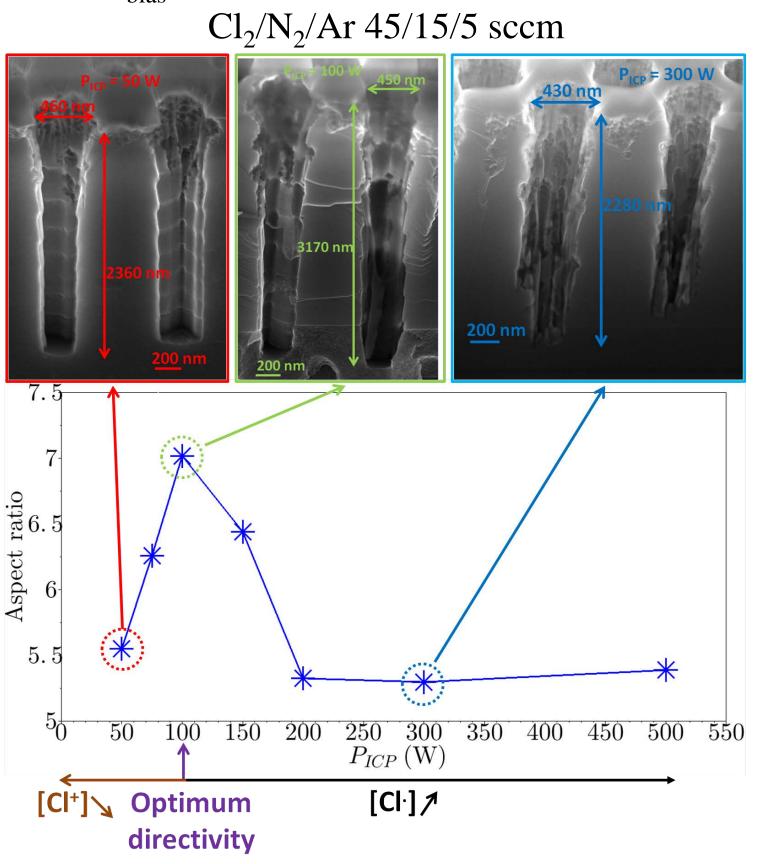
❖RF plasma powers (13.56 MHz):

 $P_{ICP} = from 0 to 600 W$

* RF bias power of the wafer:

 P_{bias} = from 0 to 100 W

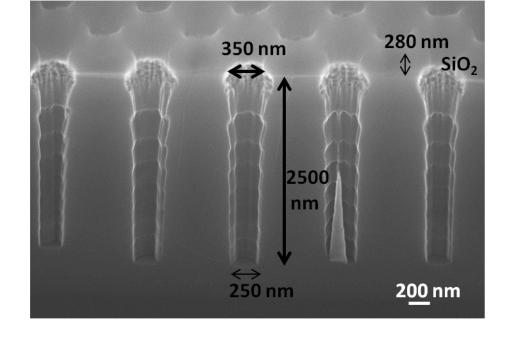
❖ Electrostatic chuck

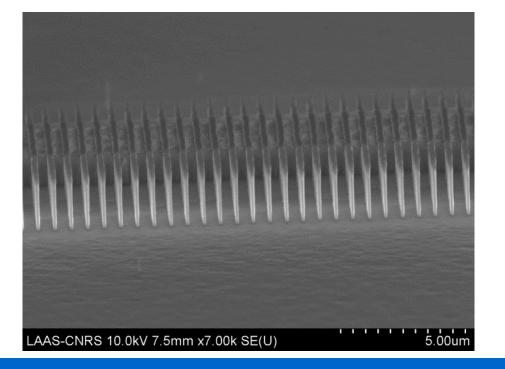

 \clubsuit Helium cooling: -20° C $< T_{wafer} < 60^{\circ}$ C

❖ Pressure: from 2 to 50 mTorr

Optimization of the process of chlorinated ICP-RIE etching III-V materials

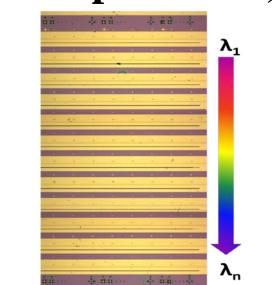
Influence of ICP power:


 $P_{\text{bias}} = 60 \text{ W} - \text{Pression} = 5.5 \text{ mTorr} Cl_2/N_2/Ar 45/15/5$ sccm


Influence of pressure: **Influence of Cl₂ ratio:** $P_{ICP} = 75 \text{ W} - P_{bias} = 60 \text{ W} -$ $P_{ICP} = 75 \text{ W} - P_{bias} = 60 \text{ W} -$ $Cl_2/N_2/Ar 45/15/5$ sccm Pression = 5.5 mTorrCl₂/N₂/Ar 20<u>0 nm</u> 250 nm ⇔₂₁₅ nm 2<u>00</u> nı * * $P_{ICP} = 100W$ \circ \circ $P_{ICP} = 50W$ 0 5.5Pressure (mTorr) Cl_2 ratio

Deep etching process optimized:

 $Cl_2/N_2/Ar 45/15/5 sccm - 75 W ICP$ 60 W bias - 5.5 mTorr


 $Cl_2/N_2/Ar 45/15/5 sccm - 500 W ICP$ 60 W bias – 7,0 mTorr

Conclusion

Deep dry etching of shallow features in high Al content AlGaAsSb can be achieved using Cl2/N2/Ar chemistries. Good performances are achieved provided that the etching regime (ICP or RIE) is chosen in accordance with the designed geometry and aspect ratio, and devices with good opto-electrical performances were fabricated.

- ✓ Establishment of a high aspect ratio deep etching process of PhC in GaInAsSb/AlGaAsSb system
- ✓ Successful insertion of this technological step in a complete process

- ✓ Establishment of deep etching process of grating in GaInAsSb/AlGaAsSb system
- ✓ Successful insertion of this technological step in a complete process