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A functional limit theorem for the partial maxima of a long memory stable sequence produces a limiting process that can be described as a β-power time change in the classical Fréchet extremal process, for β in a subinterval of the unit interval. Any such power time change in the extremal process for 0 < β < 1 produces a process with stationary max-increments. This deceptively simple time change hides the much more delicate structure of the resulting process as a self-affine random sup measure. We uncover this structure and show that in a certain range of the parameters this random measure arises as a limit of the partial maxima of the same long memory stable sequence, but in a different space. These results open a way to construct a whole new class of self-similar Fréchet processes with stationary max-increments.

Introduction

Let (X 1 , X 2 , . . .) be a stationary sequence of random variables, and let M n = max 1≤k≤n X k , n = 1, 2, . . . be the sequence of its partial maxima. The limiting distributional behaviour of the latter sequence is one of the major topics of interest in extreme value theory. We are particularly interested in the possible limits in a functional limit theorem of the form (1.1) M ⌊nt⌋b n a n , t ≥ 0 ⇒ (Y (t), t ≥ 0) , for properly chosen sequences (a n ), (b n ). The weak convergence in (1.1) is typically in the space D[0, ∞) with one of the usual Skorohod topologies on that space; see [START_REF] Skorohod | Limit theorems for stochastic processes[END_REF], [START_REF] Billingsley | Convergence of Probability Measures[END_REF] and [START_REF] Whitt | Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Applications to Queues[END_REF]. If the original sequence (X 1 , X 2 , . . .) is an i.i.d. sequence, then the only possible limit in (1.1) is the extremal process, the extreme value analog of the Lévy process; see [START_REF] Lamperti | On extreme order statistics[END_REF].

The modern extreme value theory is interested in the case when the sequence (X 1 , X 2 , . . .) is stationary, but not necessarily independent. The potential clustering of the extremes in this case leads one to expect that new limits may arise in (1.1). Such new limits, however, have not been widely observed, and the dependence in the model has been typically found to be reflected in the limit via a linear time change (a slowdown), often connected to the extremal index, introduced, originally, in [START_REF] Leadbetter | Extremes and local dependence of stationary sequences[END_REF]. See e.g. [START_REF] Leadbetter | Extremes and Related Properties of Random Sequences and Processes[END_REF], as well as the studies in [START_REF] Rootzén | Extremes of moving averages of stable processes[END_REF], [START_REF] Davis | Limit theory for moving averages of random variables with regularly varying tail probabilities[END_REF], [START_REF] Mikosch | Limit thery for the sample autocorrelations and extremes of a GARCH(1,1) process[END_REF] and [START_REF] Fasen | Extremes of regularly varying Lévy driven mixed moving average processes[END_REF]. One possible explanation for this is the known phenomenon that the operation of taking partial maxima tends to mitigate the effect of dependence in the original stationary sequence, and the dependent models considered above were, in a certain sense, not sufficiently strongly dependent.

Starting with a long range dependent sequence may make a difference, as was demonstrated by [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF]. In that paper the original sequence was (the absolute value of) a stationary symmetric α-stable process, 0 < α < 2, and the length of memory was quantified by a single parameter 0 < β < 1. In the case 1/2 < β < 1 it was shown that the limiting process in

(1.1) can be represented in the form

(1.2) Z α,β (t) = Z α (t β ), t ≥ 0 ,
where Z α (t), t ≥ 0 is the extremal (α-)Fréchet process.

The nonlinear power time change in (1.2) is both surprising and misleadingly simple. It is surprising because it is not immediately clear that such a change is compatible with a certain translation invariance the limiting process must have due to the stationarity of the original sequence.

It is misleadingly simple because it hides a much more delicate structure. The main goal of this paper is to reveal that structure. We start by explaining exactly what we are looking for.

The stochastic processes in the left hand side of (1.1) can be easily interpreted as random sup measures evaluated on a particular family of sets (those of the form [0, t] for t ≥ 0). If one does not restrict himself to that specific family of sets and, instead, looks at all Borel subsets of [0, ∞), then it is possible to ask whether there is weak convergence in the appropriately defined space of random sup measures, and what might be the limiting random sup measures. See the discussion around (2.4) and the convergence result in Theorem 5.1. This is the approach taken in O' Brien et al. (1990). Completing the work published in [START_REF] Vervaat | Stationary self-similar extremal processes and random semicontinuous functions[END_REF] and [START_REF] Vervaat | Random upper semicontinuous functions and extremal processes[END_REF], the authors provide a detailed description of the possible limits. They show that the limiting random sup measure must be self-affine (they refer to random sup measures as extremal processes, but we reserve this name for a different object).

As we will see in the sequel, if (1.1) can be stated in terms of weak convergence of a sequence of random sup measures, this would imply the finite-dimensional convergence part in the functional formulation of (1.1). Therefore, any limiting process Y that can be obtained as a limit in this case must be equal in distribution to the restriction of a random sup measure to the sets of the form [0, t], t ≥ 0. The convergence to the process Z α,β established in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] was not established in the sense of weak convergence of a sequence of random sup measures, and one of our tasks in this paper is fill this gap and prove the above convergence. Recall, however, that the convergence in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] was established only for 0 < α < 2 (by necessity, since α-stable processes do not exist outside of this range) and 1/2 < β < 1. The nonlinear time change in (1.2) is, however, well defined for all α > 0 and 0 < β < 1, and leads to a process Z α,β that is self-similar and has stationary max-increments. Our second task in this paper is to prove that the process Z α,β can, for all values of its parameters, be extended to a random sup measure and elucidate the structure of the resulting random sup measure. The key result is Corollary 4.4

below. The structure we obtain is of interest on its own right. It is constructed based on a certain random closed set possessing appropriate scaling and translation invariance properties. Extending this approach to other random sets and other ways of handling these random sets, may potentially lead to a construction of new classes of self-similar processes with stationary max-increments and of random sup measures. This is important both theoretically, and may be useful in applications.

This paper is organized as follows. In the next section we will define precisely the notions discussed somewhat informally above and introduce the required technical background. Section 3 contains a discussion of the dynamics of the stationary sequence considered in this paper. It is based on a null recurrent Markov chain. In Section 4 we will prove that the process Z α,β can be extended to a random sup measure and construct explicitly such an extension. In Section 5 we show that the convergence result of [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] holds, in a special case of a

Markovian ergodic system, also in the space SM of sup measures. Finally, in Section 6 we present one of the possible extensions of the present work.

Background

An extremal process Y (t), t ≥ 0 can be viewed as an analog of a Lévy motion when the operation of summation is replaced by the operation of taking the maximum. The one-dimensional marginal distribution of a Lévy process at time 1 can be an arbitrary infinitely divisible distribution on R; any one-dimensional distribution is infinitely divisible with respect to the operation of taking the maximum. Hence the one-dimensional marginal distribution of an extremal process at time 1 can be any distribution on [0, ∞); the restriction to the nonnegative half-line being necessitated by the fact that, by convention, an extremal process, analogously to a Lévy process, starts at the origin at time zero. If F is the c.d.f. of a probability distribution on [0, ∞), then the finite-dimensional distributions of an extremal process with distribution F at time 1 can be defined by

Y (t 1 ), Y (t 2 ), . . . , Y (t n ) d = X (1) t 1 , max X (1) t 1 , X (2) 
t 2 -t 1 , . . . (2.1) max X (1) t 1 , X (2) t 2 -t 1 , . . . , X (n) tn-t n-1
for all n ≥ 1 and 0 ≤ t 1 < t 2 < . . . < t n . The different random variables in the right hand side of (2.1) are independent, with X (k) t having the c.d.f. F t for t > 0. In this paper we deal with the α-Fréchet extremal process, for which (2.2)

F (x) = F α,σ (x) = exp -σ α x -α , x > 0 ,
the Fréchet law with the tail index α > 0 and the scale σ > 0. A stochastic process (Y (t), t ∈ T )

(on an arbitrary parameter space T ) is called a Fréchet process if for all n ≥ 1, a 1 , . . . , a n > 0 and t 1 , . . . , t n ∈ T , the weighted maximum max 1≤j≤n a j Y (t j ) has a Fréchet law as in (2.2). Obviously, the Fréchet extremal process is an example of a Fréchet process, but there are many Fréchet processes on [0, ∞) different from the Fréchet extremal process; the process Z α,β in (1.2) is one such process.

A stochastic process Y (t), t ≥ 0 is called self-similar with exponent H of self-similarity if for any c > 0

Y (ct), t ≥ 0 d = c H Y (t), t ≥ 0
in the sense of equality of finite-dimensional distributions. A stochastic process (Y (t), t ≥ 0) is said to have stationary max-increments if for every r ≥ 0, there exists, perhaps on an enlarged probability space, a stochastic process Y (r) (t), t ≥ 0 such that

(2.3) Y (r) (t), t ≥ 0 d = (Y (t), t ≥ 0) , (Y (t + r), t ≥ 0) d = Y (r) ∨ Y (r) (t), t ≥ 0 ,
with a ∨ b = max(a, b) ; see [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF]. This notion is an analog of the usual notion of a process with stationary increments (see e.g. [START_REF] Embrechts | Selfsimilar Processes[END_REF] and [START_REF] Samorodnitsky | :3 of Foundations and Trends in Stochastic Systems[END_REF]) suitable for the situation where the operation of summation is replaced by the operation of taking the maximum. It follows from Theorem 3.2 in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] that only self-similar processes with stationary max-increments can be obtained as limits in the functional convergence scheme (1.1) with b n ≡ 0.

We switch next to a short overview of random sup measures. The reader is referred to [START_REF] O'brien | Stationary self-similar extremal processes[END_REF] for full details. Let G be the collection of open subsets of [0, ∞). We call a map

m : G → [0, ∞] a sup measure (on [0, ∞)) if m(∅) = 0 and m r∈R G r = sup r∈R m(G r )
for an arbitrary collection G r , r ∈ R of open sets. In general, a sup measure can take values in any closed subinterval of [-∞, ∞], not necessarily in [0, ∞], but we will consider, for simplicity, only the nonnegative case in the sequel, and restrict ourselves to the maxima of nonnegative random variables as well.

The sup derivative of a sup measure is a function [0, ∞) → [0, ∞] defined by On the space SM of sup measures one can introduce a topology, called the sup vague topology, that makes SM a compact metric space. In this topology a sequence (m n ) of sup measures converges to

dˇm(t) = inf G∋t m(G), t ≥ 0 .
a sup measure m if both lim sup n→∞ m n (K) ≤ m(K) for every compact K and lim inf n→∞ m n (G) ≥ m(G) for every open G.
A random sup measure is a measurable map from a probability space into the space SM equipped with the Borel σ-field generated by the sup vague topology.

The convergence scheme (1.1) has a natural version in terms of random sup measures. Starting with a stationary sequence X = (X 1 , X 2 , . . .) of nonnegative random variables, one can define for

any set B ⊆ [0, ∞) (2.4) M n (X)(B) = max k: k/n∈B X k .
Then for any a n > 0 , M n (X)/a n is a random sup measure, and O'Brien et al. ( 1990) characterize all possible limiting random sup measures in a statement of the form

(2.5) M n (X) a n ⇒ M
for some sequence (a n ). The convergence is weak convergence in the space SM equipped with the sup vague topology. Theorem 6.1 ibid. shows that any limiting random sup measure M must be both stationary and self-similar, i.e.

(2.6)

M (a + •) d = M and a -H M (a•) d = M for all a > 0
for some exponent H of self-similarity. In fact, the results of [START_REF] O'brien | Stationary self-similar extremal processes[END_REF] allow for a shift (b n ) as in (1.1), in which case the power scaling a -H in (2.6) is, generally, replaced by the scaling of the form δ -log a , where δ is an affine transformation. In the context of the present paper this additional generality does not play a role.

Starting with a stationary and self-similar random sup measure M , one defines a stochastic process by

(2.7)

Y (t) = M (0, t] , t ≥ 0 .
Then the self-similarity property of the random sup measure M immediately implies the selfsimilarity property of the stochastic process Y , with the same exponent of self-similarity. Furthermore, the stationarity of the random sup measure M implies that the stochastic process Y has stationary max-increments; indeed, for r ≥ 0 one can simply take

Y (r) (t) = M (r, r + t] , t ≥ 0 .
Whether or not any self-similar process with stationary max-increments can be constructed in this way or, in other words, whether or not such a process can be extended, perhaps on an extended probability space, to a stationary and self-similar random sup measure remains, to the best of our

knowledge, an open question. We do show that the process Z α,β in (1.2) has such an extension.

The Markov chain dynamics

The stationary sequence we will consider in Section 5 is a symmetric α-stable (SαS) sequence, whose dynamics is driven by a certain Markov chain. Specifically, consider an irreducible null recurrent Markov chain (Y n , n ≥ 0) defined on an infinite countable state space S with transition matrix (p ij ). Fix an arbitrary state i 0 ∈ S, and let (π i , i ∈ S) be the unique invariant measure of the Markov chain with π i 0 = 1. Note that (π i ) is necessarily an infinite measure.

Define a σ-finite and infinite measure on (E, E) = (S N , B(S N )) by

µ(B) = i∈S π i P i (B), B ∈ E ,
where P i (•) denotes the probability law of (Y n ) starting in state i ∈ S. Clearly, the usual left shift

operator on S N T (x 0 , x 1 , . . . ) = (x 1 , x 2 , . . . )
preserves the measure µ. Since the Markov chain is irreducible and null recurrent, T is conservative and ergodic (see [START_REF] Harris | Ergodic theory of Markov chains admitting an infinite invariant measure[END_REF]).

Consider the set A = {x ∈ S N : x 0 = i 0 } with the fixed state i 0 ∈ S chosen above. Let

ϕ A (x) = min{n ≥ 1 : T n x ∈ A} , x ∈ S N
be the first entrance time, and assume that

n k=1 P i 0 (ϕ A ≥ k) ∈ RV β ,
the set of regularly varying sequences with exponent β of regular variation, for β ∈ (0, 1). By the Tauberian theorem for power series (see e.g. [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]), this is equivalent to assuming that (3.1)

P i 0 (ϕ A ≥ k) ∈ RV β-1 .
There are many natural examples of Markov chains with this property. Probably, the simplest example is obtained by taking S = {0, 1, 2, . . .} and letting the transition probabilities satisfy p i,i-1 = 1 for i ≥ 1, with p 0,j , j = 0, 1, 2, . . . being an arbitrary probability distribution satisfying

∞ j=k p 0,j ∈ RV β-1 , k → ∞ . Let f ∈ L ∞ (µ) be a nonnegative function on S N supported by A. Define for 0 < α < 2 (3.2) b n = E max 1≤k≤n f • T k (x) α µ(dx) 1/α , n = 1, 2, . . . .
The sequence (b n ) plays an important part in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF], and it will play an important role in this paper as well. If we define the wandering rate sequence by

w n = µ x ∈ S N : x j = i 0 for some j = 0, 1, . . . , n n = 1, 2, . . . , then, clearly, w n ∼ µ(ϕ A ≤ n) as n → ∞. We know by Theorem 4.1 ibid. that (3.3) lim n→∞ b α n w n = f ∞ .
Furthermore, it follows from Lemma 3.3 in [START_REF] Resnick | Growth rates of sample covariances of stationary symmetric α-stable processes associated with null recurrent Markov chains[END_REF] that

w n ∼ n k=1 P i 0 (ϕ A ≥ k) ∈ RV β .
The above setup allows us to define a stationary symmetric α-stable (SαS) sequence by (3.4)

X n = E f • T n (x) dM (x), n = 1, 2, . . . ,
where M is a SαS random measure on (E, E) with control measure µ. See [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for details on α-stable random measures and integrals with respect to these measures. This is a long range dependent sequence, and the parameter β of the Markov chain determined just how long the memory is; see Owada andSamorodnitsky (2015, 2014). The last section of the present paper discusses an extremal limit theorem for this sequence.

Random sup measure structure

In this section we prove a limit theorem, and the limit in this theorem is a stationary and selfsimilar random sup measure whose restrictions to the intervals of the type (0, t], t ≥ 0, as in (2.7) is distributionally equal to the process Z α,β in (1.2). This result is also a major step towards the extension of the main result in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] to the setup in (2.5) of weak convergence in the space of sup measures of normalized partial maxima of the absolute values of a SαS sequence. The extension itself is formally proved in the next section. We emphasize that the discussion in this section applies to all 0 < β < 1.

We introduce first some additional setup. Let L 1-β be the standard (1β)-stable subordinator, i.e. an increasing Lévy process such that

Ee -θL 1-β (t) = e -tθ 1-β for θ ≥ 0 and t ≥ 0. Let (4.1) R β = L 1-β (t), t ≥ 0 ⊂ [0, ∞)
be (the closure of) the range of the subordinator. It has several very attractive properties as a random closed set, described in the following proposition. We equip the space J of closed subsets of [0, ∞) with the usual Fell topology (see [START_REF] Molchanov | Theory of Random Sets[END_REF]), and the Borel σ-field generated by that topology. We will use some basic facts about measurability of J-valued maps and equality of measures on J; these are stated in the proof of the proposition below. (c) Let µ β be a measure on (0, ∞) given by µ β (dx) = βx β-1 dx, x > 0, and let

κ β = (µ β × P ) • H -1 , where H : (0, ∞) × Ω → J is defined by H(x, ω) = R β (ω) + x.
Then for any r > 0 the measure κ β is invariant under the shift map G r : J → J given by 

G r (F ) = F ∩ [r, ∞) -r .
P R β ∩ G = ∅ = P aR β ∩ G = ∅ .
However, by the self-similarity,

P R β ∩ G = ∅ = P L 1-β (r) ∈ G for some rational r = P aL 1-β (a -(1-β) r) ∈ G for some rational r = P aR β ∩ G = ∅ ,
as required.

For part (c) it is enough to check that for any finite collection of disjoint intervals, 0 [START_REF] Molchanov | Theory of Random Sets[END_REF]. A simple inductive argument together with the strong Markov property of the subordinator shows that it is enough to prove (4.2) for the case of a single interval. That is, one has to check that for any 0 < b < c < ∞,

< b 1 < c 1 < b 2 < c 2 < . . . < b n < c n < ∞ (4.2) κ β F ∈ J : F ∩ ∪ n j=1 (b j , c j ) = ∅ = κ β F ∈ J : F ∩ ∪ n j=1 (b j + r, c j + r) = ∅ ; see Example 1.29 in
(4.3) κ β F ∈ J : F ∩ (b, c) = ∅ = κ β F ∈ J : F ∩ (b + r, c + r) = ∅ .
For h > 0 let

δ h = inf y : y ∈ R β ∩ [h, ∞) -h
be the overshoot of the level h by the subordinator L 1-β . Then (4.3) can be restated in the form

b 0 βx β-1 P (δ b-x < c -b) dx + (c β -b β ) = b+r 0 βx β-1 P (δ b+r-x < c -b) dx + (c + r) β -(b + r) β .
The overshoot δ h is known to have a density with respect to the Lebesgue measure, given by (4.4)

f h (y) = sin π(1 -β) π h 1-β (y + h) -1 y β-1 , y > 0 ;
see e.g. Exercise 5.6 in [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF], and checking the required identity is a matter of somewhat tedious but still elementary calculations.

In the notation of Section 3, we define for n = 1, 2, . . . and x ∈ E = S N a sup measure on [0, ∞) by (4.5)

m n (B; x) = max k: k/n∈B f • T k (x), B ⊆ [0, ∞) .
The main result of this section will be stated in terms of weak convergence of a sequence of finite-dimensional random vectors. Its significance will go well beyond that weak convergence, as we will describe in the sequel. Let 0

≤ t 1 < t ′ 1 ≤ . . . ≤ t m < t ′ m < ∞ be fixed points, m ≥ 1. For n = 1, 2, . . . let Y (n) = (Y (n) 1 , . . . , Y (n) m ) be an m-dimensional Fréchet random vector satisfying (4.6) P Y (n) 1 ≤ λ 1 , . . . , Y (n) m ≤ λ m = exp - E m i=1 λ -α i m n (t i , t ′ i ); x α µ(dx) ,
for λ j > 0, j = 1, . . . , m; see e.g. [START_REF] Stoev | Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes[END_REF] for details on Fréchet random vectors and processes.

Theorem 4.2. Let 0 < β < 1. The sequence of random vectors (b -1 n Y (n) ) converges weakly in R m to a Fréchet random vector Y * = (Y * 1 , . . . , Y * m ) such that (4.7) P Y * 1 ≤ λ 1 , . . . , Y * m ≤ λ m = exp -E ′ ∞ 0 m i=1 λ -α i 1 R β + x ∩ (t i , t ′ i ) = ∅ βx β-1 dx for λ j > 0, j = 1, . . . , m
, where R β is the range (4.1) of a (1β)-stable subordinator defined on some probability space Ω ′ , F ′ , P ′ .

We postpone proving the theorem and discuss first its significance. Define

(4.8) W α,β (A) = e (0,∞)×Ω ′ 1 R β (ω ′ ) + x ∩ A = ∅ M (dx, dω ′ ), A ⊆ [0, ∞), Borel.
The integral in (4.8) is the extremal integral with respect to a Fréchet random sup measure M on (0, ∞) × Ω ′ , where Ω ′ , F ′ , P ′ is some probability space. We refer the reader to [START_REF] Stoev | Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes[END_REF] for details. The control measure of M is m = µ β × P ′ , where µ β is defined in part (c) of Proposition 4.1. It is evident that W α,β (A) < ∞ a.s. for any bounded Borel set A. We claim that a version of W α,β is a random sup measure on [0, ∞). The necessity of taking an appropriate version stems from the usual phenomenon, that the extremal integral is defined separately for each set A, with a corresponding A-dependent exceptional set.

Let N α,β be a Poisson random measure on (0, ∞) 2 with the mean measure αx -(α+1) dx βy β-1 dy, x, y > 0 .

Let (U i , V i ) be a measurable enumeration of the points of N α,β . Let, further, R

(i) β be i.i.d.
copies of the range of the (1β)-stable subordinator, independent of the Poisson random measure N α,β . Then a version of W α,β is given by

(4.9) Ŵα,β (A) = ∞ i=1 U i 1 R (i) β + V i ∩ A = ∅ , A ⊆ [0, ∞), Borel;
see [START_REF] Stoev | Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes[END_REF]. It is interesting to note that, since the origin belongs, with probability 1, to the range of the subordinator, evaluating (4.9) on sets of the form A = [0, t], 0 ≤ t ≤ 1, reduces this representation to the more standard representation of the process Z α,β in (1.2). See (3.8) in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF].

It is clear that Ŵα,β is a random sup measure on [0, ∞). In fact, (4.10)

dˇŴ α,β (t) = U i if t ∈ R (i) β + V i , some i = 1, 2, . . . 0 otherwise.
Even though it is Ŵα,β that takes values in the space of sup measures, we will slightly abuse the terminology and refer to W α,β itself a random sup measure.

Proposition 4.3. For any β ∈ (0, 1), the random sup measure W α,β is stationary and self-similar with exponent H = β/α in the sense of (2.6).

Proof. Both statements can be read off (4.10). Indeed, the pairs U i , (R For the self-similarity, note that replacing t by t/a, a > 0 in (4.10) is equivalent to replacing R β and V i by aV i . By part (b) of Proposition 4.1, the former action does not change the law of a random closed set, while it is elementary to check that the law of the Poisson random measure on (0, ∞) 2 with points (U i , aV i ) is the same as the law of the Poisson random measure on the same space with the points (a β/α U i , V i ) . Hence the self-similarity of W α,β with H = β/α.

(i) β + V i ) form
Returning now to the result in Theorem 4.2, note that it can be restated in the form

b -1 n (Y (n) 1 , . . . , Y (n) m ) ⇒ W α,β ((t 1 , t ′ 1 )), . . . , W α,β ((t m , t ′ m )) as n → ∞.
In particular, if we choose t i = t ′ i-1 , i = 1, . . . , m, with t 1 = 0 and an arbitrary t m+1 , and define

Z (n) i = max j=1,...,i Y (n) j , i = 1, . . . , m , then (b -1 n Z (n) i , i = 1, . . . , m) ⇒ max j=1,...,i W α,β ((t j , t j+1 )), i = 1, . . . , m (4.11) = W α,β (0, t i+1 )), i = 1, . . . , m .
However, as a part of the argument in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] it was established that

(b -1 n Z (n) i , i = 1, . . . , m) ⇒ Z α,β (t i+1 ), i = 1, . . . , m ,
with Z α,β as in (1.2); this is (4.7) ibid.. This leads to the immediate conclusion, stated in the following corollary.

Corollary 4.4. For any β ∈ (0, 1), the time-changed extremal Fréchet process satisfies

Z α,β (t), t ≥ 0 d = W α,β ((0, t]), t ≥ 0
and, hence, is a restriction of the stationary and self-similar random sup measure W α,β (to the intervals (0, t], t ≥ 0).

We continue with a preliminary result, needed for the proof of Theorem 4.2, which may also be of independent interest. 

M (Y ;θ) (G) = 1 S n ∈ θG for some n = 0, 1, . . ., G ⊆ [0, ∞), open. Then M (Y ;θ) ⇒ θ→∞ M (γ)
in the space SM equipped with the sup vague topology, where

M (γ) (G) = 1 R 1-γ ∩ G = ∅ .
Proof. It is enough to prove that for any finite collection of intervals (a i , b i ), i = 1, . . . , m with 0 < a i < b i < ∞, i = 1, . . . , m we have (4.12) P for each i = 1, . . . , m, S j /θ ∈ (a i , b i ) for some j = 1, 2, . . .

→ P for each i = 1, . . . , m, R 1-γ ∩ (a i , b i ) = ∅ as θ → ∞. If we let a(θ) = P (Y 1 > θ)
-1 , a regularly varying function with exponent γ, then the probability in the left hand side of (4.12) can be rewritten as (4.13) P for each i = 1, . . . , m, S ⌊ta(θ)⌋ /θ ∈ (a i , b i ) for some t ≥ 0 .

By the invariance principle, (4.14) S ⌊ta(θ)⌋ /θ, t ≥ 0 ⇒ θ→∞ L γ (t), t ≥ 0 weakly in the J 1 -topology in the space D[0, ∞), where L γ is the standard γ-stable subordinator; see e.g. [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. If we denote by D ↑ + [0, ∞) the set of all nonnegative nondecreasing functions in D[0, ∞) vanishing at t = 0, then D ↑ + [0, ∞) is, clearly, a closed set in the J 1 -topology, so the weak convergence in (4.14) also takes places in the J 1 -topology relativized to

D ↑ + [0, ∞). For a function ϕ ∈ D ↑ + [0, ∞), let R ϕ = ϕ(t), t ≥ 0
be the closure of its range. Notice that

R ϕ = t>0 ϕ(t-), ϕ(t) c ,
which makes it evident that for any 0 < a < b < ∞ the set

ϕ ∈ D ↑ + [0, ∞) : R ϕ ∩ [a, b] = ∅
is open in the J 1 -topology, hence measurable. Therefore, the set

ϕ ∈ D ↑ + [0, ∞) : R ϕ ∩ (a, b) = ∅ = ∞ k=1 ϕ ∈ D ↑ + [0, ∞) : R ϕ ∩ [a + 1/k, b -1/k] = ∅
is measurable as well and, hence, so is the set

ϕ ∈ D ↑ + [0, ∞) : for each i = 1, . . . , m, R ϕ ∩ (a i , b i ) = ∅ .
Therefore, the desired conclusion (4.12) will follow from (4.13) and the invariance principle (4.14)

once we check that the measurable function on D ↑ + [0, ∞) defined by

J(ϕ) = 1 R ϕ ∩ (a i , b i ) = ∅ for each i = 1, . . . , m is a.s. continuous with respect to the law of L γ on D ↑ + [0, ∞).
To see this, let

B 1 = ϕ ∈ D ↑ + [0, ∞) : for each i = 1, . . . , m there is t i such that ϕ(t i ) ∈ (a i , b i )
and

B 2 = ϕ ∈ D ↑ + [0, ∞) : for some i = 1, . . . , m there is t i such that (a i , b i ) ⊆ ϕ(t i -), ϕ(t i ) .
Both sets are open in the J 1 -topology on D ↑ + [0, ∞), and J(ϕ) = 1 on B 1 and J(ϕ) = 0 on B 2 . Now the a.s. continuity of the function J follows from the fact that

P (L γ ∈ B 1 ∪ B 2 ) = 1 ,
since a stable subordinator does not hit fixed points.

Remark 4.6. It follows immediately from Proposition 4.5 that we also have weak convergence in the space of closed subsets of [0, ∞). Specifically, the random closed set θ -1 S n , n = 0, 1, . . .} converges weakly, as θ → ∞, to the random closed set R 1-γ .

Proof of Theorem 4.2. We will prove that

(4.15) E min i=1,...,m m n (t i , t ′ i ); x α µ(dx) E max 1≤k≤n f • T n (x) α µ(dx) → ∞ 0 βx β-1 P ′ R β + x ∩ (t i , t ′ i ) = ∅ for each i = 1, . . . , m dx
as n → ∞. The reason this will suffice for the proof of the theorem is that, by the inclusionexclusion formula, the expression in the exponent in the right hand side of (4.7) can be written as a finite linear combination of terms of the form of the right hand side of (4.15) (with different collections of intervals in each term). More specifically, we can write, for a fixed x > 0,

E ′ m i=1 λ -α i 1 R β + x ∩ (t i , t ′ i ) = ∅ = ∞ 0 P ′ R β + x ∩ (t i , t ′ i ) = ∅ for some i such that λ -α i > u du
and apply the inclusion-exclusion formula to the probability of the union inside the integral. A similar relation exists between the left hand side of (4.15) and the distribution of (b -1 n Y (n) ). An additional simplification that we may and will introduce is that of assuming that f is constant on A. Indeed, it follows immediately from the ergodicity that both the numerator and the denominator in the left hand side of (4.15) does not change asymptotically if we replace f by f ∞ 1 A ; see (4.2) in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF]. With this simplification, (4.15) reduces to the following statement: as n → ∞,

(4.16) 1 w n µ m i=1 x k = i 0 for some k with t i < k/n < t ′ i → ∞ 0 βx β-1 P ′ R β + x ∩ (t i , t ′ i ) = ∅ for each i = 1, . . . , m dx .
Note that we have used (3.3) in translating (4.15) into the form (4.16).

We introduce the notation

A 0 = A, A k = A c ∩ {ϕ A = k} for k ≥ 1. Let (Y 1 , Y 2 , .
. .) be a sequence of i.i.d. N-valued random variables defined on some probability space Ω ′ , F ′ , P ′ such x k = i 0 for some k with

that P ′ (Y 1 = k) = P i 0 (ϕ A = k), k = 1,
t i < k/n < t ′ i = l: l/n≤t 1 µ(A l )P ′ for each i = 1, . . . , m, S j ∈ (nt i -l, nt ′ i -l)
for some j = 0, 1, . . .

+ l: t 1 <l/n<t ′ 1 µ(A l )P ′ for each i = 2, . . . , m, S j ∈ (nt i -l, nt ′ i -l)
for some j = 0, 1, . . .

:= D (1) n + D (2) n .
It is enough to prove that (4.17) lim

n→∞ 1 w n D (1) n = t 1 0 βx β-1 P ′ R β + x ∩ (t i , t ′ i ) = ∅ for each i = 1, . . . , m dx and (4.18) lim n→∞ 1 w n D (2) n = t ′ 1 t 1 βx β-1 P ′ R β + x ∩ (t i , t ′ i ) = ∅ for each i = 1, . . . , m dx .
We will prove (4.17), and (4.18) can be proved in the same way. Let K be a large positive integer, and ε > 0 a small number. For each integer 1 ≤ d ≤ (1ǫ)K, and each l : t 1 (d -1)/K ≤ l/n < t 1 d/K, we have

P ′ for each i = 1, . . . , m, S j ∈ (nt i -l, nt ′ i -l)
for some j = 0, 1, . . .

≤ P ′ for each i = 1, . . . , m, S j ∈ (nt i -nt 1 d/K, nt ′ i -nt 1 (d -1)/K
) for some j = 0, 1, . . .

→ P ′ for each i = 1, . . . , m, R β ∩ t i -t 1 d/K, t ′ i -t 1 (d -1)/K = ∅ as n → ∞, by Proposition 4.5. Therefore, lim sup n→∞ 1 w n D (1) n ≤ ⌊(1-ǫ)K⌋ d=1 lim sup n→∞ l: t 1 (d-1)/K≤l/n<t 1 d/K µ(A l ) w n P ′ for each i = 1, . . . , m, R β ∩ t i -t 1 d/K, t ′ i -t 1 (d -1)/K = ∅ + lim sup n→∞ l: t 1 ⌊(1-ǫ)K⌋/K≤l/n≤t 1 µ(A l ) w n .
Since for any a > 0,

na l=1 µ(A l ) ∼ w ⌊na⌋ as n → ∞,
and the wandering sequence (w n ) is regularly varying with exponent β, we conclude that lim sup

n→∞ l: t 1 (d-1)/K≤l/n<t 1 d/K µ(A l ) w n = lim sup n→∞ w ⌊nt 1 d/K⌋ -w ⌊nt 1 (d-1)/K⌋ w n = t β 1 K β d β -(d -1) β for 1 ≤ d ≤ (1 -ǫ)K and, similarly, lim sup n→∞ l: t 1 ⌊(1-ǫ)K⌋/K≤l/n≤t 1 µ(A l ) w n = t β 1 1 - ⌊(1 -ε)K⌋ K β . Therefore, lim sup n→∞ 1 w n D (1) n ≤ (1-ε)t 1 0 βx β-1 P ′ R β ∩ t i -a K (x), t ′ i -b K (x) = ∅ for each i = 1, . . . , m dx +t β 1 1 - ⌊(1 -ε)K⌋ K β , where a K (x) = t 1 d/K and b K (x) = t 1 (d -1)/K if t 1 (d -1)/K ≤ x < t 1 d/K for 1 ≤ d ≤ (1 -ǫ)K. Since 1 R β ∩ (a k , b k ) = ∅ → 1 R β ∩ (a, b) = ∅ a.s. if a k → a and b k → b, we can let K → ∞ and then ε → 0 to conclude that (4.19) lim sup n→∞ 1 w n D (1) n ≤ t 1 0 βx β-1 P ′ R β ∩ t i -x, t ′ i -x = ∅ for each i = 1, . . . , m dx .
We can obtain a lower bound matching (4.19) in a similar way. Indeed, for each integer 1 ≤ d ≤

(1ǫ)K, and each l : t 1 (d -1)/K ≤ l/n < t 1 d/K as above, we have P ′ for each i = 1, . . . , m, S j ∈ (nt il, nt ′ il) for some j = 0, 1, . . .

≥ P ′ for each i = 1, . . . , m, S j ∈ (nt i -nt 1 (d -1)/K, nt ′ i -nt 1 d/K) for some j = 0, 1, . . . → P ′ for each i = 1, . . . , m, R β ∩ t i -t 1 (d -1)/K, t ′ i -t 1 d/K = ∅ as n → ∞,
by Proposition 4.5, and we proceed as before. This gives a lower bound complementing (4.19), so we have proved that

lim n→∞ 1 w n D (1) n = t 1 0 βx β-1 P ′ R β ∩ t i -x, t ′ i -x = ∅ for each i = 1, . . . , m dx .
This is, of course, (4.17).

Convergence in the space SM

Let X = (X 1 , X 2 , . . .) be the stationary SαS process defined by (3.4). The following theorem is a partial extension of Theorem 4.1 in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF] to weak convergence in the space of sup measures. In its statement we use the usual tail constant of an α-stable random variable given by

C α = ∞ 0 x -α sin x dx -1 = (1 -α)/ Γ(2 -α) cos(πα/2) if α = 1, 2/π if α = 1;
see [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF].

Theorem 5.1. For n = 1, 2, . . . define a random sup measure M n (|X|) on [0, ∞) by (2.4), with

|X| = (|X 1 |, |X 2 |, . . .). Let (b n ) be given by (3.2). If 1/2 < β < 1, then (5.1) 1 b n M n (|X|) ⇒ C 1/α α W α,β as n → ∞
in the sup vague topology in the space SM.

Proof. The weak convergence in the space SM will be established if we show that for any 0

≤ t 1 < t ′ 1 ≤ . . . ≤ t m < t ′ m < ∞, b -1 n M n (|X|) (t 1 , t ′ 1 ) , . . . , b -1 n M n (|X|) (t m , t ′ m ) ⇒ W α,β (t 1 , t ′ 1 ) , . . . , W α,β (t m , t ′ m )
as n → ∞ (see 12.7 in [START_REF] Vervaat | Random upper semicontinuous functions and extremal processes[END_REF]). For simplicity of notation we will assume that t ′ m ≤ 1. Our goal is, then, to show that

(5.2) 1 b n max nt 1 <k<nt ′ 1 |X k |, . . . , 1 b n max ntm<k<nt ′ m |X k | ⇒ W α,β (t 1 , t ′ 1 ) , . . . , W α,β (t m , t ′ m )
as n → ∞.

We proceed in the manner similar to that adopted in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF], and use a series representation of the SαS sequence (X 1 , X 2 , . . .). Specifically, we have

(5.3) (X k , k = 1, . . . , n) d =   b n C 1/α α ∞ j=1 ǫ j Γ -1/α j f • T k (U (n) j ) max 1≤i≤n f • T i (U (n) j ) , k = 1, . . . , n   .
In the right hand side, (ǫ j ) are i.i.d. Rademacher random variables (symmetric random variables with values ±1), (Γ j ) are the arrival times of a unit rate Poisson process on (0, ∞), and (U (n) j ) are i.i.d. E-valued random variables with the common law η n defined by (5.4)

dη n dµ (x) = 1 b α n max 1≤k≤n f • T k (x) α , x ∈ E .
The three sequences (ǫ j ), (Γ j ), and (U (n) j ) are independent. We refer the reader to Section 3.10 of [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for details on series representations of α-stable processes. We will prove that for any λ i > 0, i = 1, . . . , m and 0 < δ < 1,

P b -1 n max nt i <k<nt ′ i |X k | > λ i , i = 1, . . . , m ≤ P   C 1/α α ∞ j=1 Γ -1/α j max nt i <k<nt ′ i f • T k (U (n) j ) max 1≤k≤n f • T k (U (n) j ) > λ i (1 -δ), i = 1, . . . , m   + o(1) (5.5) and that P b -1 n max nt i <k<nt ′ i |X k | > λ i , i = 1, . . . , m ≥ P   C 1/α α ∞ j=1 Γ -1/α j max nt i <k<nt ′ i f • T k (U (n) j ) max 1≤k≤n f • T k (U (n) j ) > λ i (1 + δ), i = 1, . . . , m   + o(1) (5.6)
as n → ∞. Before doing so, we will make a few simple observations. Let

V (n) i = ∞ j=1 Γ -1/α j max nt i <k<nt ′ i f • T k (U (n) j ) max 1≤k≤n f • T k (U (n) j ) , i = 1, . . . , m .
Since the points in R m given by

  Γ -1/α j max nt i <k<nt ′ i f • T k (U (n) j ) max 1≤k≤n f • T k (U (n) j ) , i = 1, . . . , m   , j = 1, 2, . . .
form a Poisson random measure on R m , say, N P , for λ i > 0, i = 1, . . . , m we can write

P V (n) 1 ≤ λ 1 , . . . , V (n) m ≤ λ m = P N P D(λ 1 , . . . , λ m ) = 0 = exp -E N P D(λ 1 , . . . , λ m ) ,
where D(λ 1 , . . . , λ m ) = (z 1 , . . . , z m ) : z i > λ i for some i = 1, . . . , m .

Evaluating the expectation, we conclude that, in the notation of (4.5),

P V (n) 1 ≤ λ 1 , . . . , V (n) m ≤ λ m = exp -b -α n E m i=1 λ -α i m n (t i , t ′ i ); x α µ(dx) .
By (4.6) this shows that, in the notation of Theorem 4.2,

V (n) 1 , . . . , V (n) m d = b -1 n Y (n) 1 , . . . , b -1 n Y (n) m .
Now Theorem 4.2 along with the discussion following the statement of that theorem, and the continuity of the Fréchet distribution show that (5.2) and, hence, the claim of the present theorem, will follow once we prove (5.5) and (5.6). The two statements can be proved in a very similar way, so we only prove (5.5).

Once again, we proceed as in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF]. Choose constants K ∈ N and 0 < ǫ < 1 such that both

K + 1 > 4 α and δ -ǫK > 0 . Then P b -1 n max nt i <k<nt ′ i |X k | > λ i , i = 1, . . . , m ≤ P   C 1/α α ∞ j=1 Γ -1/α j max nt i <k<nt ′ i f • T k (U (n) j ) max 1≤k≤n f • T k (U (n) j ) > λ i (1 -δ), i = 1, . . . , m   + ϕ n C -1/α α ǫ min 1≤i≤m λ i + m i=1 ψ n (λ i , t i , t ′ i ) ,
where

ϕ n (η) = P n k=1 Γ -1/α j f • T k (U (n) j ) max 1≤i≤n f • T i (U (n) j )
> η for at least 2 different j = 1, 2, . . . , η > 0, and for t < t ′ ,

ψ n (λ, t, t ′ ) = P C 1/α α max nt<k<nt ′ ∞ j=1 ǫ j Γ -1/α j f • T k (U (n) j ) max 1≤i≤n f • T i (U (n) j ) > λ , C 1/α α ∞ j=1 Γ -1/α j max nt<k<nt ′ f • T k (U (n) j ) max 1≤k≤n f • T k (U (n) j )
≤ λ(1δ) , and for each l = 1, . . . , n,

C 1/α α Γ -1/α j f • T l (U (n) j ) max 1≤i≤n f • T i (U (n) j )
> ǫλ for at most one j = 1, 2, . . . . Due to the assumption 1/2 < β < 1, it follows that [START_REF] Samorodnitsky | Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes[END_REF]. Therefore, the proof will be completed once we check that for all λ > 0 and 0 ≤ t < t ′ ≤ 1,

ϕ n C -1/α α ǫ min 1≤i≤m λ i → 0 as n → ∞; see
ψ n (λ, t, t ′ ) → 0
This, however, can be checked in exactly the same way as (4.10) in [START_REF] Owada | Maxima of long memory stationary symmetric αstable processes, and self-similar processes with stationary max-increments[END_REF]. The self-similarity property of the process and the stationarity of its max-increments can be traced to the scaling and shift invariance properties of the range of the subordinator described in Proposition 4.1. These properties can be used to construct other self-similar processes with stationary max-increments, in the manner similar to the way scaling and shift invariance properties of the real line have been used to construct integral representations of Gaussian and stable self-similar processes with stationary increments such as Fractional Brownian and stable motions; see e.g. [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] and [START_REF] Embrechts | Selfsimilar Processes[END_REF].

In this section we describe one family of self-similar processes with stationary max-increments, which can be viewed as an extension of the process in (6.1). Other processes can be constructed;

we postpone a more general discussion to a later work.

For 0 ≤ s < t we define a function j s,t : J → [0, ∞] by j s,t (F ) = sup ba : s < a < t, a, b ∈ F, (a, b) ∩ F = ∅ , the "length of the longest empty space within F beginning between s and t". The function j s,t is continuous, hence measurable, on J. Set also j s,s (F ) ≡ 0. Let (6.2) 0 < γ < (1β)/α , and define (6.3) Z α,β,γ (t) = e (0,∞)×Ω ′ 1 R β (ω ′ ) + x ∩ (0, t] = ∅ j 0,t R β (ω ′ ) + x γ M (dx, dω ′ ), t ≥ 0 .

It follows from (4.4) that

E ′ ∞ 0 1 R β + x ∩ (0, t] = ∅ j 0,t R β + x γα βx β-1 dx < ∞
for γ satisfying (6.2). Therefore, (6.3) presents a well defined Fréchet process. We claim that this process is H-self-similar with

H = γ + β/α
and has stationary max-increments.

To check stationarity of max-increments, let r > 0 and define

Z (r) α,β,γ (t) = e (0,∞)×Ω ′ 1 R β (ω ′ ) + x ∩ (r, r + t] = ∅ j r,r+t R β (ω ′ ) + x γ M (dx, dω ′ ), t ≥ 0 .
Trivially, for every t ≥ 0 we have Z α,β,γ (r) ∨ Z as required.
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  It is automatically an upper semicontinous function. Conversely, for any functionf : [0, ∞) → [0, ∞] the sup integral of f is a sup measure defined by iˇf (G) = sup t∈G f (t), G ∈ G ,with i ˇf (∅) = 0 by convention. It is always true that m = i ˇd ˇm for any sup measure m, but the statement f = d ˇi ˇf is true only for upper semicontinous functions f . A sup measure has a canonical extension to all subsets of [0, ∞) via m(B) = sup t∈B dˇm(t) .

  It is always sufficient to consider "hitting" open sets, and among the latter it is sufficient to consider finite unions of open intervals. Proposition 4.1. Let β ∈ (0, 1) and R β be the range (4.1) of the standard (1β)-stable subordinator L 1-β defined on some probability space Ω, F, P . Then (a) R β is a random closed subset of [0, ∞). (b) For any a > 0, aR β d = R β as random closed sets.

Proof.

  For part (a) we need to check that for any open G ⊆ [0, ∞), the set ω ∈ Ω : R β (ω) ∩ G = ∅ is in F. By the right continuity of sample paths of the subordinator, the same set can be written in the form ω ∈ Ω : L 1-β (r) ∈ G for some rational r . Now the measurability is obvious. Part (b) is a consequence of the self-similarity of the subordinator. Indeed, it is enough to check that for any open G ⊆ [0, ∞)

  a Poisson random measure on (0, ∞)× J and, by part (c) of Proposition 4.1, the mean measure of this Poisson random measure is unaffected by the transformations G r applied to the random set dimension.This implies the law of the random upper semicontinous function dˇŴ α,β is shift invariant, hence stationarity of W α,β .

Proposition 4. 5 .

 5 Let 0 < γ < 1, and (Y 1 , Y 2 , . . .) be i.i.d. nonnegative random variables such that P (Y 1 > y) is regularly varying with exponent -γ. Let S 0 = 0 and S n = Y 1 + . . . + Y n for n = 1, 2, . . . be the corresponding partial sums. For θ > 0 define a random sup measure on [0, ∞) by

  2, . . .. By our assumption, the probability tail P (Y 1 > y) is regularly varying with exponent -(1β). With S 0 = 0 and S j = Y 1 + . . . + Y j for j = 1, 2, . . . we have µ m i=1

6.1

  Other processes based on the range of the subordinatorThe distributional representation of the time-changed extremal process (1.2) in Corollary 4R β (ω ′ ) + x ∩ (0, t] = ∅ M (dx, dω ′ ), t ≥ 0 .

1

  ,γ (t) = Z α,β,γ (r + t) with probability 1, and it follows from part (c) of Proposition 4.1 thatZ (r) α,β,γ (t), t ≥ 0 d = Z α,β,γ (t), t ≥ 0 .Hence stationarity of max-increments. Finally, we check the property of self-similarity. Let t j > 0, λ j > 0, j = 1, . . . , m. Then P Z α,β,γ (t j ) ≤ λ j , j = 1, . . . , m = exp -I(t 1 , . . . , t m ; λ 1 , . . . , λ m ) , whereI(t 1 , . . . , t m ; λ 1 , . . . , λ m ) β (ω ′ ) + x ∩ (0, t k ] = ∅ j 0,t k R β (ω ′ ) + x γα dx .Therefore, the property of self-similarity will follow once we check that for any c > 0,I(ct 1 , . . . , ct m ; λ 1 , . . . , λ m ) = I(t 1 , . . . , t m ; c -H λ 1 , . . . , c -H λ m ) .This is, however immediate, since by using first part (b) of Proposition 4.1 and, next, changing the variable of integration to y = x/c we haveI(ct 1 , . . . , ct m ; λ 1 , . . . , λ m ) cR β (ω ′ ) + x ∩ (0, ct k ] = ∅ sup ba : 0 < a < ct j , a, b ∈ cR β (ω ′ ) + x, (a, b) ∩ cR β (ω ′ ) + x = ∅ αγ dx = c β+αγ E ′ ∞ 0 βx β-1 max k=1,...,m λ -α k 1 R β (ω ′ ) + x ∩ (0, t k ] = ∅ sup ba : 0 < a < t k , a, b ∈ R β (ω ′ ) + x,(a, b) ∩ R β (ω ′ ) + x = ∅ αγ dx = I(t 1 , . . . , t m ; c -H λ 1 , . . . , c -H λ m ) .
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