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Preserving architectural pattern composition
information through explicit merging operators

M.T.T. Thata, S. Sadoua, F. Oquendoa, I. Bornea

aUniversité de Bretagne Sud, IRISA, Vannes, France

Abstract

Composable software systems have been proved to support the adaptation to
new requirements thanks to their flexibility. A typical method of composable
software development is to select and combine a number of patterns that ad-
dress the expected quality requirements. Therefore, pattern composition has
become a crucial aspect during software design. One of the shortcomings of
existing work about pattern composition is the vaporization of composition in-
formation which leads to the problem of traceability and reconstructability of
patterns. In this paper we propose to give first-class status to pattern merg-
ing operators to facilitate the preservation of composition information. The
approach is tool-supported and an empirical study has also been conducted to
highlight its effectiveness. By applying the approach on the composition of a
set of formalized architectural patterns, including their variants, we have shown
that composed patterns have become traceable and reconstructable.

Keywords: Architectural pattern, Pattern composition, Model driven
engineering

1. Introduction

A key issue in the design of any software system is the software architec-
ture. It consists of the fundamental organization of the system embodied in its
components, their relationships to each other and to the environment, and the
principles guiding its design and evolution <14>. Software architecture gives
a basis for analysis of software systems before the system has been built and
thus, helps manage risk and reduces cost during the software development. A
good software architecture produces not only a system that works properly (the
functional requirements) but also a system that meets non-functional require-
ments such as maintainability, exchangeability, reusability, etc. <13>. Patterns
address this important objective of software architecture by allowing the con-
struction of specific software architectures with well-defined properties.
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Indeed, some architecture description languages (ADL) such as Wright and
ACME<1; 10> support the construction of architectures by using predefined ar-
chitectural patterns. Thus, the construction of architectures is simplified (reuse
of the whole pattern structure) and equipped with proven solutions for well-
known needs. Further, in real world architectures recurring problems are com-
plex and their solutions can be represented by patterns in complex forms that
require the combination and reuse of other existing architectural patterns <5>.
The combined patterns on one hand, handle the increased complexity of the
architecture and on the other hand, capture the properties of participating pat-
terns. For instance, a system might use a pipe and filter pattern to process data
but write the result to a shared database. Thus, this system uses a pattern
which is the combination of pipe and filter and shared repository patterns. In
the literature, current support for pattern composition consists in fact of using
merging operators that are not part of the pattern language <11; 3; 23; 7>.
Thus, once the architectural solution achieved there is no means to know that
it is a result of a composition of patterns. This is caused by what we call the
vaporization of composition information. This prevents the traceability as well
as the reconstructability of patterns which are essential for software evolution.

For addressing these open issues, we propose to reserve first-class citizenship
for pattern merging operators. Throughout this paper, we show that being able
to store and manipulate merging operators is crucial in the context of pattern
construction. The idea is implemented in an architectural pattern description
language, called COMLAN (Composition-Centered Architectural Pattern De-
scription Language). The language provides a proper description of pattern
that supports composition operations and a two-step pattern design process
that helps to preserve pattern composition information. The idea is applicable
in both architectural patterns and design patterns. However, in this work we
focus our approach as well as its evaluation on architectural patterns.

The remainder of this paper is organized as follows: Section 2 presents
the state-of-the-art for pattern composition and pattern description. Section
3 points out the open issues through examples. Section 4 introduces the general
approach to address the identified problems. Section 5 goes into details of the
pattern description language. Section 6 describes the pattern refinement step.
Section 7 gives implementation information. Section 8 describes the validation
of the proposed approach using empirical studies. Finally, section 9 concludes
the paper.

2. State of the art

As described in the previous section, the research problem we deal with
is the vaporization of pattern composition information. This problem directly
concerns two research areas: pattern composition and pattern description in
ADLs. In the following we will elaborate the state of the art of these domains.
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2.1. Pattern composition

There are mainly two branches of work on the composition of patterns.
The first including <11; 3; 23> proposes to combine patterns at the pattern
level which means that patterns are composed before being initialized in the
architectural model. These approaches support two types of pattern element
composition. The first type consists of creating a totally new element which
is the product of the unification of participating elements. Regardless of the
different terminologies used in <11> (conservative composition), in <23> (uni-
fication) or in <3> (overlapping), the same idea is that the combined element
will have all the characteristics of participating elements, and these will no more
be present in the combined structure. An example taken from <23> is the com-
position of the Mediator pattern and the Proxy pattern as shown in Figure 1.
The composition takes place between the Colleague class of the Mediator pat-
tern and the Real subject class of the Proxy pattern. In its original pattern, the
Colleague class extends the Colleague Interface. Similarly, the Real subject class
extends the Subject class and contains the Request method. In the combined
pattern, the Real Colleague class, which is the product of the composition of
Colleague class and Real subject class, inherits all the features of its constituent
classes. More specifically, it is a Real subject that can communicate with other
Colleagues of a Mediator structure.

Figure 1: Overlapping composition of Mediator pattern and Proxy pattern

The second type implies that the participating elements in the composition
keep their own identity, no new structure is formed because of the composition.
Instead, a link element is added to connect participating elements. This compo-
sition is called combinative composition in <11> or conjunction in <23>. The
example of the composition of the Mediator pattern and the Proxy pattern is
retaken to illustrate this type of composition. As shown in Figure 2, the compo-
sition takes place between the Mediator class of the Mediator pattern and the
Proxy class of the Proxy pattern. The result of this composition is an added
Proxy Reference which connects the Mediator and the Proxy.

On the contrary to the approaches above, in <7>, Deiters et al. propose
to compose pattern at instance level. An architecture entity can at the same
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Figure 2: Conjunction composition of Mediator pattern and Proxy pattern

time play roles from different architectural building blocks which in fact repre-
sent architectural patterns. As a result, the affection of different architectural
building blocks to an architecture entity is not only an instantiation but also a
composition.

In another work <15>, Jing et al. propose a UML profile to attach pattern-
related information on merged elements in composed patterns. Figure 3 is an
example taken from <15>. The Business Delegate pattern is composed with the
Adapter pattern by overlapping the Business Delegate class and the Adaptee
class. As we can observe, the overlapped element Business Delegate is annotated
with the following tagged value:

<<{BusinessDelegate@BusinessDelegate[1]}{Adaptee@Adapter[1]}>>

This annotation indicates that the class plays two roles at the same time,
one is Business Delegate from the Business Delegate pattern and the other is
Adaptee from the Adapter pattern. Therefore, the constituent patterns can
be traced back from the composed pattern. Similarly, <8> proposes different
types of annotations, such as Venn diagram-style, UML collaboration, role-
based tagged pattern, to make design pattern identifiable and traceable from its
composition with others.

Patterns can also be expressed via architectural constraints. The composi-
tion of patterns is thus realized by the composition of architectural constraints.
In <26>, Tibermacine et al. propose to model architectural constraints by com-
ponents. Constraints are represented by customizable, reusable and composable
building blocks. As a result, higher-level or complex constraints can be built
thanks to the composition of existing ones. Figure 4, which is taken from <26>,
is the example of the Pipes and Filter pattern constraint component. This com-
ponent is internally composed by other components, each of them represents an
architectural constraint such as the restriction of port and role, the connectivity
of participating components, etc.
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Figure 3: UML profile for attaching pattern composition information

2.2. Architectural pattern modelling languages

Firstly, it is worth mentioning that in the literature, the term architectural
style is used slightly differently from architectural pattern. The latter is the
solution to a specific problem while the former does not require a problem for
its appearance <6>. However, they both are structural idioms for architects to
use. Since we only focus our interest on the structural aspect of these idioms,
throughout this paper architectural pattern is used as an interchangeable term
for both of them.

In the literature there have been some efforts to model architectural patterns
and their properties. For instance, there are work focusing on the use of formal
approach to specify patterns. In the Wright ADL <1>, the authors tend to
provide a pattern-oriented architectural design environment where patterns are
formally described. Similarly, Acme ADL <10> uses the term family for the
specification of the family of systems or recurring patterns. The system is then
instantiated from the definition of the family. For example, the following is an
excerpt of Acme description of pattern and its instantiation.

Family PipeFilterFam = {

Component Type FilterT = {

Ports { stdin; stdout; };

Property throughput : int;

};

...

}

System simplePF : PipeFilterFam = {

Component smooth : FilterT = new FilterT

...

}

5



interface IRolesKindRestriction {
  boolean areRolesOfKind(RoleKind[] kinds);
}

constraint
PipelineConstraintChecker

IO_PortRestriction:
IPortsRestriction

constraint
iopr: PortsKindRestrictor

ACL implementation of the 
arePortsOfKind() service:
context.subComponent.port
->forAll(p|(p.kind=kinds[0])
or (p.kind=kinds[1])

interface IPortsRestriction {
  boolean arePortsOfKind(
   PortKind[] kinds);
}

constraint
sosirr: RolesKindRestrictor

ACL implementation of the 
areRolesOfKind() service:
context.configuration.binding.role
.connector->AsSet()
->forAll(con:Connector|
(con.role->size() = 2) and 
((con.role.kind = kinds[0]) or 
(con.role.kind = kinds[1])))

interface IRolesKindRestriction {
  boolean areRolesOfKind(
    RoleKind[] kinds);
}

SoSiRolesRestriction:
IRolesKindRestriction

InSiOutSoBindingRestriction:
IInSinkOutSrcRestriction

constraint
isisosbr: InputSinkOutputSourceRestrictor

IO_PortRestriction.arePortsOfKind(...)
and
SoSiRolesRestriction.areRolesOfKind(...)
and
context.configuration.binding.role.connector-
>asSet()->forAll(con:Connector|
con.role->forAll(r:Role | context.
subComponent->exists(com:Component
| com.port->exists(p:Port|(r in 
context.configuration.binding) and ...

interface IInSinkOutSrcRestriction {
  boolean inToSinkOutToSource();
}

constraint
cGC: ConnectedGraphChecker

ACL implementation of the 
isConnectedGraph() service:
context.configuration
.isConnected

interface IConnectedGraph {
  boolean isConnectedGraph();
}

constraint
arcRestrictor: ArcsCountRestrictor

ACL implementation of the 
restrictNumArcs() service:
context.configuration.binding.role
.connector->asSet()->size() = 
context.subComponent->size()-1

interface IArcsCounter {
  boolean restrictNumArcs();  
}

ArcsNumRestrictor:
IArcsCounter

constraint
listGraph: ListGraphConstrainer

interface IConnectedGraph {
  boolean isConnectedGraph();
}

ListGraph:
IListGraph

ACL implementation of the 
isAList() service:
context.subComponent
->forAll(com:Component | 
(com.port->size() = 2) and 
(com.port->exists(p:Port |
p.kind = ʼInputʼ)) and 
(com.port->exists(p:Port |
p.kind = ʼOutputʼ)))

interface IListGraph {     
  boolean isAList();  
}

PipelineChecker

SoSiRolesRestriction:
IRolesKindRestriction

IO_PortRestriction:
IPortsRestriction

ConnectedGraph:
IConnectedGraph

ListGraph: IListGraph

ArcsNumRestrictor: IArcsCounter

ConnectedGraph: IConnectedGraph

interface IPortsRestriction {
  boolean arePortsOfKind(PortKind[] kinds);
}

InSi...

Figure 4: Architectural constraint composition (Figure taken from <26>)

The Family PipeFilterFam is defined with a Component Type FilterT. It
is then instantiated in the System simplePF with a component named smooth
typed with FilterT. This declaration allows the system to make use of the types
in the family, and it must satisfy all of the family’s invariants. In another
work, <22> proposes a modelling language based on ontology to formally define
architectural pattern. Patterns are designed through a type constraint language
and combined using an operator calculus.

As opposed to these domain specific languages, in <17> the authors propose
to use general purpose languages such as UML to model architectural patterns.
The approach consists of incorporating useful features of existing ADLs by lever-
aging UML extensions. More specifically, stereotypes on existing meta-classes
of UML’s meta model are used to represent architectural elements and OCL
(Object Constraint Language) is used to ensure architectural constraints. The
approach has been shown to be able to model different ADLs such as C2, Wright
and Rapide.

In <27>, the authors propose to use a number of architectural primitives to
model architectural patterns. Through the stereotype extension mechanism of
UML, one can define architectural primitives to design a specific structure of a
pattern. In particular, those primitives are not only common structure abstrac-
tions among architectural patterns but also demonstrations of the variability in
each pattern. Figure 5 is the example taken from <27> of the Broker pattern.
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The Broker consists of a client-side Requestor to construct and forward invo-
cations, and a server-side Invoker that calls the target peer’s operations. The
Request Handler forwards request messages from the Requestor to the Invoker.
The Request Handler component can only be accessed by the Requestor or the
Invoker, no other components are allowed. This limit of accessibility is realized
via an architectural primitive called Shield as shown in Figure 5. This primitive
is also applied in other patterns such as Layer, Façade, etc. which makes it a
common composable structure in pattern solutions.

Figure 5: Shield architectural primitive

Architectural patterns and styles are also considered important artefacts that
represent architectural knowledge (AK). Among AK-based approaches, works
concerning patterns and styles fall into the knowledge reuse category whose
main purpose is applying existing knowledge in a particular context for various
purposes <29>. Works such as <24; 12; 30> propose to use architectural pat-
tern languages to capture AK. The idea is to leverage reusable design knowledge
in patterns to inexpensively document AK in a specific context.

3. Research Challenge and Solution

We identify the research challenges via some illustrative examples of archi-
tectural pattern composition and introduce the overall approach to solve these
challenges.

3.1. Problem statement and discussion

Architectural patterns tend to be combined together to provide greater sup-
port for the reusability during the software design process. Indeed, architectural
patterns can be combined in several ways. We consider here three types of com-
bination: A pattern can be blended with, connected to or included in another
pattern. To highlight the existing problems, we first show an example for each
case of architectural pattern composition and then point out issues drawn from
them.
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3.1.1. Blend of patterns

By observing the documented patterns in <5; 6>, we can see that there are
some common structures that patterns share. For example, the patterns Pipes
and Filters and Layers share a structure saying that their elements should not
form a cycle.

Figure 6: Pipes and Filters

If we consider to express the constraint that no circle can be formed from
filters via a pattern, we can say that the pattern Pipes and Filters is composed
of two sub-patterns (see Figure 6). We call them Sequential pattern and Acyclic
pattern. The former consists of Filter components linked together by Pipe con-
nectors and the latter consists of Acylic components in a way that no cycle can
be formed from them. Thus, Pipes and Filters is actually the product of the
blend of these two patterns. But unfortunately, it is impossible to reuse the Se-
quential pattern or the Acyclic pattern alone because they are completely melted
in the definition of the Pipes and Filters pattern. For instance, considering the
construction of another variant of Pipes and Filters where cycles among Filters
are accepted, it is beneficial to reuse the Sequential pattern.

3.1.2. Connection of patterns

A lot of documented patterns formed from two different patterns can be
found in <6; 2>. One of these examples is the case where the pattern Pipes
and Filters can be combined with the pattern Repository to form the pattern
called Data-centered Pipeline as illustrated in Figure 7.

As we can observe, the two patterns are linked together by a special con-
nector which serves two purposes at the same time: convey data from a Filter
and access to the Repository. But once the composed pattern built, it is even
more difficult to identify and reuse the sub-patterns in its constituent patterns.
For instance, the fact that Pipes and Filters is the product of the composition
of two sub-patterns is hardly noticeable.

3.1.3. Inclusion of patterns

Another type of architectural pattern composition is the situation when
architectural patterns themselves can help to build the internal structure of one
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Figure 7: The Data-centered pipeline pattern

specific element of another pattern. In <2>, we can find several known-uses of
this type of pattern composition. An example where the Layers pattern becomes
the internal structure of Repository pattern is shown in Figure 8. Indeed, when
we have to deal with data in complex format, the Layers pattern is ideal to be
set up as the internal structure of the repository since it allows the process of
data through many steps. Moreover, the inclusion of patterns can be found at
different levels. To be able to model such case, it is necessary to recursively
explore patterns through many levels.

Figure 8: Layers as internal structure of Repository

3.1.4. Discussion

As we can observe from the example of subsection 3.1.2, the Pipes and Filters
pattern is used as a constituent pattern to build the Data-centered pipeline
pattern. When we look at the Pipes and Filters pattern in this view, we have
no idea that it is composed from other patterns as shown in Example 3.1.1.
We think the fact that the border between constituent patterns of a composed
pattern is blurred can reduce greatly the pattern comprehensibility. Moreover,
since the composed patterns may be then used to build another pattern, we
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believe that the traceability, which is the ability to know the role and the original
pattern of every element in the pattern, becomes really essential.

Another issue to be taken into consideration is the reconstructability of com-
posed patterns. In the example of subsection 3.1.1, when one of the two pattens
forming the Pipes and Filters pattern changes, we should be able to propa-
gate the change to the Pipes and Filters pattern. Moreover, since the Pipes
and Filters pattern has been changed, the Data-centered Pipeline in which it
participates in Example 3.1.2 must be also reconstructed. The same require-
ment exists for the example of subsection 3.1.3. For example, when another
Layers pattern variant is used to form the internal structure of the Repository
component, the change should be reflected in the composed pattern.

As shown in Section 2, in the literature, the already proposed approaches
about pattern composition (see subsection 2.1) present pattern merging oper-
ators in an ad-hoc manner where information about the composition of pat-
terns is vaporized right after the composition process. Thus, they ignore two
aforementioned issues. Although in <15>, one can trace back the constituent
elements from which an element is composed, a composition view showing how
the original patterns are composed is still missing and moreover, the support
for reconstruction is ignored.

In summary, the examples shown above highlight two problems to solve:

1. Traceability of constituent patterns: One should be able to trace back to
constituent patterns while composing the new pattern.

2. Reconstructability of composed patterns: Any time there is a change in a
constituent pattern, one should be able to reuse the merging operators to
reflect the change to the composed pattern.

In the following, we present our approach to address these two problems.

3.2. Solution Overview

We propose the process of constructing patterns including two steps as illus-
trated in Figure 9. The first step consists in describing a pattern as a composi-
tion graph of unit patterns using the COMLAN language see Section 4. Thus,
the pattern comprises many blocks, each block represents a unit pattern, all
linked together by merging operators.

The second step consists in refining the composed pattern in the previous
step by concretizing the merging operators. More specifically, depending on
the type of merging operator (see Section 4.1), a new element is added to the
composed pattern or two existing elements are mixed together. On the pur-
pose of automating the process of pattern refinement, we use the Model Driven
Architecture (MDA) approach <19>. Each pattern is considered as a model
conforming to the COMLAN meta-model (see Sub-section 4.1) in order to cre-
ate a systematic process thanks to model transformation techniques. Thus, each
refined pattern is attached to a corresponding pattern model from step 1 and
any modification must be done only on the latter at step 1. At this stage, we
offer the architect a pattern description language based on the use of classical
architectural elements, architectural patterns and pattern merging operators.
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Figure 9: Overall Approach

We can see that through this two-step process, anytime we want to trace
back the constituent patterns of a composed pattern in the second step, we can
find them in its corresponding pattern model. Thus, we solve the traceability
problem pointed out in the previous section.

We solve the second problem (reusability of merging operators) by the fact
that merging operators are first-class entities in our pattern description lan-
guage. In other words, merging operators are treated as elements of the pattern
language where we can manipulate and store them in the pattern model like
other elements. Therefore, the composition of patterns is not an ad-hoc opera-
tion but a part of pattern. This proposal facilitates significantly the propagation
of changes in constituent patterns to the composed pattern. Indeed, the latter
can thoroughly be rebuilt thanks to the stored merging operators. So, merging
operators not only do their job which performs a merge on two patterns but also
contain information about the composition process. Thus, we think document-
ing them is one important task that architects should take into consideration.

In the two following sections, we describe our pattern description language
and the transformation process that produces the refined pattern model from a
pattern model.

4. A pattern description language for hierarchical pattern and com-
position

We introduce COMLAN as a means to realize two main purposes: build
complex patterns from more fine-grained patterns using merging operators and
leverage hierarchical patterns.

4.1. The COMLAN meta-model

In this work, we reuse part of our role-based pattern language <24> which
serves for documenting architectural decisions about the application of archi-
tectural patterns. The language only emphasizes the structural solution of pat-
terns, thus patterns that are based on behavioural aspects of an architecture
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are not supported. As shown in Figure 10, our meta-model is composed of two
parts: the structural part and the pattern part. As pointed out in <16; 1>
and also described in <6>, the design vocabulary of an architectural pattern
necessarily contains a set of component, connector, port and role. We take these
concepts into consideration to build the structural part of our language. More
specifically, they are described in our language as follows:

Figure 10: The COMLAN meta-model

• Component is a composite element which, through the internalElements
relation, can contain a set of component ports or even a sub-architecture
with components and connectors. These two types of containment relation
are differentiated by a constraint imposed on the meta-model.

• Component port is a simple element through which components interact
with connectors. A component port can be attached to a connector role
or delegated to another component port in an internal sub-architecture.

• Connector is a composite element which, through the internalElements
relation, can have a set of connector roles or even a sub-architecture with
components and connectors. Similarly to the case of component, these two
types of containment relation are differentiated by a constraint imposed
on the meta-model.

• Connector role is a simple element that indicates how components (via
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component ports) use a connector in interactions. A connector role can
be delegated to another connector role in an internal sub-architecture.

The pattern aspect part (see Figure 10) of our meta-model aims at provid-
ing functionalities to characterize a meaningful architectural pattern. To be
more specific, the meta-model allows us to describe a pattern element at two
levels: generic and concrete. Via the multiplicity, we can specify an element
as generic or concrete. A concrete element (not associated with any multiplic-
ity) provides guidance on a specific pattern-related feature. Being generic, an
element (associated with a multiplicity) represents a set of concrete elements
playing the same role in the architecture. A multiplicity indicates how many
times a pattern-related element should be repeated and how it is repeated. Fig-
ure 11 shows two types of orientation organization for a multiplicity: vertical
and horizontal. Being organized vertically, participating elements are parallel
which means that they are all connected to the same elements. On the other
hand, being organized horizontally, participating elements are inter-connected
as in the case of the pipeline architectural pattern <5>.

Figure 11: Orientation organization of generic elements

Each element in the meta-model can be associated with a role. A role spec-
ifies properties that a model element must have if it is to be part of a pattern
solution model <9>. To characterize a role, we use architectural constraints.
A constraint made to a role of an element helps to make sure that the element
participating in a pattern has the aimed characteristics. Constraints are rep-
resented in our approach in form of OCL (Object Constraint Language) <20>
rules.

Similar to <11; 3; 23>, in our language two types of merging operator are
supported: stringing and overlapping as shown in Figure 12. As we can ob-
serve, these operators are preserved with firs-class status by being represented
as model elements. A stringing operation means a connector is added to the
pattern model to connect one component from one pattern to another compo-
nent from the other pattern. If an overlapping operation involves two elements,
it means that two involving elements should be merged to a completely new
element. Otherwise, if an overlapping operation involves a composite element
and a pattern, it means that the latter should be included inside the former. In
both cases of merging, the participating elements are respectively determined
through two references source and target. An element has an origin reference
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towards the merging operator from which it is concretized. This merging oper-
ator contains the information about the source element and the target element
which allows the traceability of the composed element.

Figure 12: Two types of merging operation

Pattern can contain all concepts described above and most importantly, it
inherits from Element which allows a composite element to contain it. This spe-
cial feature helps our language to include an entire pattern into an element while
constructing a pattern. In other words, hierarchical patterns are supported.

4.2. Pattern definition through an example

For the purpose of illustration, our pattern definition language will be used
to model an example about the pattern for data exploration and visualization
as in the Vistrails application’s architecture <4>. More specifically, this model
represents the first step of the pattern definition process. As shown in Figure 13,
this pattern model consists of four main sub-patterns: Pipes and Filters, Client-
Server, Repository and Layers, all connected together through merging opera-
tors. Among these three patterns, the Repository pattern is a hierarchical one
whose the component of the same name includes the Layers pattern.

To explain how the pattern concepts are realized, we go into details for
the Pipes and Filters pattern. On the upper left corner of Figure 13, we can
observe that the Pipes and Filters pattern is constructed with the emphasis
on the following elements: the component Filter specified with two roles Filter
and AcyclicComponent, the connector Pipe specified with the role Pipe. The
connector Pipe is not assigned with any multiplicity. Otherwise, the compo-
nent Filter is assigned with a multiplicity since it represents many possible
filters inter-connected by Pipe connectors. Furthermore, its horizontal multi-
plicity1 indicates that there may be many instances of Filters and they must
be horizontally connected. The role Filter is characterized by the Connected-
Filter constraint. To be more specific, it stipulates that a filter cannot stand
alone, there must be at least one pipe connected to a filter. Similarly, the con-
straint AcyclicComponent characterizing the role AcyclicComponent stipulates

1upperbound = -1 indicates that there’s no limited upper threshold for a multiplicity
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Figure 13: Example of pattern model

that among filters, we cannot form a cycle. Finally, the two constraints Input-
ConnectedPipe and OutputConnectedPipe say that for a given pipe, there must
be a filter as input and a filter as output. The above constraints are presented
as OCL invariants as follows:

invariant AcyclicComponent:

if role->includes(’AcyclicComponent’) then

Component.allInstances()->forAll(role = ’AcyclicComponent’ implies not

self.canFormCycle())

endif;

invariant ConnectedFilter:

if role->includes(’Filter’) then

Connector.allInstances()->exists(role = ’Pipe’ and isConnected(self))

endif;

invariant InputConnectedPipe:

if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’ and

getOutputConnectors().contains(self))

endif;

invariant OutputConnectedPipe:

if role->includes(’Pipe’) then

15



Component.allInstances()->exists(role = ’Filter’

and getInputConnectors().contains(self))

endif;

Merging operators are used to link participating patterns together. More
specifically, in our pattern model (see Figure 13), three merging operators are
used:

• An overlapping operator whose source is the Filter component in the Pipes
and Filters pattern and target is the Client component in the Client-Server
pattern.

• A stringing operator whose source is the Filter component in the Pipes and
Filters pattern and target is the Repository component in the Repository
pattern.

• An overlapping operator whose source is the Repository component in
the Repository pattern and target is the Layers pattern.

These three operators are used as elements of the pattern language and stored
along with the other elements.

This example has shown the ability of using our language to describe com-
plex patterns which are combined from different patterns by leveraging merging
operators.

5. Pattern refinement

After being described as the composition of constituent patterns through
merging operators, the pattern model will be refined. We consider the refine-
ment as a model transformation where the source model is a pattern model with
explicitly presented merging operators and the target model is a pattern model
where merging operators are already concretized. Therefore, the transformation
rules consist in processing merging operators in the composed pattern model and
produce appropriate results in the refined pattern model. While realizing this
transformation, three important issues need to be taken into account: how to
concretize a stringing operator, how to concretize an overlapping operator and
how to handle nested patterns.

5.1. Stringing operator transformation

Among structural elements in the pattern language, except for components
which can be linked by stringing operators, there is no interest to link together
other elements like connectors, component ports or connector roles. That is the
reason why a stringing operator can only be transformed into a new connector
to link source component and target component. New component ports are also
added to the source component and the target component and attached to new
connector roles in the newly created connector. As shown in Figure 14, the
stringing operator described in the previous step is now transformed to the con-
nector DataReading/WritingPipe. This new connector contains two connector
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roles, one attached to a component port in the ClientFilter component and the
other attached to a component port in the Repository component. A simplified
version of the transformation algorithm for stringing operator is presented in
Algorithm 1

Figure 14: The refined pattern model

5.2. Overlapping operator transformation

The result of the transformation for an overlapping operator is a new element
which carries all the characteristics of the source element and the target element.
For composite elements, the composition begins with the fusion of all internal
elements. As we can see from Figure 14, the overlapping operator described in
the previous step is concretized by the component ClientFilter. This component
contains all component ports from the source element which is a Filter and the
target element which is a Client. Furthermore, via these component ports,
the link from the component to two connectors Pipe and Request/Reply is also
preserved.

The overlapped element plays all the roles of the source element and the
target element. Indeed, the ClientFilter plays three roles at once: AcyclicCom-
ponent, Filter since it participates as a Filter in the Pipes and Filters pattern
and finally, Client since it participates as a Client in the Client-Server pattern.
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Algorithm 1 The stringing operator transformation algorithm
Require: Stringing StrOp
Ensure: Connector Con
1: Component TarComp← StrOp.target
2: Component SrcComp← StrOp.source
3: ComponentPort SrcPort← new ComponentPort
4: ComponentPort TarPort← new ComponentPort
5: ConnectorRole SrcRole← new ConnectorRole
6: ConnectorRole TarRole← new ConnectorRole
7: TarComp.internalElements.add(TarPort)
8: SrcComp.internalElements.add(SrcPort)
9: Con.internalElements.add(SrcRole)

10: Con.internalElements.add(TarRole)
11: SrcPort.attachedRole.add(SrcRole)
12: TarPort.attachedRole.add(TarRole)

The multiplicity is merged as follows: The range of the merged element’s
multiplicity is the intersection of that of the source element and the target
element. More specifically, the merged lower value is the bigger one between
the two lower values and the merged upper value is the smaller one between
the two upper values. If the source elements multiplicity or the target elements
multiplicity is vertical or horizontal then merged elements multiplicity is also
vertical or horizontal. In our pattern model (Figure 14), the multiplicity of the
merged component ClientFilter is both vertical and horizontal since its source
component Client is vertical and its target component Filter is horizontal as
illustrated in Figure 15. A simplified version of the transformation algorithm
for overlapping operator is presented in Algorithm 2

Figure 15: The merged pattern of Client-Server and Pipes and Filters

In the case of a chain of consecutive overlapping operators in which one
continues another, we use Algorithm 3. Let’s say we have n random elements
linked together by (n-1) overlapping operators. The algorithm consists of n-1
steps. In the first step, the overlapping operator merges Element 1 and Element
2 to create Element 12. Next, Element 2 is replaced by Element 12. In the
second step, the overlapping operator merges the new Element 12 and Element
3 to create Element 123. Similarly, Element 3 is then replaced by Element
123. The algorithm continues so on until the (n− 1)-th step when all elements
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Algorithm 2 The overlapping operator transformation algorithm
Require: Overlapping OvlOp
Ensure: Element MergedElem
1: Element TarElem← OvlOp.target
2: Element SrcElem← OvlOp.source
3: if TarElem isTypeOf CompositeElement then
4: for all Element e ∈ TarElem.internalElements do
5: MergedElem.internalElements.add(e)
6: end for
7: end if
8: if SrcEle isTypeOf CompositeElement then
9: for all Element e ∈ SrcElem.internalElements do

10: MergedElem.internalElements.add(e)
11: end for
12: end if
13: for all Role r ∈ TarElem.roles do
14: MergedElem.roles.add(r)
15: end for
16: for all Role r ∈ SrcElem.roles do
17: MergedElem.roles.add(r)
18: end for
19: MergedElem.multiplicity ← multimerge(SrcElem.multiplicity, TarElem.multiplicity)

are merged into the Element 123..n. An important remark in this algorithm is
that thanks to the replacement mechanism, an element can reflect the merging
operation in which it participates. Thus, the merging operation is propagated
to every element participating in the merging chain. Notice that in the case of
an overlapping operator between an element and a pattern, the former is always
the source element and the latter is always the target element. This constraint
is imposed in the meta-model. Thus, in a chain of overlapping composition, the
pattern, if exists, always stays at the end of the chain.

Algorithm 3 The multi-overlapping transformation algorithm
Require: Set of Element ElemSet
Ensure: Element MergedElem
1: n← ElemSet.length
2: for i = 1, i++, while i < n do
3: MergedElem← overlappingMerge(ElemSet[i], ElemSet[i + 1])
4: ElemSet[i + 1]←MergedElem
5: end for

5.3. Nested pattern transformation

If a pattern participates in a merging operation, all of its internal elements
will be added in the refined pattern while the pattern itself will not be trans-
formed. As shown in Figure 14, all the three patterns Pipes and Filters, Client-
Server and Repository disappear leaving their internal elements in the refined
pattern. Otherwise, if a pattern does not participate in any merging opera-
tion, a refinement procedure (which is actually a recursive procedure) will be
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applied to the pattern. Since the Layers pattern does not contain any merging
operators, the refinement procedure just simply keeps all its internal elements.

5.4. Support of traceability and reconstructability

For every merged element in the composed pattern, the origin reference to-
wards the merging operator helps to preserve information about which element
in the constituent pattern participating in the composition process. Figure 16
illustrates the support of traceability in the above example. The merged compo-
nent ClientFilter containing a reference towards an explicit overlapping operator
from which the source element Client and the target element Filter can be re-
trieved. Similarly, thanks to references towards a stringing operator and an
overlapping operator, the connector DataReading/WritingPipe and the compo-
nent Repository respectively can trace back to their original source and target
elements.

Figure 16: Support of traceability

The support for pattern reconstruction is pretty straightforward. Whenever
a constituent pattern is modified, a more complex variant of the Layers pattern
is used instead of the pure variant for example, the composed pattern is updated
with the changes automatically. Next, thanks to the stored merging operators,
the refined pattern can be rebuilt taking into account the modifications.

6. Implementation

We developed the COMLAN tool, a graphical representation of the COM-
LAN pattern description language. With the COMLAN tool we aim to make
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concrete the aforementioned concepts. Thus, this tool provides the following
functionalities:

1. Create architectural patterns

2. Compose patterns using merging operators

3. Refine the composed pattern

Figure 17: COMLAN tool architecture

COMLAN is based on EMF (Eclipse Modelling Framework)2. We chose
EMF to realize our tool since we leverage MDA, where models are basic build-
ing units, to develop our approach. Figure 17 depicts the architecture of the
COMLAN tool. The tool consists of two Eclipse plug-ins built on existing
Eclipse technologies:

• Pattern editor plug-in uses EMF and GMF (Graphical Modeling Frame-
work)3 modeling facilities in order to allow architects to define Pattern
models graphically. Two types of pattern models are supported using
the graphical pattern editor: unit pattern models and composed pattern
models. Composed pattern models are designed by selecting patterns from
a catalogue and composing them using two types of merging operators:
stringing and overlapping. Hierarchical pattern description is also sup-
ported via the inclusion of an entire pattern inside a pattern element.
Besides, the editor allows the automatic propagation of changes in the
constituent patterns to the composed pattern in which they participate.
Figure 18 represents several snapshots of COMLAN tool. The bottom-left

2More details about EMF are accessible at: http://www.eclipse.org/modeling/emf/”
3More details about GMF are accessible at: http://www.eclipse.org/modeling/gmp/”
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shows the graphical pattern editor. It contains the example of two con-
stituent patterns ConnectedLayer and StrictOrder which are combined
using an overlapping operator between the Layer component and the Or-
deredComponent. The bottom-right shows the panel from which pattern
elements can be chosen. The top-right depicts the property window for
the Layer component. It has a multiplicity and plays the role of a Layer.
Finally, the top-left shows the context menu where users can perform the
pattern composition functionality.

Figure 18: Snapshots of COMLAN tool

• Pattern refinement plug-in uses Kermeta 4 to implement rules transform-
ing composed pattern model to refined pattern model. The plug-in takes
as input composed pattern models obtained from the pattern editor and
produces as output the refined models. This functionality allows the archi-
tect to obtain a pattern with all the merging operators concretized. The
refined pattern model is then accessible using the pattern editor, allowing
it to participate in further pattern compositions.

The reader is invited to visit the COMLAN website 5 for a complete tutorial
and a video about this tool and the example of Vistrails’s architecture <4>
pattern modeling.

4Kermeta is described in details in <18>
5 http://www-archware.irisa.fr/software/comlan/
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7. Empirical study

Our approach focuses on giving pattern merging operators first-class status
to support the traceability and the reconstructability of patterns. Thus, the
approach is evaluated on the interest of using merging operators in: i) tracing
back constituent patterns in pattern composition. ii) reconstructing composed
patterns.

7.1. Experimental setup

The materials used in our experiment are patterns we gather from different
sources of architectural patterns in the literature such as <2; 5; 27; 6; 25>.
We distinguished two levels of pattern granularity: primitive level and architec-
tural level. As being shown via the Acyclic pattern in the illustrative example
(Section 3.1.1), we also consider the common structures used in patterns as
primitive patterns. In existing work, these structures are described by different
terminologies such as architectural constraints in <5; 6> or architectural primi-
tives in <27; 28>. However, considering the ability to combine these structures
to build patterns, they are also treated as patterns at the primitive level in
our approach. At the architectural level, patterns are modeled using the infor-
mation in the structure part of the pattern description. Indeed, the structure
description of the pattern is an important source to detect whether it is pos-
sible to construct the pattern by composing other patterns using overlapping
or stringing operator. In total, 16 architectural pattern definitions are used
in our study. They cover patterns in different categories and viewpoints, from
data flow, data-centering to distribution, etc. Taking the variability of patterns
into consideration, a given pattern can exist in different variants. Except for
the pure variant, which represents the characteristics of the pattern as is, the
more relaxed variants of patterns also integrate the structure of other patterns
to adapt to different needs. For instance, one of the variants of the Pipes and
Filters pattern is the Layered Pipes and Filters pattern. It is slightly different
from the pure form of Pipes and Filters with Filters structured in layers. From
16 collected architectural pattern definitions, we could find 28 variants. In aver-
age, there are 1.75 variants per pattern definition. Table 1 shows the catalogue
of pattern definitions and their variants. A complete technical report about the
catalogue of patterns and variants used in our experiment can also be found at
the website of COMLAN6.

We do not evaluate the correctness of the traceability and the reconstructabil-
ity of pattern composition in our approach. The reason for that is twofold. First,
it is quite obvious that by switching from pattern designed in step 2 (refined
pattern) to step 1 (composed pattern), we should be able to detect which pat-
terns are used to form the composed pattern. Second, the ability to reconstruct
pattern from merging operator is ensured by the correctness of our transforma-
tion algorithm. However, we empirically evaluated how much necessary it is to

6http://www-irisa.univ-ubs.fr/ARCHWARE/software/COMLAN/
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Table 1: Pattern catalogue

Pattern definitions Pattern variants

P1-Enabled cycle V1.1-Enabled cycle <2; 5>

P2-Forbidden cycle V2.1-Forbidden cycle <2>

P3-Shield V3.1-Shield <27>

P4-Layers

V4.1-Basic Layers <2; 5>

V4.2-By-passed Layers <2>

V4.3-Not By-passed Layers <2; 5>

V4.4-Client-Server Layers <2>

V4.5-Filtered Layers <2>

P5-Pipes & Filters

V5.1-Basic Pipes and Filters <2; 5>

V5.2-By-passed Pipes and Filters <2>

V5.3-Pipeline <2; 5>

V5.4-Layer-structured Pipes and Filters <2>

V5.5-Data sharing Pipes and Filters <2>

P6- Shared Repository
V6.1-Basic Shared Repository <2; 5; 6>

V6.2-Layer-structured Shared Repository
<2>

P7-Microkernel
V7.1-Basic Microkernel <2>

V7.2-Microkernel with Broker <2>

P8-PAC V8.1-PAC <2; 5>

P9-Indirection Layer V9.1-Indirection Layer <2>

P10-Client-Server

V10.1-Basic Client-Server <2; 5; 6>

V10.2-Client-Server with Broker <2>

V10.3-Client-Server with Microkernel <2>

P11-MVC V11.1-MVC <2; 5>

P12-Proxy V12.1-Proxy <2; 5>

P13-Broker V13.1-Broker <2; 5>

P14-Façade V14.1-Façade <27; 25>

P15-Legacy Wrapper V15.1-Legacy Wrapper <6>

P16-Data-centered Pipes and
Filters

V16.1-Data-centered Pipes and Filters <6>
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trace back to constituent patterns and to reconstruct patterns. Thus, we have
two hypotheses to validate.

Hypothesis 1 Most of pattern structures can be decomposed to other fine-
grained pattern structures

Hypothesis 2 Most of composed patterns can be reconstructed from other
patterns by adapting their constituent patterns

The next two sections aim at validating these two hypotheses.

7.2. Traceability

We first counted the number of pattern variants from which the structure can
be deduced by merging other patterns. The counting process is semi-automatic.
First, beginning with pattern variant descriptions from different sources we can
form a graph of pattern relationship. Each node of this graph represents a pat-
tern and an arc between two nodes represents the composition relation between
two patterns. Next, the graph is used to count pattern variants and the fre-
quency of composition. Figure 19 shows that a large number of pattern variants
(19 over 28) can be composed from other variants. The number of constituent
patterns equals zero means that the variant is at the primitive level or it is a
monolithic pattern. An example of this could be the Shield architectural prim-
itive (V3.1) which is a fundamental modeling element to build more complex
pattern. A variant which is composed from only another pattern represents
the situation in which one or several elements of the pattern are structured by
combining with another pattern. For instance, a variant of the Pipes and Fil-
ters pattern is the case where the Filter is internally structured by a Layers
pattern (V5.4). This variant is in fact formed by the combination of the Fil-
ter component and the entire Layers pattern. Finally, being composed from
two other patterns means that the pattern encompasses the two constituent
patterns taking into consideration overlapped elements. For example, in the
Data-sharing Pipes and Filters variant (V5.5), the Pipes and Filters pattern
(V5.1) is combined with the Shared Repository pattern (V6.1) by overlapping
Filter components and Data accessor components. As we can observe, 19 over
28 variants, which is equivalent to 67.86% of the variants, can be composed
from at least another pattern. This partially explains the need of tracing back
constituent patterns for a given pattern variant.

We then evaluated the frequency of using a given pattern to compose the
other ones. Therefore, another question about the traceability is what is the
probability to trace back to the same pattern in different cases of pattern com-
position? To address this issue, we counted all cases of pattern composition that
can be performed by using a variant. Figure 20 shows that 11 over 28 pattern
variants, which is equivalent to 39.29%, can be used in at least one composition
of pattern. Especially, two pattern variants of the Pipes and Filters pattern and
the Layers pattern (V1.4.1 and V1.5.1) are used in six compositions of other
pattern variants. For the latter, this is explained by the fact that the Layers
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Figure 19: Most of pattern variants can be composed from other variants

pattern is often used to construct the internal structure of other patterns. Sim-
ilarly, the Pipes and Filters pattern is often integrated with other patterns to
form different variants such as Pipeline (V5.3), Data-sharing Pipes and Filters
(V5.5), ect. In average, a given pattern variant can be found in 1.14 composi-
tions of patterns. Thus, this reinforces our hypothesis on the need to trace back
the constituent patterns.

7.3. Reconstructability

In our approach, reconstructability is defined as the ability to create another
pattern from an existing one just by reusing a part of it and its merging op-
erators. We found that this phenomenon often occurs in the composition with
different variants of the same pattern. Pattern variants share the characteristics
of the pattern definition, only a part of the structure differs from one to another.
Thus, reconstructing a composed pattern boils down to keeping one constituent
pattern structure, replacing the variant-related structure by another appropri-
ate one and reapplying the merging operators. An example of the reconstruction
is the variant V5.4 of the Pipes and Filters pattern where the Filters are inter-
nally structured by the Layers pattern. This variant is in fact the composition
of the Pipes and Filters pattern and the Layers pattern. There exist totally
five variants of the Layers pattern which leads to the possibility to have five
composed patterns. Reconstructing a composed pattern from another one is in
fact the matter of replacing different variants of the Layers pattern during the
composition process as shown in Figure 21. Indeed, the Layers pattern exists in
different variants and switching among them during the composition produces
different composed pattern variants.

Taking this remark into account, in order to evaluate the interest to have
the pattern reconstruction possibility, for each pattern variant we applied the
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Figure 20: Frequency of composing a pattern variant

approach and measured how many other variants can be built from it. Figure 22
shows for each composed pattern, the number of possible reconstructions.

The variants chosen to participate in this evaluation are those created from
the composition of at least two patterns which reduces the dataset to 13 vari-
ants. The primitive variants are excluded since they are not the products of
any composition process. As we can observe from Figure 22, 54% of the cho-
sen variants (7 out of 13 variants), involve in at least two reconstructions. In
particular, the variant Data-centered Pipeline (V5.1), which is the composition
of the Pipes and Filters pattern and the Shared Repository pattern, involves
in 10 reconstructions. This is explained by the fact that there exist 5 variants
of Pipes and Filters and 2 variants of Shared Repository. Thus, 10 possible
compositions can be made by switching Pipes and Filters variants and Shared
Repository variants respectively. Thus, this result shows that the reconstruction
may concern a reasonably large cases of pattern composition.

7.4. Discussion

In our study we do not consider the combination of variants from the same
pattern definition. The combined variant, if existed, would capture the charac-
teristics of constituent variants. For instance, there may exist a combination of
the Layer-Structured Pipes and Filters pattern (V5.4) and the Pipeline pattern
(V5.3). The combined pattern would be a Pipes and Filters pattern that does
not allow cycles among Filter components and all the Filter components are in-
ternally structured by the Layers pattern. Despite of the feasibility of this kind
of combination, we have not been able to find any related work mentioning it.
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Figure 21: Reconstructability of composed pattern by switching between different variants of
constituent patterns

Thus, the combinations of variants of the same pattern definition were excluded
from our study.

We only studied the reconstruction of pattern variants of the same pattern
definition. However, we do not exclude the ability to reconstruct a variant of
a pattern definition using a variant from a different pattern definition. This
situation does not exist within the scope of the architectural patterns collected
in our study. Nevertheless, it may exist in an extended dataset using a broadened
library of patterns.

7.5. Threats to validity

Our study is concerned by internal and external threats to validity.
Internal validity : The determination of pattern composition could be biased

by the fact that the researchers participating in the pattern composition detec-
tion process already know about the pattern composition operators. Moreover,
architectural primitives or unit patterns are sometimes implicitly described in
patterns’ specification and we risk having some of them undiscovered. We mit-
igated these risks by having pattern compositions discovered by different mem-
bers and making sure that pattern composition specifications are drawn from
many different sources. Thus, the correctness of our catalogue about pattern
composition is assured.

External validity : All the architectural patterns used in our study and their
variants are mainly collected from existing work in the literature. Although a
wide spectrum of architectural patterns is covered, the study cannot generalize
the effect of our approach in the support of pattern composition in general,
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Figure 22: Frequency of composed pattern reconstruction by reusing merging operators

considering the flexibility and customizability of patterns <5>. Indeed, many
patterns capture existing experience that are specific to certain projects, soft-
ware systems or companies. However, the more patterns, the more crowded the
variants and thus the more likely the approach has effect.

8. Conclusion

The use of patterns, when building architectures, has a twofold interest:
the use of proven solutions to recurring problems, but also the support for
documenting architectural choices. In one of our previous papers <24> we
proposed a solution based on the use of patterns to handle the latter issue.
Thus, this paper dealt with the former issue in the case of complex patterns.

Our proposition consists in a language (COMLAN) for describing architec-
tural patterns and their compositions. This language has the particularity to
make explicit the pattern composition operators and the constituent patterns.
Making these elements explicit allows us to trace back constituent patterns in
case of changes and in this way allows the propagation of changes to the con-
tainer pattern. Through an empirical study we have shown the importance of
these two features for better managing the evolution of architectures.

The use of MDA by our approach not only facilitates the refinement of
patterns through the use of transformation models, but also simplifies the def-
inition of the COMLAN language through the use of meta-modeling. Thus we
were able to define a meta-model for COMLAN where concepts directly related
to the architecture aspect are clearly separated from those related to the pat-
tern aspect (bottom and top parts of Figure 10). This separation allows an
easy adaption of COMLAN to different ADLs, independently of the underlying
paradigm (component, service, etc..).

Our pattern description language covers structural aspects of architectures.
Thus, patterns that are based on behavioural aspects of an architecture are
not supported in our language. Future planned work is to extend our pattern
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description language to cover also the behavioural aspects of architectures. To
validate this extension to support behavioural patterns, we plan to use as se-
mantic foundation the π-ADL architecture description language <21>. This
is motivated by the fact that πADL is based on a comprehensive process cal-
culus, the π-Calculus and subsuming other ADLs for expressing behavioural
properties.
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