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Control and Estimation Algorithms 
for the Stabilization of VTOL UAVs 

from Mono-Camera Measurements

This paper concerns the control of Vertical Take-Off and Landing (VTOL) Unmanned 
Aerial Vehicles (UAVs) based on exteroceptive measurements obtained from a 

mono-camera vision system. By assuming the existence of a locally planar structure 
in the field of view of the UAV’s videocamera, the so-called homography matrix can be 
used to represent the vehicle’s motion between two views of the structure. In this paper 
we report recent results on both the problem of homography estimation from the fusion 
of visual and inertial data and the problem of VTOL UAV feedback stabilization from 
homography measurements

Introduction 

Obtaining a precise estimation of the vehicle’s position is a major is-
sue in aerial robotics. The GPS is a very popular sensor in this context 
and it has been used extensively with VTOL UAVs, especially for navi-
gation via waypoints. Despite recent progress of this technology, es-
pecially in terms of precision, many applications cannot be addressed 
with the GPS as the only position sensor. First, GPS is not available 
indoors and it can also be masked in some outdoor environments. 
Then, most inspection applications require a relative localization with 
respect to the environment, rather than an absolute localization as 
provided by the GPS. Finally, evolving in dynamic environments also 
requires relative localization capabilities. For all of these reasons, it is 
important to develop control strategies based on exteroceptive sen-
sors that can provide relative position information with respect to the 
local environment. Examples of such sensors are provided by cam-
eras, lasers, radars, etc. Cameras are interesting sensors to use with 
small UAVs, because they are light, low cost and provide rich infor-
mation about the environment at a relatively high frequency. Precise 
3D relative position information is best obtained from a stereo vision 
system with a “long” baseline (i.e., interdistance between the optical 
centers of the cameras). In this case, available feedback controllers 
that require position errors as inputs can be used. Using a mono-
camera system is more challenging, because the depth-information 
cannot be recovered instantaneously (i.e., based on a single mea-
surement). Nevertheless, a mono-camera system may be preferred 
in some applications, due to its compacity, or because the distance 
between the camera and the environment is large so that even a ste-
reo-system would provide poor depth-information.

This paper concerns the control of VTOL UAVs from mono-camera 
measurements. We assume the existence of a locally planar structure 
in the environment. This assumption is restrictive, but it is relevant 
in practice because i) many man-made buildings are locally planar 

and ii) when the distance between the camera and the environment is 
large, the planarity assumption can be satisfied locally as a first ap-
proximation, despite the environment not being perfectly planar (e.g., 
as in the case of ground observation at a relatively high altitude). 
Based on two camera views of this planar structure, it is well known 
in computer vision that one can compute the so-called homography 
matrix, which embeds all of the displacement information between 
these two views [15]. This matrix can be estimated without any spe-
cific knowledge regarding the planar structure (such as its size or 
orientation). Therefore, it is suitable for the control of UAVs operating 
in unknown environments. Homography-based stabilization of VTOL 
UAVs raises two important issues. The first is the estimation of the 
homography matrix itself. Several algorithms have been developed 
within the computer vision community to obtain such an estimation 
(see, for example, [15, 1]). Recently, IMU-aided fusion algorithms 
have been proposed to cope with noise and robustness limitations 
associated with homography estimation algorithms based on vision 
data only [16, 9]. The second issue concerns the design of stabiliz-
ing feedback laws. The homography associated with two views of a 
planar scene is directly related to the Cartesian displacement (in both 
position and orientation) between these two views, but this relation 
depends on unknown parameters (normal and distance to the scene). 
Such uncertainties significantly complicate the design and stability 
analysis of feedback controllers. This is all the more true since VTOL 
UAVs are usually underactuated systems, with high-order dynamic 
relations between the vehicle’s position and the control input. For ex-
ample, horizontal displacement is related to the roll and pitch control 
torque through fourth-order systems. For this reason, most existing 
control strategies based on homography measurements make addi-
tional assumptions regarding the environment, i.e., the knowledge of 
the normal to the planar scene [20, 21, 18, 14]. This simplifies the 
control design and stability analysis since, in this case, the vehicle’s 
Cartesian displacement (rotation and position up to an unknown scale 
factor) can be extracted from the homography measurement.
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This paper reports recent results by the authors and co-authors on 
both the problem of homography estimation via the fusion of inertial 
and vision data [16, 9] and the design of feedback controllers based 
on homography measurements [5, 7]. The paper is organized as 
follows : Preliminary background and notation are given in § "Back-
ground". Feedback control algorithms are presented in § “Feedback 
Control Design” and homography estimation algorithms in § “Homog-
raphy estimation”. Finally, some implementation issues are discussed 
in § “Computational aspects”.

Background

In this section, we review background on both the dynamics of VTOL 
UAVs and the homography matrix associated with two camera im-
ages of a planar scene. Let us start by defining the control problem 
addressed in this paper.

Control problem

Figure 1 illustrates the visual servoing problem addressed in this pa-
per. A VTOL UAV is equipped with a mono-camera. A reference image 
of a planar scene T , which was obtained with the UAV located in a 
reference frame ∗

R , is available. From this reference image and the 
current image, obtained from the current UAV location (frame R ), 
the objective is to design a control law that can asymptotically stabi-
lize R  to ∗

R . Note that asymptotic stabilization is possible only 
if ∗

R  corresponds to a possible equilibrium, i.e., in the absence of 
wind the thrust direction associated with ∗

R  must be vertical.

Dynamics of VTOL UAVs

We consider the class of thrust-propelled underactuated vehicles 
consisting of rigid bodies moving in 3D-space under the action of one 
body-fixed force control and full torque actuation [13]. This class con-
tains most VTOL UAVs (quadrotors, ducted fans, helicopters, etc.). 
Being essentially interested here in hovering stabilization, through-
out the paper we neglect aerodynamic forces acting on the vehicle’s 
main body. Assuming that ∗

R is a NED (North-East- Down) frame 
(see figure 1), the dynamics of these systems is described by the 
following well-known equations : 

3 3

( )

mp TRb mgb

R RS

J J

ω
ω ω ω Γ
= − + = = × +





                                                                (1)

where p is the position vector of the vehicle’s center of mass, ex-
pressed in ∗

R , R  is the rotation matrix from R  to ∗
R , ω  is 

the angular velocity vector of R  with respect to ∗
R  expressed 

in R , S(.) is the matrix-valued function associated with the cross 
product, i.e., 3( ) , , ,S x y x y x y m= × ∀ ∈ is the mass, T is the 
thrust control input, 3 (0,0,1) ,Tb J=  is the inertia matrix,Γ  the 
torque control input and g is the gravity constant.

Figure 1 - Problem scheme

Homography matrix and monocular vision

With the notation of figure 1, consider a point P∈T and denote by 
*X  the coordinates of this point in ∗

R . In ∗
R , the plane T is 

defined as { }* 3 T *X ;n* X = d*∈  where n* are the coordinates in ∗
R  of the unit vector normal to T  and d* is the distance between 
the origin of ∗

R  and the plane. Let us now denote as X  the coor-
dinates of P  in the current frame . One has *X RX p= +  and 
therefore,

*

* * *

*

* *

*

*

1
[ ]

1
( )

T T

T T T

T T T

X R X R p

X R X R p n X
d

R R pn X
d

HX

= −
= −
= −
=

                                                      (2)

where

*

*

1T T TH R R pn
d

= −                                                                  (3)

The matrix H  could be determined by matching 3D-coordinates 
in the reference and current camera planes of points of the planar 
scene. The cameras do not provide these 3D-coordinates, however, 
since only the 2D-projective coordinates of P on the respective image 
planes are available. More precisely, the 2D-projective coordinates of 
P in the reference and current camera planes are respectively given 
by

                              

*
*

*

X X
 K K

zz
µ µ= =

where z* and z denote the third coordinate of X* and X respectively 
(i.e., the coordinate along the camera optical axis), and K is the cali-
bration matrix of the camera. It follows from (2) and (4) that

                                                    *Gµ µ=                                                                  (4)

with                             1G KHK −∝
where ∝ denotes equality up to a positive scalar factor. The matrix 

3 3G ×∈ , defined up to a scale factor, is called the uncalibrated ho-
mography matrix. It can be computed by matching projections onto 
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∗
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the reference and current camera planes of points of the planar scene. 
If the camera calibration matrix K is known, then the matrix H  can 
be deduced from G, up to a scale factor, i.e., 1K GK Hα− = . As a 
matter of fact, the scale factor αcorresponds to the mean singular 
value of the matrix 1 1

2: ( )K GK K GKα σ− −= (see, for example, [15, 
page 135]). Therefore, α can be computed together with the matrix
H . Another interesting matrix is

1

3( )H det H H Hη−= =                  (5)

Indeed, det ( )H 1=  so that H belongs to the Special Linear Group 
SL(3) . As we will see further on, this property can be used for ho-
mography filtering and estimation purposes. Let us finally remark that 

*
3 d

d
η =  

Feedback Control Design

In this section, we present two classes of feedback control laws for 
the asymptotic stabilization of VTOL UAVs based on homography 
measurements of the form H  defined by (3). The first class consists 
of control laws that are affine with respect to the homography matrix 
components. These control laws ensure local asymptotic stabilization 
under very mild assumptions regarding the observed scene. The sec-
ond class consists of nonlinear control laws that ensure large stability 
domains under stronger assumptions regarding the scene.

Linear control

The main difficulty in homography-based stabilization comes from 
the mixing of position and orientation information in the homography 
matrix components, as shown by relation (3). If the normal vector 
n*  is known, then one can easily extract from H the rotation matrix 
and the position vector up to the scale factor 1/d* . When n*  is un-
known, however, this extraction is no longer possible and this mixing 
of information must be dealt with. The control laws presented here 
rely on the possibility of extracting partially decoupled position and 
rotation information from H . This is shown by the following result, 
first proposed in [6].

Proposition 1
Let e = Me  with

*
3

*
3

2 ( )
,

( )

pI S m e
M e

eS m I Θ
   = =    −                     (6)

and
*

*
3

( ) , ( )

(0,0,1)

T
p

T

e I H m e vex H H

m b

Θ= − = −
= =                                                 (7)

where vex(.) is the inverse of the S(.) operator : vex
3 T(S(x)) = x ; x . Let = ( ; ; )Θ φ θ ψ∀ ∈  denote any parameter-

ization of the rotation matrix R such that 3R  I  + S( )Θ≈  around 

3R  I≈ (e.g., Euler angles). Then,
 1. (p,R) e→  defines a local diffeomorphism around 

3(p,R)= (0, I ) . In particular, e = 0  if and only if 3(p,R)= (0, I ).

 2. In a neighborhood of 3(p,R)= (0, I ),

           2
0

( , )
p

p

Lp
e L O p L

L LΘ Θ
ΘΘ

  = + =                                            (8)
 

with T
pL = S(( *;  ; 0) )Θ α β ,

        

* *

* *

*

0 1 0 0

0 0 1 0

0 0 20 0 2

p

c

L c L

c

Θ
α
β

      = =          
where *α and *β  are the (unknown) constant scalars defined by 

* * * * * *

*

1
( , , ) ,Tn d c c

X
α β= =

‖ ‖
 and 2O  terms of order two at least.  

Eq. (8) shows the rationale behind the definition of e : at first order, 
components 1 2 3e , e , e contain information on the translation vector p 
only, while components 4 5 6e , e , e  contain decoupled information on 
the orientation (i.e., LΘ  is diagonal), corrupted by components of the 
translation vector. Although the decoupling of position and orientation 
information in the components of e is not complete, it is sufficient to 
define asymptotically stabilizing control laws, as shown below.

Let 3
pe ∈  (respectively 3eΘ ∈ ) denote the first (respectively 

last) three components of e, i.e., T T T
 pe = (e  , e )  Θ . The control design 

relies on a dynamic extension of the state vector defined as follows :

  7 pK eξ ξ= − −                                               (9)

where 7K is a diagonal gain matrix. The variable ν  copes with the 
lack of measurements of e . The control design is presented through 
the following theorem.

Theorem 1 
Assume that the target is not vertical and that the camera frame is 
identical to R  (as shown in figure 1). Let

 
( )( )1 3 2 3

3
d

T m g k e k

JK

ξ
Γ ω ω
 = + + = − −

                (10)

with        

 
( )4

3

5 6

d d

d
p

K
ge b

g

K e K

Θω γ
γ ξ
 = − + × = − −

                                     (11)

Then,

 1. Given any upper-bound *
M c  > 0 , there exist diagonal gain 

matrices i
i jK  = Diag(k ) i = 3,..., 7; j = 1, 2, 3  and scalar gains 

1 2k , k , such that the control law (10) makes the equilibrium 

3(p, R, v , , ) = (0, I , 0, 0, 0)ω ξ  of the closed-loop System (1)-(9)-
(10)-(11) locally exponentially stable for any value of * * )Mc  (0, c∈ .

 2. If the diagonal gain matrices iK   and scalar gains make the 
closed-loop system locally exponentially stable for * *

Mc = c , then lo-
cal exponential stability is guaranteed for any value of

* * )Mc  (0, c∈ .

This result calls for several remarks.
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1) The control calculation only requires the knowledge of H  (via e ) 
andω . Thus, it can be implemented with a very minimal sensor suite 
consisting of a mono-camera and gyrometers only.

2) This result does not address the case of a vertical target. This case 
can also be addressed with the same kind of technique and stability 
result. Such an extension can be found in [7], together with several 
other generalizations of Theorem 1.

3) Since * *c = 1/ X and * *X d≥ , a sufficient condition for( )* *
Mc 0, c∈  is that * *

Md 1/c≥ . Thus, 
Property 1) ensures that stabilizing control gains can be found given 
any lower bound on the distance between the reference pose and the 
observed planar target. This is a very weak requirement from an ap-
plication point of view. 
Property 2) is also a very strong result, since it implies that in order to 
find stabilizing control gains for any ( )* *

Mc 0, c∈ , it is sufficient to 
find stabilizing control gains for * *

Mc  = c . This is a much easier task, 
which can be achieved with classical linear control tools. In particular, 
by using the Routh-Hurwitz criterion, explicit stability conditions on 
the control gains can be derived (see [7] for more details).

Nonlinear control laws

Theorem 1 shows that homography-based stabilizing control laws 
can be designed from very limited a priori information (essentially, a 
lower bound on the distance to the scene at the desired configuration 
and the scene planarity property). A weakness of this stability result, 
however, is the lack of knowledge regarding the size of the stability 
domain. Under some assumptions regarding the scene orientation, it 
is possible to derive stabilizing control laws with explicit (and large) 
stability domains. A first case of interest in practice is when the target 
is horizontal. In this case, the normal vector to the scene is known 
and the extraction of the orientation and position up to a scale factor, 
from H , allows available nonlinear control laws with large stability 
domains to be used. Another interesting scenario for applications 
is when the target is vertical. This case is more challenging, since 
knowing that the scene is vertical does not completely specify its 
orientation. We present below a nonlinear feedback control to address 
this case. 

First, let us remark that *
3n  = 0  when the scene is vertical. Indeed, 

the normal vector to the scene is horizontal and the reference frame ∗
R  is associated with an equilibrium configuration so that its third 
basis vector is vertical (pointing downward). Then, it follows from 
(3) that

*

2 3 1 *

3 3

( )T

T

n
Hb Hb Hb R M p

d

gHb gR b

σ
γ
= × − =
= =


                                       (12)

with 1 3 2 3M( ) = I  + S( b )τ τ τ . These relations show that decoupled 
information can be extracted from H in terms of position and orien-
tation. Compared to the result given in proposition 1, this result is 
stronger, since the decoupling is complete and it holds without any 
approximation. On the other hand, it is limited to a vertical scene. 
Note that γ  corresponds to the components of the gravity vector 
in the body frame. This vector, which is used in conventional control 
schemes based on Cartesian measurements, is typically estimated 
from accelerometer and gyrometer measurements of an IMU, assum-
ing small accelerations of the UAV [17].

Eq. (12) leads us to address the asymptotic stabilization of UAVs from 
pose measurements of the form 3,T TR Mp gR bσ γ= =  where M is 
an unknown positive definite matrix. We further assume that the ve-
locity measurements ω  and T = R  pυ   are also available. The vari-
able υ  can be estimated, for example, via optical flow algorithms [10, 
11, 9]. In most studies on feedback control of underactuated UAVs, 
M is assumed to be the identity matrix, so that the relation between 
the measurement function and the cartesian coordinates is perfectly 
known. Several control design methods ensuring semi-global stability 
of the origin of system (1) have been proposed in this case (see, for 
example, [19, 13]). We show below that similar stability properties 
can be guaranteed in the case of uncertainties regarding the matrix 
M. To this end, let us introduce some notations.

For any square matrix ( )T
sM, M  = M+M /2 and ( )T

aM  = M-M /2 
respectively denote the symmetric and antisymmetric part of M. Giv-
en a smooth function f defined on an open set of  , its derivative 
is denoted as 'f . Given with [ ],m Mδ δ δ=  with 0 m Mδ δ< < , we 
introduce the saturating function

( )( )
2

2

2

1

( )

2

m

M mM
m

M m

if

sat
if

δ
τ δ

τ δ δδ τ δτ τ τ δ δ

 ≤= − − > + −
             (13)

Note that ( )2satδτ τ τ→ defines a classical saturation function, in the 
sense that it is the identity function on [ ]0, mδ and it is upper-bounded 
by Mδ .

We can now state the main result of this section (See [5] for more de-
tails, generalizations and proof). By a standard time separation argu-
ment commonly used for VTOL UAVs, we assume that the orientation 
control variable is the angular velocity ω  instead of the torque 1Γ  
(i.e., once a desired angular velocity dω   has been defined, a torque 
control input Γ  that ensures convergence of ω  to dω  is typically 
computed through a high gain controller).

Theorem 2 
Let satδ  and satδ denote two saturating functions. Assume that M  is 
positive definite and consider any gain values 1 2k , k  > 0 such that

2
2

2

1 2

( )min s

m

M

k M

C

k

k k

λ
δ
δ

 > > + <


  

( )1

1

|| |||| ||

( ) 2 | ' ( ) |

ak M M C

sup sat sat

k

g

τ δ δτ τ τ+
                     (14)

Define a dynamic augmentation :

3 3( ) , 0k kξ ξ ω ξ σ= × − − >                                                     (15)

together with the control (T, )ω such that:

1

2

T

ω
ω

 = = =

( )
( )

4 2
12 2

3

4 1
22 2

3

3

| | 1
( )

| || |

| | 1
( )

| || |

T T

T T

k
S b R

k
S b R

m

µ µ µ µµµ µ
µ µ µ µµµ µ

µ

− −+
−+




                             (16)
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where ,µ µ and the feedforward term TR µ are given by

( ) ( )
( )

( )

2 2
1 2

2 2
1 3 3

2 2
2 3 3

| | | |

(| | ) 2 (| | )

(| | ) 2 (| | )

T T

T

k sat k sat v v

R

R k k sat I sat

k sat v I sat v vv ub

δ δ

δ δ
δ δ

µ γ ξ ξ
µ µ

µ ξ ξ ξξ ξ σ
γ

′

′

= + +
=

 = − + − 
 + + − 



Then,

 i) there exists 3,m k > 0  such that, for any 3 3mk  > k , the equi-
librium

3( , p, p, ) = (0, 0, 0, gb ) ξ γ  of the closed-loop system (1)-
(15)-(16) is asymptotically stable and locally exponentially stable with 
convergence domain given by{ }3( , , , )(0); (0) (0)p p bξ γ µ µ≠ − .

 ii) if sM and aM commute, the same conclusion holds for the  
first inequality in (14) replaced by :

( )
2
2 1( )

( ) 2 | ' ( ) |

min s a

a s

k M k M

M sup sat M sup satτ δ τ δ
λ

τ τ τ
>

+
‖ ‖

‖ ‖ ‖ ‖  
             (17)

Let us comment on the above result. It follows from (14) that( ) ( )2 2
1 2 1 2| | | | | | | |Mk sat k sat v v k k gδ δξ ξ δ γ+ ≤ + < =

This guarantees that 
3(0) | (0) | bµ µ≠ −  whenever

  
3 3 1 2(0) ( )T

Mgb R b k k δ> − +  
Consequently, the only limitation on the convergence domain con-
cerns the initial orientation error and there is no limitation on the ini-
tial position/velocity errors. Note also that the limitation on the initial 
orientation error is not very strong. Note that 3ω , which controls the 
yaw dynamics, is not involved in this objective. Thus, it can be freely 
chosen. In practice, however, some choices are better than others 
(see below for more details).

Application to the visual servoing problem

From (12), Theorem 2 applies directly with

  

* **
1 2

3 3* * *
( )

n nn
M M I S b

d d d

 = = +    
In this case, one verifies that the stability conditions (14)-(17) are 
equivalent to the following :

*
1

1 2

2 1

1 2

*
1

, 0

n

k k

k k

k k

n d

δ
δ

>
>
>

+ <
 > +  







 

*
1

*
* * 2 * * 1

2 2

2

3 3
2

1 2

2 1

1 2 M

1 1

n  > 0

k , k  > 0

k m > k

k  + k  < g

n
n d k > k n n

δ
δ

 +   

                                                      (18)

Note that the first condition, which ensures that M is positive 
definite, essentially means that the camera is “facing” the tar-
get at the reference pose. This is a very natural assumption from 
an application point of view. When (loose) bounds are known for 

* * *
min max 1 1min:d d d d and n n≤ ≤ ≥ , and recalling that *| | 1n = , the 

last condition of equation (18) can be replaced by :

2
1min min 2 1

2
1

3 3
n d k k

 > +                    (19)

The yaw degree of freedom is not involved in the stabilization objec-
tive. On the other hand, it matters to keep the target inside the field 
of view of the camera. We propose to use the following control law :

3 5 21k Hω =                  (20)

Upon convergence of the position, velocity, roll and pitch angles due 
to the other controls, the yaw dynamics will be close to ( )5k sinψ ψ≈ − , 
thus ensuring the convergence of ψ  to zero unless is initially equal 
toπ (case contradictory to the visibility assumption). Another nice 
feature of this yaw control is that it vanishes when 21 0H = , i.e., when 
the target is seen, from the yaw prospective, as it should be at the 
end of the control task. This means that the controller tries to reduce 
the yaw angle only when the position/velocity errors have been sig-
nificantly reduced.

Homography estimation

Obtaining a good estimate of the homography matrix in real-time is a 
key issue for the implementation of the stabilization algorithms pre-
sented earlier. In this section, we first briefly review existing computer 
vision algorithms to obtain an estimate of the homography matrix. 
Then, we focus on the use of inertial measurements to improve and 
speed-up the estimation process.

Computer vision methods

There are two main classes of vision algorithms for computing the 
homography matrix between two images of the same planar scene:

1. Interest point based methods

2. Intensity based methods

In the first case, the homography matrix is recovered from point cor-
respondence between the two images in a purely geometrical way. A 
first step consists in the detection of interest points. These correspon-
dences can be estimated by matching (with interest point detection 
and descriptor) or KLT tracking (based on intensity). The homogra-
phy matrix is recovered from this correspondence with algorithms 
such as DLT [12], which are most of the time coupled with robust 
estimation techniques like RANSAC or M-estimator, in order to avoid 
false matching. For more details on interest point based methods, the 
reader is also referred to [12].

In the second case, the homography matrix is estimated by striving 
to align two images (the reference image or “template” T  and the 
current image I). This is done, for example, by defining a transfor-
mation (usually called “warping”) from the reference image to the 
current image * *: ( )w q q w qρ ρ→ = , where *q  denotes a pixel in 
the reference image, q denotes a pixel in the current image and ρ  is 
a parameterization of the homography matrix, for example a param-
eterization of the Lie algebra of SL(3). This definition leads to an opti-
mization problem that is solved numerically. The problem consists in 
minimizing with respect to ρ a measurement of the distance between 
the reference image *{ ( )}T T q=  and the transform of the image I 
by the warping : *{ ( ( ))}I w qρ . The cost function of the optimization 
problem varies with the proposed method, but most of the time it es-
sentially boil downs to a sum over the image’s pixels of the distance 
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between the pixel intensities in the two images. Usually, the optimi-
zation process only provides the optimal solution locally, i.e., pro-
vided that the distance between the two images is small enough. One 
way to improve the convergence of this type of method is to rely on 
Gaussian pyramids [4]. In this case, the template image is smoothed 
by a Gaussian and recursively down-sampled by a factor two to form 
a pyramid of images, with the template image at the bottom and the 
smallest image at the top. The visual method is then successively 
applied at each level of the pyramid, from top to bottom. Thus, large 
movements are kept small in pixel space and the convergence do-
main of the method is improved.

In this paper we focus on two estimation algorithms of this sec-
ond class of methods : the ESM algorithm (Efficient Second order 
Minimization) [3], and the IC algorithm (Inverse Compositional) [2]. 
Table 5.2 summarizes the main features of both methods. The main 
interest of the IC method is that it allows a great amount of pre-com-
putation to be performed based on the reference image. Indeed, the 
Jacobian matrix J of the cost function is computed from the template 
image, i.e., it depends neither on the current image nor on the ho-
mography parameterization ρ. Thus, the inverse of TJ J  can also be 
pre-computed. Only the computation of the intensity error and matrix 
multiplication are needed for each iteration. By contrast, the ESM is a 
second order method that uses both the current image gradient and 
template image to find the best quadratic estimation of the cost func-
tion. Therefore, each iteration of the optimization algorithm is longer 
than for the IC method. As a counterpart, the convergence rate of the 
method is faster.

IMU-aided homography estimation

Cameras and IMUs are complementary sensors. In particular, the 
camera frame rate is relatively low (around 30Hz) and, in addition, 
vision data processing can take a significant amount of time, espe-
cially on small UAVs with limited computation power. By contrast, 
IMUs provide data at a high frequency and this information can be 
processed quickly. Since IMUs are always present on UAVs for con-
trol purposes, it is thus natural to make use of them to improve the 
homography estimation process. In this section we present nonlinear 
observers recently proposed in [16] to fuse a vision-based homog-
raphy estimate with IMU data. This fusion process is carried out on 
the Special Linear Lie Group SL(3) associated with the homography 
representation (5), i.e., det (H) = 1. This allows the Lie group invari-
ance properties to be made use of in the observer design. We focus 
on two specific observers.

The first observer considered is based on the general form of the 
kinematics on SL(3):
H X H= −                       (21)
where H SL∈ (3) and X sl∈ (3). The observer is given by

( )( )
( )

1 3

2 3

ˆ ˆ ˆ( )

ˆ ( )

H
H Ad X k H I H H

X k H I H

= − − −
 − − = 
  

  





              
                  (22)

where Ĥ SL∈ (3), X sl∈ (3) and 1ˆH HH −= . It is shown in [16] that 
this observer ensures almost global asymptotic stability of 3(I , 0) for 
the estimation error 1ˆ ˆ( ; ) ( ; )H X HH X X−= −   (i.e., asymptotic con-
vergence of the estimates to the original variables) provided that X 
is constant (see [16, Th. 3.2] for details). Although this condition is 

seldom satisfied in practice, this observer provides a simple solution 
to the problem of filtering homography measurements. Finally, note 
that this observer uses homography measurements only.

A second observer, which explicitly takes into account the kinemat-
ics of the camera motion, is proposed in [16]. With the notation of 
Section 3, recall that the kinematics of the camera frame is given by

  ( )R RS

p Rv

ω = =



                (23)

With this notation, the group velocity X in (21) can be shown to be 
given by

  
3

3

( )
3

( ) ( )

T Tvn vn
X S I

d d

S M

ω
ω η

= + −
= + 

              

with 
*

Tvn
Y

d
=                  (24)

The following observer of H and Y is proposed in [16] :

( )( )
( )

3
1 3

3
2 3

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ( ) ( )

H
H Ad S Y k H I H H

Y YS k H I H

ω η
ω η

 = − + − − = − −


  

  

 


              (25)

where Ĥ SL∈ (3); 3 3Ŷ ×∈  and 1ˆH HH −= .

Conditions under which the estimates ˆ ˆ( , )H Y almost globally con-
verge to ( , )H Y  are given in [16, Cor. 5.5]. These conditions are es-
sentially reduced to the following: i) ω  is persistently exciting, and ii) υ is constant. The hypothesis of persistent excitation on the angular 
velocity is used to demonstrate the convergence of Ŷ  to Y . In the 
case of lack of persistent excitation, Ŷ converges only to 3Y+a(t)I  
where a(t)∈ , but the convergence of Ĥ  to H still holds. The hy-
pothesis of υ  constant is a strong assumption. Asymptotic stability 
of the observer for υ constant, however, guarantees that the observer 
can provide accurate estimates when υ  is slowly time varying with 
respect to the filter dynamics. This will be illustrated later in the paper 
and verified experimentally.

Architecture and data synchronization

Implementation of the above observers from IMU and camera data 
is done via a classical prediction/ correction estimation scheme. The 
quality of this implementation requires careful handling of data ac-
quisition and communication. Synchronization and/or time-stamping 
of the two sensor data are instrumental in obtaining high-quality es-
timates. If the two sensors are synchronized, time-stamping may be 
ignored provided that the communication delay is short enough and 
that no data loss occurs. Discrete-time implementation of the observ-
ers can then be done with a fixed sampling rate. If the sensors are not 
synchronized, it is necessary to timestamp the data as close to the 
sensor output as possible and deal with possibly variable sampling 
rates.

Figure 2 gives a possible architecture of the interactions between es-
timator and sensors (Vision and IMU). Homography prediction ob-
tained from IMU data is used to initialize the vision algorithm. Once 
a new image has been processed, the vision estimate obtained, con-
sidered as a measurement, is used to correct the filter’s homography 
estimate. Due to the significant duration of the vision processing with 
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respect to the IMU sampling rate, this usually requires the prediction 
process to be reapplied via IMU data from the moment of the image 
acquisition. This leads us to maintain two states of the same esti-
mator (see figure 2) : the real-time estimator, obtained from the last 
homography measurement and IMU data, and a post-processed es-
timator that is able to correct a posteriori the homography estimates 
from the time of the last vision data acquisition to the time when this 
data was processed.

Experimental setup

We make use of a sensor consisting of an xSens MTiG IMU working 
at a frequency of 200 Hz and an AVT Stingray 125B camera that pro-
vides 40 images with a resolution of 800 x 600 pixels per second. The 
camera and the IMU are synchronized. The camera uses wide-angle 
lenses (focal 1.28 mm). The target is placed over a surface parallel 
to the ground and is printed out on a 376 x 282 mm sheet of paper to 
serve as a reference for the visual system. The reference image has 
a resolution of 320 x 240 pixels. Thus, the distance *d  can be deter-
mined as 0.527 m. The processed video sequence presented in the 
accompanying video is 1321 frames long and presents high velocity 
motion (rotations of up to 5 rad/s, translations, scaling change) and 
occlusions. In particular, a complete occlusion of the pattern occurs 
slightly after t = 10 (s).

Figure 2  - Visuo-Inertial method scheme and sensor measurement 
processing timeline

Four images of the sequence are presented in figure 3. A “ground 
truth” of the correct homography for each frame of the sequence has 
been computed using a global estimation of the homography by SIFT, 
followed by the ESM algorithm. If the pattern is lost, we reset the 
algorithm with the ground-truth homography. The sequence is used 
at different sampling rates to obtain more challenging sequences and 
evaluate the performance of the proposed filters.

For both filters (22) and (25), the estimation gains have been chosen 
as 1k  = 25  and 2k  = 250 . Following the notation of the description 
available at http://esm.gforge.inria.fr/ESM.html, the ESM algorithm is 
used with the following parameter values : prec = 2, iter = 50.

Tracking quality

In this section we measure the quantitative performance of the dif-
ferent estimators. This performance is reflected by the number of 
frames for which the homography is correctly estimated. We use the 
correlation score computed by the visual method to discriminate be-
tween well and badly estimated frames. A first tracking quality indica-
tor is the percentage of well-estimated frames. This indicator will be 
labeled as “%track”. Another related criterion concerns the number 
of time-sequences for which the estimation is successful. For this, 
we define a track as a continuous time-sequence during which the 
pattern is correctly tracked. We provide the number of tracks in the 
sequence (label “nb track”) and also the mean and maximum track 
length. Table 1 presents the results obtained for the full sequence at 
various sampling rates (40 Hz, 20 Hz and 10 Hz).

The ESMonly estimator works well at 40 Hz since 95% of the se-
quence is correctly tracked, but performance rapidly decreases as 
the distance between images increases (72% at 20 Hz and only 35% 
at 10 Hz). It must be noted that the ESM estimator parameters are 
tuned for speed and not for performance, with real-time applications 
in mind.

Figure 3 - Four images of the sequence at 20 Hz : pattern position at previ-
ous frame (green), vision estimate (blue) and prediction of the filterIMU (red)

The filternoIMU estimator outperforms the ESMOnly filter on the se-
quence at 40 Hz. Tracks are on average twice as long and many pat-
tern losses are avoided (11 tracks versus 19 for ESMonly). At 20 Hz, 
the performance is even better, but the difference between these two 
solutions becomes smaller. At 10 Hz, the filter degrades performance.

The filterIMU tracks almost all of the sequence at both 40 Hz and 
20 Hz. There is just one tracking failure, which occurs around time 
t = 10 s due to the occlusion of the visual target. The improvement 
provided by the IMU is clearly shown. At 10 Hz, the performance sig-
nificantly deteriorates, but this filter still outperforms the other ones.
Let us finally remark that these performances are obtained despite the 
fact that the assumption of constant velocity in the body frame (upon 
which the filter stability was established) is violated.

Visuo-inertial method

Visual method
Estimator

Prost -processing

Estimator

Real-time

Image

IMU
Prediction

Udapte

State
Udapte

Homography

Estimation

Image

Visual method

1kt +
1

ˆ
kHt +

t

t

IMU

Ĥ Prost-processed

Ĥ Real-time
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Frame 
rate

Method % track nb track
Track length

mean max

40 Hz
1321 img

ESMonly
FilternoIMU
FilterIMU

94.31
97.74
98.78

19
11
2

65.36
114.27
646.5

463
607
915

20 Hz
660 img

ESMonly
FilternoIMU
FilterIMU

72.38
80.5

97.42

59
52
2

8.0
10.17
321.5

89
94

456

10 Hz
330 img

ESMonly
FilternoIMU
FilterIMU

38.79
32.36
58.66

46
58
59

2.78
1.72
3.27

27
4

27

Table 1 - Good track rate for various frame-rates and methods : percentage 
of well estimated frames, number of tracks, mean and maximum track 
length on the sequence

Computational aspects

Implementing vision algorithms on small UAVs is still a challenge 
today. Computational optimization is often necessary, in order to 
achieve real-time implementation (e.g., vision processing at about 10 
- 20 Hz). In this section, we discuss some possible approaches to 
speed up the vision processing for the homography estimation prob-
lem considered here.

Computational optimization

Two types of optimization can be considered. The first one concerns 
the optimal use of the computing power. It consists, for example, in 
computation parallelization (SIMD instructions, GPU, multiproces-
sor/core), fix-point computation, or cache optimization. This type of 
optimization does not affect the vision algorithm accuracy. Another 
type of optimization concerns the vision algorithm itself and the pos-
sibilities of lowering its computational cost. This may affect the ac-
curacy of the vision algorithm output. These two types of optimization 
have been utilized here: SIMD (Single Instruction Multiple Data) for 
computing power optimization and pixel selection for vision algorithm 
optimization.

SIMD instructions allow the data to be processed by packets. In SSE 
(x86 processor) and NEON (arm processor), it is possible to pro-
cess four items of floating point data with one instruction. Thus, using 
this instruction with careful data alignment can theoretically improve 
performance by a factor of four. This theoretical figure is limited by 
load/store operation and memory (cache) transfer issues. This opti-
mization is only done on computation intensive parts of the program, 
such as intensity gradient computation, image warping, or Jacobian 
estimation.

One approach to speed up dense vision algorithms is to use only the 
pixels that provide effective information for the minimization process. 
Indeed, the lower the number of pixels, the lower the computation 
cost. There are many ways to select good pixels for the pixel intensity 
minimization between two images ([8]). One approach consists in 
using only pixels with a strong gradient, since intensity errors provide 

Machine ESM IC

Without SIMD With SIMD Without SIMD With SIMD

Pixel
Selection

No PC 60.0 (94) 20.0 (94) 73.0 (81) 29.5 (81)

Yes PC 27.0 (86) 15.0 (86) 7.5 (72) 4.4 (72)

No Odroid 347 (94) 202 (94) 409 (81) 314 (81)

Yes Odroid 165 (85) 140 (86) 53 (72) 45 (73)

Table 2 - Visual method performance : time (in ms) and accuracy (in %) for the different combination of optimization and platform

Method ESM IC

Minimization objective
*

2
*min ( ) ( ( ))

q

T q I w qρρ  − ∑
Step minimization objective ( )

*

2
* *

( )min ( ) ( ( )
q

T q I w qρρ
ρ δδ +−∑

*

* * 2min ( ( ( )) ( ( )))
q

T w q I w qρρ
δ ρδ −∑

Effective computation ( ) 1
* *( ( ) ( ( )))T TJ J J T q I w qρ ρδ −= −

Jocobian J ( )1

2

w
T I

ρ
∆ ∆ ρ

∂+ ∂
0

w
T∆ ρ
∂
∂

Use current image gradient ( )I∆ Yes No

Use template gradient ( )T∆ Yes Yes

Table 3 - Visual method summary
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position/orientation information contrary to image parts with no in-
tensity gradient. In the experimental results reported below, we used 
the best 2500 pixels.

Evaluation

In this section, we report experimental results obtained with both the 
ESM and IC methods. For each method, we used the same stop cri-
teria for the optimization: the maximal number of steps per scale is
30 and the stop error is 1e-3. The number of scales in the pyramid 
is four.

Table 2 provides the mean frame time (in ms) and mean performance 
(percentage of correctly estimated homographies) of the various 
combinations of optimization and methods on the sequence at 40 Hz 
(see experimental setup). The computation is performed on a desktop 
PC (Intel(R) Core(TM) i7-2600K CPU @ 3.40 GHz) and the same 
result is provided for an embedded platform (Odroid U2) based on an 
Exynos4412 Prime 1.7 Ghz ARM Cortex-A9 Quad processor.

With SIMD, the performance gain is from 3.0 x to 1.7 x on x 86 and 
1.7 x to 1.17 x on the arm. With pixel selection the gain is better, from 
1.3 to 2.1 for ESM and from 1.3 x to 9 x for IC.

Finally, the ratio between the fastest and the slowest is 13.6 x with a 
loss of 22% of correctly tracked frames.

Conclusion

We have presented recent stabilization and estimation algorithms 
for the stabilization of VTOL UAVs based on mono-camera and IMU 
measurements. The main objective is to rely on a minimal sensor 
suite, while requiring the least amount of information on the envi-
ronment possible. Estimation algorithms have already been evaluated 
experimentally. The next step is to conduct full experiments on a UAV 
with both stabilization and estimation algorithms running on-board. 
This work is currently in progress. Possible extensions of the current 
work are multiple, such as for example the use of accelerometers to 
improve the homography estimation and/or the stabilization, or the 
extension of this work to possibly non-planar scenes 
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Acronyms

VTOL (Vertical Take-Off and Landing)
UAV  (Unmanned Aerial Vehicle)
GPS  (Global Positioning System)
3D  (three-dimensionnal)
IMU  (Inertial Measurement Unit)
NED  (North-East-Down)
KLT  (Kanade-Lucas-Tomasi (feature tracker))

DLT  (Direct Linear Transformation)
RANSAC (RANdom SAmple Consensus)
ESM  (Efficient Second-order Minimization)
IC  (Inverse Compositional)
SIFT  (Scale-Invariant Feature Transform)
SIMD  (Single Instruction Multiple Data)
GPU  (Graphics Processing Unit)
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