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CNRS/Univ. Grenoble 1, Laboratoire Interdisciplinaire de Physique, UMR 5588, Grenoble, F-38041, France
(Dated: May 9, 2014)

The interference of waves evenly separated in frequency generates a periodic signal, whose in-
tensity fluctuations depend on the phases of the individual waves. A fundamental question in
telecommunications and acoustics is the minimization of the Peak to Average power Ratio (PAR):
for a given spectrum, how to arrange the phases of the individual frequency components to ensure
minimal intensity fluctuations of the resulting signal? For a flat spectrum a near-optimal solution
is brought by the so-called Newman phases, commonly used in acoustic and radio waves. Here we
transpose this property into the optical domain and prove the possibility to suppress the intensity
fluctuations resulting from intermodal beating of a broadband comb of optical frequencies, whose
phases are set according to a generalization of the Newman phases. We demonstrate experimentally
a broadband laser, whose intensity contrast (defined as the standard deviation-to-mean ratio) is
reduced down to 0.54 as compared to 1 when the phases are set randomly.

PACS numbers: 42.60.By, 42.60.Pk, 42.60.Fc, 42.25.Kb

Minimizing the fluctuations of a signal is a problem
common to acoustics, radar, sonar and wireless telecom-
munications where it is known as the Peak to Aver-
age power Ratio (or PAR) problem: for a given dis-
crete spectrum how to arrange the phases of the spec-
tral components, to achieve the smallest peak factor,
that is to minimize the intensity fluctuations resulting
from intermodal beating? This question is particularly
crucial in communications schemes based on Orthogonal
Frequency Division Multiplexing (OFDM) and in data
processing, where the amplification of strongly fluctu-
ating signals results in severe intermodulation nonlinear
distortion and spectral spreading [1]. Interestingly this
simple problem is still open and no systematic optimal
solution has been provided yet [2–5]. However it turns
out that particular choices of the phases lead to rela-
tively low peak factors: among them the Rudin-Shapiro
phases enable small peak factors but in the specific case
of 2p frequency components [6, 7]. This restriction is
lifted by the so-called Schroeder phases which enable re-
markably low peak factors with no condition on the num-
ber of modes nor on their relative amplitude. Schroeder
phases were deduced from considerations on the asymp-
totic spectra of certain frequency-modulated signals [8].
Assume a periodic signal expressed as the Fourier series
s(θ) =

∑N
n=1

√
pn/2 cos(nθ + ϕn) where pn is the rela-

tive power of the n harmonic (
∑N
n=1 pn = 1). When the

phases are set according to ϕn = ϕ1−
∑n−1
l=1 (n− l)pl the

peak factor is strongly reduced and the resulting signal
appears very similar to a chirped frequency-modulated
wave displaying constant amplitude and monotonous in-
stantaneous frequency [8, 9]. In the case of a flat spec-

trum (pn = 1/N) the phases reduce to ϕn = ϕ1− πn2

N and
match the set of phases introduced earlier by Newman in
the frame of polynomials extremal problems [10, 11] (Fig.
1). Since then, Newman phases have been largely popu-
larized in various domains where the PAR must be mini-
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FIG. 1. Reduction of the intensity fluctuations of a flat comb
of N optical frequencies arranged according to the Newman
phases. The evolution of I(θ) = |

∑N
n=1 e

−inθ+iϕn |2 with the
dimensionless time θ is computed for both Newman phases
(i.e. ϕn = −πn2/N , in blue) and random phases (in green)
for different values of N (10, 50, 250 and 1250). The degree of
second order coherence at zero delay g2(0) (see text) is equal
to 2.0 ± 0.1 in all four cases of random phases, while it is
equal respectively to 1.21, 1.09, 1.04 and 1.02 in the cases of
the Newman phases.

mized, from acoustics [12–14] and adaptive noise control
[15] to radar [16] and wireless communications [17].

In classical optics, the inverse problem is much more
common: the maximization of the peak power, e.g. by
mode-locking techniques, enables to generate trains of ul-
trashort pulses to reach non-linear regimes or to provide
a sharp temporal selectivity for ultrafast applications.
Consequently the question of minimizing the (classical)
fluctuations of multimode light by a specific arrangement
of the phases of the individual frequency components,
has been largely ignored. However this problem could
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bring solutions to reduce the distortion in optical ampli-
fiers, and to avoid deleterious non-linear effects in fibers
such as spectral broadening and non-linear coupling be-
tween distinct frequencies. Nevertheless notice that the
transposition of the results obtained so far for radio- or
acoustic waves to optics, imposes certain requirements
on the comb of optical frequencies. First the effects of
quantum noise should be negligible with respect to the
classical inter-mode fluctuations and second, the relative
amplitudes of the individual frequencies should remain
constant at the timescale of the measurement.

In this paper we provide for the first time to our knowl-
edge, the demonstration of a broadband laser delivering
a large number of equidistant optical frequencies, whose
intensity fluctuations resulting from intermodal beatings
are significantly lowered by a specific arrangement of the
phases. The manuscript is structured as follows: in the
first part after discussing the measurement of the inten-
sity fluctuations of light, we generalize the concept of the
Newman phases and exhibit many other specific sets of
quadratic phases enabling to reduce the intensity fluc-
tuations of a flat comb of optical frequencies. In the
second part we report the experimental demonstration
of a Ti:Sa laser containing about 2500 frequencies whose
phases have been set according to the generalized New-
man phases. We demonstrate a reduction of the contrast
of the intensity fluctuations by a factor of 2, compared
to the case where the phases are set as random.

Measurement of the intensity fluctuations of broadband
light In acoustics or radiowave communications several
estimators of the intensity fluctuations can be provided,
like the crest factor, the peak-to-peak amplitude or the
PAR [12]. In optics the usual way of quantifying the in-
tensity fluctuations is the degree of second-order coher-
ence (or second-order autocorrelation function) defined

as g(2)(τ) = <I(t)I(t+τ)>
<I(t)>2 where I(t) is the intensity of the

optical field and <> denotes the average over time. The
value of g(2)(τ = 0) gives a particularly simple estimation
of the intensity fluctuations: for instance perfectly coher-
ent light and phase-modulated light display no (classical)
intensity fluctuations which corresponds to g(2)(0) = 1.
On the contrary a set of N equidistant optical frequencies
with constant phases as in mode-locked lasers, show max-
imum intensity fluctuations and g(2)(0) = N . When the
phases are chosen at random the behavior is similar on
average to chaotic light and g(2)(0) = 2 in the limit where
N is large [18]. The degree of second order coherence is
also directly linked to the contrast of the intensity de-

fined as C =
√
<I2>−<I>2

<I> =
√
g(2)(0)− 1. Experimen-

tally the technique of second harmonic generation (SHG)
enables to record g(2)(τ): the interferometric autocorre-
lation (IAC) trace recorded by measuring the SHG at the
output of a two-beam interferometer and averaged over
the fringes, is proportional to g(2)(0) + 2g(2)(τ) where τ
is the time-delay of the interferometer. For comparison
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FIG. 2. Top: comparison of the degree of second order coher-
ence g(2)(τ) in the case of a flat spectrum of 100 equidistant
optical frequencies with phases set as random (green, left) and
according to the Newman phases ϕn = −πn2/N (blue, right).
Bottom: corresponding normalized IAC |(E(θ)+E(θ+θτ ))2|2.
The red trace is the average over the fringes. The peak-to-
baseline ratio of the fringes are close to 4 : 1 and 8 : 3 in the
case of the random and Newman phases respectively while
the peak-to-baseline ratio of the average traces are 3 : 2 and
1 : 1 respectively.

theoretical plots of the degree of second order coherence
and the IAC trace in the case of random and Newman
phases are plotted on Fig. 2.

Generalization of the Newman phases We now
demonstrate a generalization of the Newman phases.
Consider a set of N equidistant optical frequencies la-
belled by n with amplitudes equal to E0h(n) and sepa-
rated by the angular frequency ωs (h vanishes outside the
domain 0 ≤ n ≤ N−1). In link with the Newman phases,
we consider a quadratic dependence of the phases. The
resulting electric field is:

Eϕ(t) = E0

∑
n

h(n)e−i(ω0+nωs)tei
n2

2 ϕ (1)

where ω0 is the angular frequency of the first spectral
component. Note that ϕ can be seen as the curvature of
the parabola of the phases and that when ϕ = 2π/N and
h(n) = 1 for 0 ≤ n ≤ N − 1 (flat spectrum), the phases
of the modes match the Newman phases. In the frame
rotating at ω0 and introducing θ = ωst, the electric field
rewrites:

Eϕ(θ) = E0

∑
n

h(n)e−inθei
n2

2 ϕ. (2)

The Poisson summation formula applied to the expres-
sion of the intensity Iϕ(θ) = Eϕ(θ)E∗ϕ(θ) = |Eϕ(θ)|2
yields [19]:
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FIG. 3. Top: Plot of g
(2)
ϕ (0) as a function of ϕ in the case of

N = 100 modes with equal amplitude. Bottom left: zoom of

g
(2)
ϕ (0) in the vicinity of ϕ/2π = p/q with p/q = 0, 1/2 and 3/5

from top to bottom. The horizontal span is 6π/100. The dips
correspond to the generalized Newman phases ϕ̂ = 2π(p/q ±
1/qN). The corresponding intensities Iϕ̂(θ) are plotted on the

right column and the values of g
(2)
ϕ̂ (0) are equal to 1.06, 1.09

and 1.15 respectively (top to bottom).

Iϕ(θ) = I0
∑
n,m

H(m,n−mϕ/2π)e−imθei
m2

2 ϕ (3)

where I0 = |E0|2 and H(x1, x2) =
∫ N
0
h(y +

x1)h(y)e−2iπyx2dy. In the two-dimensional plane,
H(x1, x2) is a function centered at the origin and the
widths of H along x1 and x2 scale respectively as N and
1/N .

The degree of second-order coherence at zero delay is:

g(2)ϕ (0) =
< Iϕ(θ)2 >

< Iϕ(θ) >2
. (4)

Since Iϕ(θ) is real we have in the general case:
< Iϕ(θ)2 >= I20

∑
m,n,lH(m,n − mϕ/2π)H∗(m,n +

l − mϕ/2π). Because the extension of H along the
second coordinate scales as 1/N , only the term l =
0 has a significant contribution and < Iϕ(θ)2 >=
I20
∑
m,n |H(m,n − mϕ/2π)|2. Moreover: < Iϕ(θ) >2=

I20

(∑
nH(0, n)

)2

= I20H(0, 0)2.

Interestingly it can be shown that g
(2)
ϕ (0) (as a func-

tion of ϕ) tends to the so-called Thomae’s function, i.e.
T (ϕ) = 1/q when ϕ = 2πp/q where q < N (Fig. 3) [19].

Note that g
(2)
ϕ (0) shows dips not only in the vicinity of

ϕ = 2kπ (more precisely at ϕ = 2kπ ± 2π/N which cor-
responds to the Newman phases) but also in the vicinity
of any rational value of ϕ/2π. In the following we prove

that at these locations g
(2)
ϕ (0) tends to unity when N

becomes large.
We define ϕ̂ = 2π(p/q±1/qN). Again Newman phases

correspond to the specific case where p = 0 and q = 1.
Defining H0 = H(0, 0) =

∫
h2(y)dy,

g
(2)
ϕ̂ (0) =

∑
m,n |H(m,n− mp

q ∓
m
qN )|2

H2
0

. (5)

For the same reason as before the terms in the nu-
merator having a significant contribution correspond to

m = kq, k integer and n = mp
q . Then g

(2)
ϕ̂ (0) =∑

k |H(kq,∓ k
N )|2

H2
0

.

Again only the first terms (labeled by k) in the numer-
ator contribute significantly. In the limit where N is large
kq is much smaller than N and H(kq,∓ k

N ) ≈ H(0,∓ k
N ).

Using Parseval’s theorem:

g
(2)
ϕ̂ (0) ≈

∑
k |
∫ N
0
h2(y)e±i2π

k
N ydy|2

H2
0

=
N
∫
h4(y)dy

|
∫
h2(y)dy|2

(6)
which is equal to unity in the case of a flat spectrum.

Therefore the intensity fluctuations tend to vanish when
the phases of the modes are equal to ϕ̂ = 2π(p/q±1/qN),
which constitutes a generalization of the Newman phases.
In the following these phases are called generalized New-
man phases.

Generation of a comb of optical frequencies with
quadratic phases in FSF lasers We now turn to the ex-
perimental implementation of quiet (or near constant in-
tensity) broadband light. In optics, the generation of
combs of optical frequencies with identical (or linear)
phases is routinely achieved in mode-locked lasers. How-
ever a comb of optical frequencies with quadratically
varying phase is more challenging to achieve since it re-
quires a dispersion between adjacent modes linearly in-
creasing with n, implying a very large group velocity dis-
persion. An interesting possibility is offered by linearly
chirped fiber Bragg gratings but is restricted to combs
with large frequency spacings [20]. However it turns out
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FIG. 4. Sketch of the experimental set-up (see text). The
output coupler (OC) of the injection-seeded FSF Ti:Sa cav-
ity is mounted on a translation stage (TS1). A Michelson
interferometer (MI) and a BBO crystal tuned for SHG at 780
nm enable to record the IAC. BS, PD and PMT stand re-
spectively for beamsplitter, photodiode and photomultiplier
tube.

that a CW injection-seeded frequency shifted feedback
(FSF) laser is a simple and flexible solution for the gener-
ation of an optical frequency comb with quadratic phases
[21]. Recall that a FSF laser cavity is closed of the +1
(or -1) diffraction order of an acousto-optic frequency
shifter (AOFS). Each time a photon makes a roundtrip
in a (linear) FSF cavity, its frequency is shifted by twice
the frequency of the acoustic wave fs/2. When oper-
ating without an external seeding, the resulting spec-
trum is modeless and the resulting laser field is similar
in terms of statistical properties, to a chaotic field (i.e.
g(2)(0) = 2) [22]. When a FSF cavity is seeded with
a single frequency laser the resulting spectrum consists
in a comb of optical frequencies with a frequency spacing
equal to fs. Interestingly it can be shown that the phases
of the modes of the comb evolve quadratically with n and
can be written as: ϕn = πn(n + 1) fsfc where fc is the
cavity free spectral range defined as the inverse of the
roundtrip time in the cavity [19, 21]. The linear term
in ϕn results in a simple temporal shift. The possibility
to tune the curvature of the phase parabola by adjusting
fs or fc leads to the demonstration of ultrahigh repeti-
tion rates by a temporal fractional Talbot effect: when
the ratio fs/fc is set as the rational p/q with q � N
the laser emits Fourier transform-limited pulses at a rep-
etition rate equal to pfc = qfs [21]. On the contrary
adjusting the curvature of the phases parabola according
to the generalized Newman phases leads to the possibil-
ity of using this laser architecture to generate quiet (i.e.
near constant intensity) broadband light.

Experimental demonstration A linear Z-shape Ti:Sa
laser cavity is closed on the +1 diffraction order of an
acousto-optic frequency shifter driven at 40 MHz (fs =
80 MHz). The optical roundtrip length of the FSF cavity
is about 3 m, resulting in a cavity free spectral range fc
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FIG. 5. Experimental comparison of the FSF laser operat-
ing without (in green) and with external seeding (in blue)
when the cavity length is adjusted according to the general-
ized Newman phase ϕ̂ = 2π(p/q ± 1/qN) where p = 4, q = 5
and N ≈ 2500 so as to minimize the intensity fluctuations.
Top left: optical spectra of the laser without (i.e. modeless
laser) and with external seeding. The sharp peak corresponds
to the injection laser. Top right and bottom left: comparison
of the RF spectra in the 0-1 GHz range and the IAC of the
laser without and with external seeding. Bottom right: cor-
responding SHG signals in the same experimental conditions.
The solid lines are quadratic fits.

close to 100 MHz. The cavity output coupler is mounted
on a translation stage for a slight tuning of the free spec-
tral range (Fig. 4). The Ti:Sa crystal is pumped by a
solid state laser at 532 nm with a power of 4.3 W. The
FSF cavity is injected by a single-mode Extended Cav-
ity Diode Laser (ECDL) at 780 nm (25 mW power, 10
kHz linewidth). The power at the output of the injected
FSF cavity reaches 30 mW and the spectrum is 200 GHz
wide. The beam is then sent into a Michelson interfer-
ometer and a BBO nonlinear crystal tuned for second
harmonic generation at 780 nm, to record the autocorre-
lation trace. When fc is exactly tuned to 100 MHz, the
ratio fs/fc is equal to 4/5 and the laser emits pulses at
the repetition rate of 400 MHz, according to the temporal
fractional Talbot effect.

When the FSF laser operates without seeding it gener-
ates a 100 GHz broadband modeless spectrum. When ex-
ternally seeded, the resulting spectrum consists in a comb
(not resolved by the spectrometer) of about N = 2500
modes separated by 80 MHz. The optical spectra are
plotted on Fig. 5. When the cavity free spectral range is
adjusted to fc = 99.990 MHz so as to match the gener-
alized Newman phases ϕ̂ = 2π(4/5 + 1/12500) the inten-
sity spectrum shows significantly less noise as compared
to the modeless laser (Fig. 5, top right) and the interfer-
ometric autocorrelation trace averaged over the fringes
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shows a flat response, contrary to the trace of the mod-
eless laser which displays a 3:2 peak-to-baseline ratio, as
predicted on Fig. 2 (Fig. 5, bottom left). To infer a pre-
cise value of the g(2)(0) of the CW injection-seeded FSF
laser we proceed as follows: the mobile arm of the in-
terferometer is blocked and the intensity of the SHG sig-
nal is detected for different intensities of the pump laser,
in the cases of both the modeless laser and the seeded
laser. The experimental set-up is exactly the same in
both cases. Since the modeless laser displays the sta-
tistical properties of a chaotic source (i.e. g(2)(0) = 2)
one deduces that for the FSF laser g(2)(0) = 1.3 (Fig.
5 bottom right), which demonstrates intensity fluctua-
tions strongly reduced compared to a chaotic light source.
Note however that this value is higher than a constant in-
tensity light that would lead to g(2)(0) = 1. This mainly
comes from the fact that the experimental spectrum at
the output of the seeded FSF laser is not flat, which
leads to some discrepancy compared to the previous cal-
culations. According to the experimental spectrum (Fig.

5, top left) the expected value of g
(2)
ϕ̂ (0) = N

∫
h4(y)dy

|
∫
h2(y)dy|2

is found to be 1.22 which is closer to the experimental
value. Finally we record successively the interferomet-

ric autocorrelation traces of the (seeded) FSF laser while
scanning the cavity length in the vicinity of ϕ = 2π×4/5,
and observe the transition from maximal to minimal fluc-
tuations (fig. 6, A) to H)). When ϕ exceeds ϕ̂ (fig. 6, H)
to J)) the average autocorrelation trace shows a modula-
tion which is the signature that ϕ/2π approaches other
rational quantities p′/q′ (with q′ < N).

Finally it is important to justify that this experiment
satisfies indeed the conditions of validity of the transposi-
tion, in the optical domain, of the reduction of the inten-
sity fluctuations by a specific engineering of the phases.
First quantum noise is negligible in the present case: the
average power per frequency component is about 10 µW
and the typical measurement time scale is in the µs range,
which makes the signal to (quantum) noise ratio close to
104. Second despite the lack of dynamical studies on CW
injection-seeding FSF lasers, it is reasonable to assume
that the relative amplitude of the individual frequencies
remain constant at the measurement time scale. This as-
sumption is supported by heterodyne measurements be-
tween the seed laser and the laser field at the output of
the FSF cavity, which show that the intensity of the first
frequency-shifted modes remain constant. Moreover the
optical spectrum measured with a GHz resolution shows
no fluctuations in shape or intensity down to the ms time
scale. Finally the intrinsic dynamics (i.e. relaxation os-
cillations) of the homogeneous gain medium applies iden-
tically to the whole spectrum and should not affect signif-
icantly the relative amplitude of the individual frequency
components. Therefore our system consisting in a comb
of optical frequencies with quadratic relative phases con-
stitutes a convincing optical analogue of its radiowave or
acoustic counterparts demonstrated so far.

Conclusion We have demonstrated the possibility to
lower significantly the intensity fluctuations of a broad-
band light source resulting from intermodal beating, by
a quadratic adjustment of the phases of the modes. Our
demonstration applies to near-flat combs of optical fre-
quencies, with constant relative amplitudes and negli-
gible quantum noise. We have generalized the New-
man phases and demonstrated that for many other val-
ues of the curvature of the phase parabola, the inten-
sity fluctuations of a flat spectrum of equidistant fre-
quencies tend to cancel in the limit of a large number
of modes. This general result could be applied to other
fields of wave physics, including wireless communications,
OFDM, acoustics, hydrodynamics and even quantum me-
chanics. Then we have applied this concept to optics
and implemented a laser generating about 2500 modes
arranged according to these generalized Newman phases
and displaying intensity fluctuations reduced down to
g(2)(0) = 1.3 (or C = 0.54), that is significantly lower
compared to a chaotic light source for which g(2)(0) = 2
and C = 1. This demonstration could find applications in
DWDM fiber networks where intensity fluctuations need
to be limited to avoid non-linear effects responsible for
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channel cross talk. Moreover it could bring a solution to
the distortion of signals at the output of optical ampli-
fiers. Finally the injection seeded FSF laser constitutes a
unique broadband light source with constant spectrum,
constant average power and photon statistics easily tun-
able from super poissonian to poissonian.
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