
HAL Id: hal-01102263
https://hal.science/hal-01102263

Submitted on 12 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Biological Sequence Comparison on Hybrid
Platforms

Safia Kedad-Sidhoum, Fernando Mendonca, Florence Monna, Grégory
Mounié, Denis Trystram

To cite this version:
Safia Kedad-Sidhoum, Fernando Mendonca, Florence Monna, Grégory Mounié, Denis Trystram. Fast
Biological Sequence Comparison on Hybrid Platforms. 43rd International Conference on Parallel
Processing, ICPP 2014, Sep 2014, Minneapolis, United States. pp.501 - 509, �10.1109/ICPP.2014.59�.
�hal-01102263�

https://hal.science/hal-01102263
https://hal.archives-ouvertes.fr

Fast Biological Sequence comparison on Hybrid Platforms

Safia Kedad-Sidhoum1, Fernando Mendonca2, Florence Monna1,2, Gregory Mounié2, Denis Trystram2, 3

1Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France,
2University of Grenoble-Alpes,

3Institut Universitaire de France

safia.kedad-sidhoum@lip6.fr, fernando.machado-mendonca@inria.fr,
{florence.monna,gregory.mounie,denis.trystram}@imag.fr

Abstract—Today, many high performance computing plat-
forms use hybrid architectures combining multi-core processors
and hardware accelerators like GPUs (Graphic Processing
Units). This paper presents a new method for scheduling tasks
for biological sequence comparison applications with CPUs and
GPUs. This strategy is called SWDUAL and is based on a dual
approximation scheme for determining which tasks are most
suitable to be executed on the GPUs. The objective is to obtain
fast execution time and minimize the idle time on each PE
(Processing Element). It is implemented using a master-slave
model. Results obtained when sequences were compared to
five public genomic databases show that this method allows to
reduce the execution time on hybrid platforms when compared
to other public available implementations.

Keywords-bioinformatics; sequence comparison; hybrid plat-
forms; task scheduling; dual approximation

I. INTRODUCTION

We are interested in this paper in an efficient imple-
mentation of the classical problem of comparing biological
sequences in a parallel multi-core platform with hardware
accelerators.

Once a new biological sequence is discovered, its func-
tional/structural characteristics must be established. In order
to do that, the newly discovered sequence is compared
against other sequences, looking for similarities. Sequence
comparison is, therefore, one of the most crucial opera-
tions in Bioinformatics [1]. The most accurate algorithm
to execute pairwise comparisons is the one proposed by
Smith-Waterman (denoted by SW in short) [2], which is
based on dynamic programming and run in quadratic time
and space complexity in the length of the sequences. This
can easily lead to very large execution times and huge
memory requirements, since the size of biological databases
is growing exponentially.

Parallel implementations can be used to compute results
faster, reducing significantly the time needed to obtain
results with the SW algorithm. Indeed, many proposals do
exist to execute SW on clusters [3], [4] and computational
grids [5]. More recently, hardware accelerators such as
GPUs (Graphics Processing Units) and FPGAs (Field Pro-
grammable Gate Arrays) have been explored to speed-up the
SW algorithm [6]–[8]. In addition to that, SIMD extensions

of general-purpose processors, such as the Intel SSE, have
also been explored to accelerate SW implementations [9].

Since accelerators are usually connected to a multi-core
host, the idea is to use both the accelerators and the CPUs
to execute SW in parallel. There are some approaches in
the literature that explore such idea [10]–[12]. In order to
distribute work among the hybrid processing elements, these
approaches usually assume that multi-cores and accelerators
have the same processing power [11], distribute work pro-
portionally, considering the theoretical computing power of
each processing element [12] or assign one work unit at the
time [10] in a Self-Scheduling strategy.

In this paper, we propose SWDUAL, a new implemen-
tation of the Smith-Waterman algorithm on hybrid plat-
forms composed of multiple processors and multiple GPUs.
SWDUAL is based on a fast dual approximation scheduling
algorithm that selects the most suitable tasks to be run on the
GPUs while keeping a good balance of the computational
load over the whole platform [13].

Given a set of query sequences and a biological database,
our strategy uses a one round master-slave approach to
assign tasks to the processing elements according to the dual
approximation scheduling algorithm being used.

The remainder of this paper is organized as follows.
Section II presents the sequence comparison problem and
recalls the principle of the classical SW algorithm. The
strategy and its implementation for executing SW on hybrid
platforms are proposed respectively in Sections III and IV.
Section V presents the experimental results. Finally, Sec-
tion VI concludes the paper.

II. BIOLOGICAL SEQUENCE COMPARISON

A. Presentation of the core problem

A biological sequence is a structure composed of nucleic
acids or proteins. It is represented by an ordered list of
residues, which are nucleotide bases (for DNA or RNA
sequences) or amino acids (for protein sequences).

DNA and RNA sequences are treated as strings com-
posed of elements of the alphabets

∑
= {A, T,G,C} and∑

= {A,U,G,C}, respectively. Protein sequences are also

treated as strings which elements belong to an alphabet with,
normally, 20 amino acids.

Since two biological sequences are rarely identical, the
sequence comparison problem corresponds to approximate
pattern matching. To compare two sequences, a good align-
ment between each other should be determined. This corre-
sponds to place one sequence above the other making clear
the correspondence between similar characters [1]. In an
alignment, some gaps (space characters) can be inserted in
arbitrary locations such that the sequences end up with the
same size.

Given an alignment between sequences s and t, a score is
associated to it as follows. For each two bases in the same
column:

• a punctuation ma is associated if both characters are
identical (match);

• a penalty mi, if the characters are different (mismatch);
• a penalty g, if one of the characters is a gap.

The score is obtained by the addition of all these values.
The maximal score is called the similarity between the
sequences. Figure 1 presents one possible global alignment
between two DNA sequences and its associated score. In
this example, ma = +1, mi = −1 and g = −2.

A C T T G T C C G
A − T T G T C A G
+1 −2 +1 +1 +1 +1 +1 −1 +1︸ ︷︷ ︸

score = 4

Figure 1. Example of an alignment and score

B. Smith-Waterman (SW) Algorithm

The SW algorithm [2] is an exact method based on
dynamic programming to obtain the optimal pairwise local
alignment in quadratic time and space in the length of the
sequences.

The first phase of the SW algorithm starts by two input
sequences s and t, with |s| = m and |t| = n, where |s| is
the size of sequence s. The similarity matrix is denoted by
Hm+1,n+1, where Hi,j contains the score between prefixes
s[1..i] and t[1..j]. At the beginning, the first row and column
are filled with zeros. The remaining elements of H are
obtained from Equation (1). In addition, each cell Hi,j

contains the information about the cell that was used to
produce the value. Si,j is a similarity score for the elements
i and j

Hi,j = max


Hi−1,j−1 + Si,j

Hi,j−1+g
Hi−1,j+g
0

(1)

The SW algorithm assigns a constant cost to gaps. Nev-
ertheless, in nature, gaps tend to appear in groups. For this
reason, a higher penalty is usually associated to the first gap
and a lower penalty is given to the following ones (this
is known as the affine-gap model). Gotoh [14] proposed
an algorithm based on SW that implements the affine-gap
model by calculating three Dynamic Programming (DP)
matrices, namely H , E and F , where E and F keep track
of gaps in each of the sequences. The gap penalties for
starting and extending a gap are Gs and Ge, respectively.
This recursion formulas are given by Equations (2), (3) and
(4).

Hi,j = max


Hi−1,j−1 + Si,j

Ei,j

Fi,j

0

(2)

Ei,j = −Ge +max

{
Ei,j−1

Hi,j−1 −Gs
(3)

Fi,j = −Ge +max

{
Fi−1,j

Hi−1,j −Gs
(4)

C. Parallelizing SW

There are several ways to parallelize the SW algorithm.
The following paragraph describes the comparison of a set
q of m query sequences (q1, q2, ..., qm) to a set d of n
database sequences (d1, d2, ..., dn). It is assumed that the
size of the database is much larger than the set of query
sequences (m� n).

In the fine-grained approach, the comparison of one query
sequence and one database sequence (i.e. a single SW execu-
tion) is done by several Processing Elements (PEs). The data
dependency in the matrix calculation is non-uniform, and the
calculations that can be done in parallel evolve as waves on
diagonals (according to Equation (2)). Figure 2 illustrates
a fine-grained column-based block partition technique with
four PEs. At the beginning, only p0 is computing. When
p0 finishes calculating the values of a block of matrix cells,
it sends its border column to p1, that can start calculating
and so on. Note that this solution may be unbalanced: very
close to the end of the matrix computation, only p3 is
calculating. When the PEs finish to compare q1 to d1, they
start comparing q1 to d2 and so on, until the comparison of
qm to dn is completed.

In the very coarse-grained approach, each PE compares
a different query sequence to the whole database (see
Figure 3). For instance, p0 compares q1 to d, p1 compares
q2 to d and so on. Note that, in this case, the number of SW
comparisons executed by each processing element is big and
this approach can easily lead to load imbalance.

The SWDUAL implementation uses both the fine-grained
and very coarse-grained approach. Each one of the workers

D
K

YA
...

Y
IK

DEKLKKWVT...YAA

p0 p1 p2 p3

Figure 2. Fine-grained strategy to parallelize the SW algorithm

D
K

YA
...

Y
IK

DEKLKKWVT...YAA

D
K

YA
...

Y
IK

GFLTTIK...CDCDTV

D
K

YA
...

Y
IK

IKLIKPIKST...AKLQ

D
K

YA
...

Y
IK

EFEFKLM...AKERRS

p0

E
X

FK
...

ST
E

F

DEKLKKWVT...YAA

E
X

FK
...

ST
E

F

GFLTTIK...CDCDTV

E
X

FK
...

ST
E

F

IKLIKPIKST...AKLQ

E
X

FK
...

ST
E

F

EFEFKLM...AKERRS

p1

Figure 3. Very coarse-grained strategy to parallelize the SW algorithm

uses fine-grained approach to accelerate the execution of the
SW algorithm for a particular comparison. That approach is
dependent on the type of worker and the techniques being
used to optimize each comparison. At the same time, other
workers are comparing other sequences of the query set to
the database in the same way. In our case the master uses
the scheduling algorithm to allocate tasks to the workers.
Each task is equivalent to the comparison of one task of the
query set to the whole database.

In the following section, we describe the scheduling
algorithm used by the master to allocate the tasks to the
workers.

III. SCHEDULING ALGORITHM WITH DUAL
APPROXIMATION

In the implementation targeted in this paper, the tasks
are pairwise comparisons of two sequences. The problem
is to determine an allocation of the tasks to the GPUs that
minimizes the global completion time (called makespan).

The principle of the proposed scheduling algorithm is to
use the dual approximation technique introduced in [15]
and which is recalled as follows. A g-dual approximation
algorithm for any minimization problem takes a real number
λ (called the guess) as an input and either delivers a schedule
whose makespan is at most gλ or answers correctly that there
exists no schedule of length at most λ.

We target g = 2. Let λ be the current real number input
for the dual approximation. In the following, we assert that
there exists a schedule of length lower than λ. Then, we have
to show how it is possible to build a schedule of length at
most 2λ.

We introduce an allocation function π(j) of a task Tj
which corresponds to the processor where the task is pro-
cessed. The set C (resp. G) is the set of all the CPUs (resp.
GPUs). Therefore, if a task Tj is assigned to a CPU, we
can write π(j) ∈ C. Each task Tj has two processing times,
pj if it is processed on a CPU, pj if it is processed on a
GPU. We define WC as being the computational area of the
CPUs on the Gantt chart representation of a schedule, i.e.
the sum of all the processing times of the tasks allocated to
the CPUs: WC =

∑
j / π(j)∈C

pj .

To take advantage of the dual approximation paradigm, we
have to make explicit the consequences of the assumption
that there exists a schedule of length at most λ. We state
below some basic properties of such a schedule:

• The execution time of each task is at most λ.
• The computational area on the CPUs is at most mλ.
• The computational area on the GPUs is at most kλ.

We are looking for an assignment of the tasks to either a
CPU or a GPU satisfying the following two constraints:

• (C1) The total computational area WC on the CPUs is
at most mλ.

• (C2) The total computational area on the GPUs is lower
than kλ.

We define for each task Tj a binary variable xj such that
xj = 1 if Tj is assigned to a CPU or 0 if Tj is assigned to
a GPU. Determining if an assignment satisfying (C1) and
(C2) exists corresponds to solving a minimization knapsack
problem [16] that can be formulated as follows:

W ∗C = min

n∑
j=1

pjxj (5)

s.t.
n∑
j=1

pj (1− xj) 6 kλ (6)

xj ∈ {0, 1} ∀j = 1, . . . , n (7)

Equation (5) represents the minimal workload on all
the CPUs. Constraint (6) imposes an upper bound on the
computational area of the GPUs which is kλ (cf. (C2)).

The knapsack is solved by a greedy algorithm. Usually
the knapsack is a maximization problem. Here we consider
the opposite minimization version. The tasks are sorted by
decreasing order of the ratio pj

pj
. Thus, the most prioritary

tasks are those with the best relative processing times on
GPUs. Figure 4 depicts the principle of the greedy knapsack.
The knapsack allocates the first tasks to the the GPUs until
the computational area on the GPUs is roughly equal to kλ.

The result of the knapsack leads to a solution with a
computational area on GPUs larger than kλ. All remaining
tasks are scheduled on CPUs. If the value of the computa-
tional area on the CPUs is greater than mλ, then there exists

m

k

λ

Figure 4. Greedy knapsack fills the GPUs with tasks up to getting a
computational area larger than kλ on the GPUs

no solution with a makespan at most λ, and the algorithm
answers “NO” to the dual approximation.

The scheduling on the CPUs after the allocation of the
greedy knapsack is done with a list scheduling algorithm
assigning the tasks on an available processor of the corre-
sponding type in the assignment (cf. Figure 5).

m

k

λ

Figure 5. List scheduling fills the CPUs with remaining tasks. The
computational area is smaller than mλ, otherwise λ is smaller than C∗

max

Proposition 1. If WC is lower than mλ, there exists a
feasible solution with a makespan at most 2λ.

Proof: The makespan on the CPUs, CCPUmax , is bounded
by the following inequality:

CCPUmax 6 max
16j6n

(pjxj) +

n∑
j=1

pjxj

n∑
j=1

xj

(8)

All the tasks assigned to the CPUs have a processing time

lower than λ, therefore max
16j6n

pjxj 6 λ and
n∑
j=1

pjxj 6 mλ

with the hypothesis that WC is lower than mλ. We obtain

CCPUmax 6

1 +
m
n∑
j=1

xj

λ (9)

Moreover, we can assume
n∑
j=1

xj > m, otherwise the

optimal solution is straightforward (one task per CPU), thus

CCPUmax 6 2λ (10)

Let us turn now to the GPU side. Let jlast be the index
of the last task selected by the knapsack. The task jlast
is thus the last task scheduled by the greedy knapsack on
the GPUs. Hence, task jlast has no influence at all on the
scheduling of all the other tasks.

Two cases hold (cf. Equation (11)): either the jlast task
is not the last to be completed or it is. On the first hand,
jlast can be removed from the schedule instance without
changing the makespan. The computational area of all tasks
except jlast is smaller than kλ thus the guarantee is the
same as the one derived for the CPU schedule. On the second
hand, the computational area of all tasks save jlast is also
smaller than kλ thus, when the list algorithm schedules the
jlast task, the least loaded of the k GPUs is loaded less
than λ. Hence the jlast task ends before 2λ.

CGPUmax 6


max

1≤j≤n|j 6=jlast

(
pj(1− xj)

)
+

n∑
j=1

pj(1−xj)−pjlast

k 6 2λ

(
pj(1− xj)

)
+

n∑
j=1

pj(1−xj)−pjlast

k 6 2λ

(11)
Since the makespan of the schedule is the maximum of

the makespans on the CPUs and on the GPUs, we get

Cmax 6 2λ (12)

We have described one step of the dual-approximation
algorithm, with a fixed guess. A binary search will be used
to try different guesses to approach the optimal makespan
as follows.

Binary Search. We first take an initial lower bound Bmin
and an initial upper bound Bmax of our optimal makespan.

We start by solving the problem with λ equal to the average
of these two bounds and then we adjust the bounds:
• If the previous algorithm returns “NO”, then λ becomes

the new lower bound.
• If the algorithm returns a schedule of makespan at most

2λ, then λ becomes the new upper bound.
The number of iterations of this binary search can be
bounded by log (Bmax −Bmin) .

Cost Analysis. The greedy algorithm used to fill the
GPUs only requires a sorting of the tasks, whereas the list
scheduling used for the CPUs is linear. Therefore, the time
complexity of each step of the binary search is O(n log(n)).

The algorithm described above returns a schedule with
a makespan equal to at most twice the optimal makespan.
Some constraints on the number of tasks with processing
times larger than 2

3λ, λ being the current guess, in the algo-
rithm can be added to the original problem. The resolution
of the knapsack problem with these additional constraints
via dynamic programming can reduce the makespan of the
schedule returned by the algorithm to 3

2OPT , where OPT
is the optimal makespan. This method is described in [13],
and has a time complexity in O

(
n2mk2

)
per step of the

binary search. This time complexity is important, but it can
be lowered with special instances where all the considered
tasks are accelerated when assigned to a GPU, which is
the case for the sequence comparison problem addressed
in this paper. In this special case, the time complexity
reduces to O(mn log(n)), which is satisfactory for real
implementations.

IV. DESIGNING THE SWDUAL IMPLEMENTATION

Our implementation is designed using the master-slave
model. The master is responsible for receiving commands
from the user, reading the sequences from disk, generating
a list of tasks and allocating them to the workers (slaves),
receiving and presenting the results back to the user. The
workers first have to register themselves with the master.
Then, acquire the same sequences that master received as
parameters from the user, receive tasks from the master,
execute them and return the results. Both the master and
workers convert the format of the sequences if necessary.
Figure 6 shows the different steps taken during execution
by the master and the workers.

First, the master processes the command line arguments
entered by the user. Then, it loads the sequences, converts the
format if necessary and waits for the workers to connect. The
workers are started either manually or automatically, connect
to the master, load the sequences and also if necessary
convert the format.

Now, the master can use the information gathered from the
workers and the allocation policy or scheduling algorithm to
allocate tasks to the workers, after which the workers start
executing them. That can be done only once at the beginning

of the execution or iteratively until all tasks are executed.
Finally, the workers send the results to the master that merge
and present them to the user.

Sequence database files created using the Fasta [17]
format are in fact text files, with sequences placed one
after the other. For that reason, it is not feasible to read
specific sequences contained in the file, which is important
for implementations like SWDUAL.

To improve this reading process, a simple binary format
was created with a few additional fields. Using this format,
both the master and workers are able to read sequences
in any position inside the file, directly. Additionally, the
memory allocation process is simplified due to the fact that
the all the sequences sizes are known beforehand.

V. EXPERIMENTAL RESULTS

In this section, the experimental results of the method
implementation are presented and compared to the state-of-
the-art.

The method proposed in Section III was implemented in
C++ with SSE extensions and CUDA.

The strategy was implemented in C with SSE extensions
and CUDA, and it integrates CUDASW++ 2.0 [7] and
SWIPE [9] into the code. That code was compiled with
the CUDA SDK 4.2.9 and gcc 4.5.2. The operating system
used was Linux 3.0.0-15 Ubuntu 64 bits. The tests were
conducted with 40 real query sequences of minimum size
100 and maximum size 5,000 amino acids, which were
compared to 5 real genomic databases: Uniprot with 537,505
sequences, Enbembl Dog with 25,160 sequences and Rat
with 32,971 sequences and RefSeq Human with 34,705
sequences and Mouse 29,437 sequences.

The tests were executed in the Idgraf high performance
computer located at Inria Grenoble. It contains 2 Intel
Xeon 2.67GHz processors with 4 cores each, 74GB of
RAM and 8 Nvidia Tesla C2050 GPUs. The machine was
reserved for exclusive use for the duration of the test to
ensure that no other major process was running concurrently.
All the sequences used were available locally to minimize
the influence of the network and file reading time. All
combinations of programs, number of workers, query and
database sequences were executed twenty-five times and
the average total wall-clock execution time was recorded.
Also, processor affinity was used to ensure that each process
stayed in the same processor during the whole execution.

A. Comparison to other implementations

Table I shows the state-of-the-art implementations that
were compared to SWDUAL, as well as their version
number and command line options. For the commands, the
variables were $T for the number of threads, $Q query
sequence and $D database sequence.

The SWDUAL implementation was compared against
SWIPE, STRIPED, SWPS3 and CUDASW++.

Receive
parameters

Acquire
sequences

Convert
format

Allocate tasks

Merge results

Allocation
policies

Register
slaves

Configure

User Register with
master

Acquire
sequences

Convert
format

Execute tasks

Send results

Sequences

Master Slave

Figure 6. SWDUAL master-slave model

Table I
APPLICATIONS INCLUDED IN THE COMPARISON

Application Version Command line

SWIPE 1.0 ./swipe -a $T -i $Q -d $D

STRIPED ./striped -T $T $Q $D

SWPS3 20080605 ./swps3 -j $T $Q $D

CUDASW++ 2.0 ./cudasw -use gpus $T -query $Q -db $D

SWIPE [9] was written mostly in C++ with some parts
hand coded in assembly. It was compiled using the provided
Makefile.

The source code for the Farrar’s STRIPED implemen-
tation of the SW algorithm [18] was compiled using the
provided Makefile. It was written mainly in C with some
parts also coded in assembly or Intel intrinsics.

SWPS3 [19] was downloaded from the author’s website
and was written in C. It was compiled using the provided
Makefile.

CUDASW++ 2.0 [7] was also downloaded from the
author’s website and was written in C++ and CUDA. It was
compiled using the provided Makefile. CUDA 4.1 was used
in the compilation.

The tests were conducted using the UniProt database
(www.uniprot.org) and 40 query sequences taken from it.
Also, were used on the test up to four CPUs and four GPUs.
For that reason the considered applications were executed
with up to four workers, while SWDUAL, that uses both
CPUs and GPUs as workers was executed with workers

between two and eight. In this case, the first four workers
used on the SWDUAL execution were GPUs and the last
four workers were CPUs.

The reason why only four CPUs and four GPUs were
used in this test although eight CPUs and eight GPUs were
available is that each GPU worker actually needs some CPU
time to execute as fast as it can. As a consequence, using
more CPUs and GPUs than that number impacts on the
overall performance of the applications and the speedup is
considerably worst. Thus for the applications that only used
CPUs or GPUs up to four workers were used. The exception
was our case that was executed with four GPUs and four
CPUs for a total of eight workers. In this case, since our
implementation needs at least one CPU and one GPU to
execute, we start with two workers. For three workers, two
are GPUs and one is a CPU. Finally, an execution of four
workers uses three GPUs and one CPU.

The SWDUAL implementation was able to significantly
reduce the execution time of the sequence database searches
using the Smith-Waterman algorithm compared to earlier
proposals that use only one type of processing element.
As can be seen on Figure 7 and Table II, the combination
of CPUs and GPUs leaded to very good results. When
executing with two workers, SWDUAL showed a reduction
of 54.7%, 85% and 98% when compared to the same
execution on SWIPE, STRIPED and SWPS3, respectively.
When executing with four workers, a reduction of 55.3%
was obtained when compared to the execution on SWIPE,
73.5% when compared to STRIPED and 98.6% on SWPS3.

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of workers

SWPS3 (CPU)
STRIPED (CPU)

SWIPE (CPU)
CUDASW++ (GPU)

SWDUAL (Mixed)

Figure 7. Execution times in seconds for the compared implementations

Also, due to the implementation of the dual approximation
scheduling algorithm, the execution on each of the process-
ing elements finished with almost no idle time.

Table II
EXECUTION TIMES FOR THE COMPARED IMPLEMENTATIONS

Application
Number of workers

1 2 3 4

SWPS3 69208.2 36174.09 25206.563 18904.31

STRIPED 7190 3615.38 1369.33 1027.28

SWIPE 2367.24 1199.47 816.61 610.23

CUDASW++ 785.26 445.611 350.09 292.157

SWDUAL 543.28 472.84 271.98

Application
Number of workers

5 6 7 8

SWDUAL 266.69 239.04 183.12 142.98

B. Comparison to 5 genomic databases

In this case, the tests were conducted with 40 real
query sequences of minimum size 100 and maximum size
5,000 amino acids, which were compared to 5 real ge-
nomic databases, as in [7]: Uniprot with 537,505 sequences
(www.uniprot.org), Enbembl (www.ensembl.org) Dog with
25,160 sequences and Rat with 32,971 sequences and
RefSeq (www.ncbi.nlm.nih.gov/RefSeq) Human with 34,705
sequences and Mouse 29,437 sequences as listed in Table III.

Table III
GENOMIC DATABASES USED ON THE TESTS

Database
Number of Smallest Longest

database seqs query seq query seq

Ensembl Dog Proteins 25,160 100 4,996

Ensembl Rat Proteins 32,971 100 4,992

RefSeq Human Proteins 34,705 100 4,981

RefSeq Mouse Proteins 29,437 100 5,000

UniProt 537,505 100 4,998

In order to measure the benefits of using a hybrid plat-
form, the wall-clock execution time and GCUPs (billion cell
updates per second) obtained were measured when compar-
ing 40 query sequences to the five genomic databases.

As can be seen on Table IV, SWDUAL was able to
obtain good speedups while combining CPUs and GPUs,
reducing the execution time repeatedly while adding pro-
cessing elements. For the Uniprot database the execution
time was reduced from 543 seconds (approximately 10
minutes) to 86 seconds when executing on eight CPUs and
eight GPUs. Figure 8 shows the execution times obtained
when comparing the databases.

Table IV
RESULTS RUNNING ON GPUS AND CPUS

Workers
2 4 8

Time (s) Time (s) Time (s)
GCUPS GCUPS GCUPS

Ensembl Dog 78.36 39.63 20.45
18.91 37.39 72.45

Ensembl Rat 75.85 37.97 20.17
22.97 45.89 86.38

RefSeq Mouse 84.40 46.25 23.59
18.99 34.66 67.95

RefSeq Human 95.09 48.01 24.82
20.70 41.00 79.31

Uniprot 543.28 271.98 142.98
35.81 71.53 136.06

 10

 100

 1000

 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of workers

Ensembl Dog
Ensembl Rat

RefSeq Human
RefSeq Mouse

Uniprot

Figure 8. Execution times for the compared databases

C. Comparison of homogeneous and heterogeneous sets

For this test, two additional query sets were created from
the Uniprot database. Each query set have, like in the
previous tests, 40 sequences. In this case, the sequences in
the homogeneous set range in size from 4500 to 5000 and
the ones in the heterogeneous set have sizes between 4 (the
smallest sequence in the database) and 35213 (the largest
sequence in the database).

The idea is to verify that the allocation strategy and
the application as a whole is equally able to work with

sequences, and therefore tasks, that are similar in terms of
size as well as tasks with very different sizes.

Table V shows the execution times and the GCUPs
obtained when comparing these two sets to the UniProt
database. In this case, SWDUAL was able to achieve good
performance on both sets. Figure 9 also shows the results
obtained in these comparisons.

Table V
RESULTS RUNNING THE HOMOGENEOUS AND THE HETEROGENEOUS

SETS

Sets
2 4 8

Time (s) Time (s) Time (s)
GCUPS GCUPS GCUPS

Heterogeneous 3554.36 1785.73 908.45
37.55 74.74 146.92

Homogeneous 998.27 484.74 249.69
36.3 74.76 145.14

 100

 1000

 10000

 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of workers

Heterogeneous set
Homogeneous set

Figure 9. Execution times for the heterogeneous and homogeneous sets

VI. CONCLUSION

Efficient parallelization of the Smith-Waterman algorithm
using SIMD and SIMT on standard hardware enables se-
quence database searches to be performed much faster than
before. Also, scheduling algorithms like the dual approxima-
tion and the master-slave model allow for better utilization
of the resources by combining the processing elements
available in hybrid platforms.

In our new implementation, the comparison of a given
database to a set of query sequences is divided amongst any
number of workers. The dual approximation algorithm was
used to decide which tasks to execute on the GPUs. The
objective is to achieve good execution times and have as
little idle time on the processing elements as possible.

When comparing 40 query sequences to the UniProt
database a speed of 225 billion cell updates per second
(GCUPS) was achieved on a dual Intel Xeon processor
system with Nvidia Tesla GPUs, reducing the execution
time from 543 seconds to 86 seconds. In addition to that,
the combination of GPUs and CPUs was responsible for

reducing the execution time to a total of 142 seconds
for that database, which is faster than all the compared
implementations.

Finally, we showed that SWDUAL is able to reduce
execution times in sequence database comparisons both
when tasks have similar sizes and sizes that are very different
between tasks.

ACKNOWLEDGMENT

This paper was partly funded by CAPES Foundation,
Ministry of Education, Brazil.

REFERENCES

[1] D. W. Mount, “Sequence and genome analysis,” Bioinfor-
matics: Cold Spring Harbour Laboratory Press: Cold Spring
Harbour, vol. 2, 2004.

[2] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of molecular biology, vol.
147, no. 1, pp. 195–197, 1981.

[3] S. Rajko and S. Aluru, “Space and time optimal parallel
sequence alignments,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 15, no. 12, pp. 1070–1081, 2004.

[4] A. Boukerche, A. C. M. A. de Melo, E. F. de Oliveira Sandes,
and M. Ayala-Rincon, “An exact parallel algorithm to com-
pare very long biological sequences in clusters of worksta-
tions,” Cluster Computing, vol. 10, no. 2, pp. 187–202, 2007.

[5] C. Chen and B. Schmidt, “An adaptive grid implementation
of dna sequence alignment,” Future Generation Computer
Systems, vol. 21, no. 7, pp. 988–1003, 2005.

[6] E. F. de O Sandes and A. C. M. A. de Melo, “Smith-waterman
alignment of huge sequences with gpu in linear space,” in
Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International. IEEE, 2011, pp. 1199–1211.

[7] Y. Liu, B. Schmidt, and D. L. Maskell, “Cudasw++ 2.0:
enhanced smith-waterman protein database search on cuda-
enabled gpus based on simt and virtualized simd abstrac-
tions,” BMC research notes, vol. 3, no. 1, p. 93, 2010.

[8] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A recon-
figurable accelerator for smith–waterman algorithm,” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 54,
no. 12, pp. 1077–1081, 2007.

[9] T. Rognes, “Faster smith-waterman database searches with
inter-sequence simd parallelisation,” BMC bioinformatics,
vol. 12, no. 1, p. 221, 2011.

[10] A. Singh, C. Chen, W. Liu, W. Mitchell, and B. Schmidt,
“A hybrid computational grid architecture for comparative
genomics,” Information Technology in Biomedicine, IEEE
Transactions on, vol. 12, no. 2, pp. 218–225, 2008.

[11] J. Singh and I. Aruni, “Accelerating smith-waterman on het-
erogeneous cpu-gpu systems,” in Bioinformatics and Biomed-
ical Engineering,(iCBBE) 2011 5th International Conference
on. IEEE, 2011, pp. 1–4.

[12] X. Meng and V. Chaudhary, “A high-performance heteroge-
neous computing platform for biological sequence analysis,”
Parallel and Distributed Systems, IEEE Transactions on,
vol. 21, no. 9, pp. 1267–1280, 2010.

[13] S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram,
“Scheduling independent tasks on multi-cores with gpu accel-
erators,” in In 11th HeteroPar 2013, International Workshop
on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Platforms, in conjuction with the Euro-Par
2013 conference, Aachen, Germany, Aug 2013.

[14] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal of molecular biology, vol. 162, no. 3,
pp. 705–708, 1982.

[15] D. S. Hochbaum and D. B. Shmoys, “Using dual approx-
imation algorithms for scheduling problems theoretical and
practical results,” J. ACM, vol. 34, no. 1, pp. 144–162, 1987.

[16] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, 1st ed. John Wiley & Sons,
1990, wiley Series in Discrete Mathematics and Optimization.

[17] W. R. Pearson, “Rapid and sensitive sequence comparison
with fastp and fasta,” Methods in enzymology, vol. 183, pp.
63–98, 1990.

[18] M. Farrar, “Striped smith–waterman speeds database searches
six times over other simd implementations,” Bioinformatics,
vol. 23, no. 2, pp. 156–161, 2007.

[19] A. Szalkowski, C. Ledergerber, P. Krähenbühl, and C. Dessi-
moz, “Swps3–fast multi-threaded vectorized smith-waterman
for ibm cell/be and× 86/sse2,” BMC Research Notes, vol. 1,
no. 1, p. 107, 2008.

