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Abstract Architectural decisions have emerged as a means to maintain the
quality of the architecture during its evolution. One of the most important de-
cisions made by architects are those about the design approach such as the use
of patterns or styles in the architecture. The structural nature of this type of
decisions give them the potential to be controlled systematically. In the litera-
ture, there are some works on the automation of architectural decision violation
checking. In this paper we show that these works do not allow to detect all
possible architectural decision violations. To solve this problem we propose an
approach which: i) describes architectural patterns that hold the architectural
decision definition, ii) integrates architectural decisions into an architectural
model and, iii) automates the architectural decision conformance checking.
The approach is implemented using Eclipse Modeling Framework and its ac-
companying technologies. Starting from well-known architectural patterns, we
show that we can formalize all those related to the structural aspect. Through
two evaluations, we show that our approach can be adapted to different ar-
chitecture paradigms and allows to detect more violations comparing to the
existing approaches.
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1 Introduction

Software architectures deal with the decomposition of a system into its major
components, the mechanisms and rules by which these components interact
and the global properties of the system that emerge from the composition of
its pieces. Documenting software architectures during the development pro-
duces major benefits such as early analysis, system visibility and complexity
management, design discipline and global conceptual integrity management.
During the maintenance, architecture models can help software developers to
gain a sufficient knowledge of the software. Thus, these high level models play
now a central role in all the stages of the software processes. But to be actually
useful such models cannot be confined just to a simple “blueprint” role. They
should also provide knowledge about the “reasons” that led to the adoption
of this particular architecture. An architecture model should help in pointing
and understanding the usage of a particular component, organization, style or
pattern. A good software architecture must talk about itself. This self-content
attitude is very important particularly during the maintenance. Without it,
any evolution of the system becomes potentially time-consuming and risky. In-
deed, a change maybe in contradiction with some previously taken decisions,
which lead the system to lose some of its properties (such as maintainabil-
ity, portability or performance). When the problem is detected, a rework is
needed. It is a sequence of iterations, that undoubtedly increases the develop-
ment costs. To avoid this problem, we should i) make explicit this knowledge
and ii) check (automatically if possible) that a change to be made does not
conflict with past decisions.

Usually, the documentation of this knowledge takes the form of a set of
what we call an architectural decision (AD) [17]. ADs cover many aspects of
an architecture. Among these aspects, those related to the structure of the
architecture have the highest potential to be automatically checked. This type
of AD highlights a particular subset of an architecture model (a subset of the
model elements) and conveys its rationale. For instance, a structural AD can
stipulate that a pipeline style is introduced in some part of an architecture
to ensure a certain level of maintainability for a specific function. Because
the capitalization of structural ADs is a central concern, several proposals
have already been made to formally document and check them. Most of these
proposals rely on the concept of pattern. This choice is due to the fact that
at the architecture level, a typical design decision is about applying some
architectural patterns or styles that address the quality requirements of the
system [3L[41]. The use of architectural patterns as structural solutions of ADs
(called StAD in the remaining of this paper) helps the architect to have a
general, high level view about an architecture [43]/45].

There are mainly two trends of proposal in the literature concerning the
automatic checking of StAD. The first trend such as [38,[39] focuses on the re-
spect of the applied pattern in the architecture model. StADs take the form of
architectural constraints describing the organisation imposed by the pattern.
These constraints are carried by the impacted model elements. Modifications
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or additions to the model that cause a violation of the structure (constraints)
of a pattern can be detected. The drawback of using these approaches to doc-
ument StADs is that the consistency is only checked as long as concerned
elements structurally conform to their playing roles in the architecture. Con-
sequently, the existence of pattern-related elements is a condition that is left
unchecked which can lead to undetected violations when deletions are done.
On the contrary to these mentioned work, the second trend consists of several
studies such as [I8[I9R] which are conducted to define the trace of applying
patterns in the architecture. Instead of maintaining the structural consistency
of a pattern, these works focus on verifying the existence of the impacted
model elements. Deletions of these elements are detected but they can cause,
as modifications of these elements, some false positive. Moreover additions
that would affect the consistency of a pattern are not detected. It is unsure
that the semantics of applied patterns’ structure is assured during the archi-
tecture’s evolution. Thus, none of these proposals can ensure that all the StAD
violations will be detected.

In this paper we propose an additional support to the documentation of
StADs which helps architects to automatically preserve architectural knowl-
edge about the structure of architecture. We chose also to use architectural
patterns as a support for describing StADs. We make explicit the links between
the pattern’s elements and the architecture’s elements through a mapping.
Thanks to this mapping, after an evolution, it becomes possible to discover
that a StAD is no longer implemented in the architecture, even if all the
involved elements from the architecture were removed. Thus, our approach
emphasizes the usefulness of combining mapping models and pattern models
in documenting StADs. Indeed, mapping models and pattern models together
maintain the existence of the StAD and its structural consistency. The ab-
sence of one of these two artefacts will lead to an incomplete StAD and thus,
undetected violations.

The remaining of the paper is organized as follows. Section 2 introduces the
vocabulary and concepts related to ADs and patterns. Section 3 gives an illus-
tration of the problem and shows the limitations of the existing approaches.
Section 4 introduces the general approach while Section 5 goes into detail of
the reusable StAD creation step. Section 6 describes StAD manipulation stage.
Section 7 introduces the implemented toolset and Section 8 two validations we
have conducted. Before concluding the paper in Section 10, we discuss related
work in Section 9.

2 Background

We conducted a review of the relevant literature about AD documentation
and pattern modeling and how the latter can be used to support the former.
More specifically, we concentrated on ADs about the use of patterns in the
architecture. We discuss these issues in the sub-sections below.
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2.1 Architectural Decision (AD)

An AD is defined as the description of a set of any modification made to
the software architecture together with its rationale, design rules and design
constraints [I7]. AD is structured by ISO/IEC/IEEE 42010 [16] as a concept
that affects architectural description elements, pertains to one or more con-
cerns and justifies architectural rationale. An architectural description element
could be a stakeholder, a viewpoint, a model element, etc. A concern could
be any interest in the system such as behavior, cost, structure, etc. An ar-
chitecture rationale is the explanation, justification or reasoning about the
architecture decisions that have been made and architectural alternatives not
chosen. This definition comes after many efforts in the literature to draw a
complete structure for AD such as [I71[40,46].

AD documentation serves as a means to emphasize the rationale behind
some design decisions having been made. Respecting these rationale means
that the architecture evolves in harmony with existing design decisions. Thus,
architecture is the result of making a set of ADs, and by documentation the
outcomes of those ADs are recorded [9].

2.2 Pattern

A pattern presents a well-proven solution for a particular recurring design
problem that arises in a specific design context [6]. Patterns serve many differ-
ent purposes. They provide common vocabulary and understanding for design
principles. Patterns themselves are a means of documenting software archi-
tecture. But most importantly, patterns support the construction of software
with well-defined properties [I2]. That is the reason why a typical method of
software architecture development is to select and combine a number of pat-
terns that address the expected quality requirements and use them to build
elements of the architecture [3L5LATLB5]. Therefore, pattern-centric software
architectures are built around the notion of pattern. Such a software architec-
ture structure can be seen to be an amalgamation of many different patterns.

2.3 StAD about the application of patterns

ADs can fall into many different categories: ADs about the applied technol-
ogy, the system assets or the conceptual model of the architecture [46]. Among
them, structural ADs are the most common ones [30]. Indeed, every evolution
of a system often begins with structural ADs taken to modify the structure of
architecture since they affect the system on the highest level of abstraction.
StAD is a part of structural AD. StAD highlights certain structures in the
architecture and links them to structural ADs [3I]. It not only conveys the
intention of architects but also shapes the structure of the architecture. Thus,
a StAD-conformed structure within the architecture not only represents the
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intention of an AD but also, in terms of AK (architectural knowledge), is the
indicator of the existence of AK. One of the most popular StADs are those
concerning the application of patterns in the architecture. Indeed, patterns
concern some of the most important AD and provide a rich set of AK [43].
Moreover, reusable design knowledge normally documented in patterns can be
adapted to inexpensively document AD in specific context [47]. Thus, StADs
about the application of architectural patterns become important artefacts
that need to be documented. Applying patterns means applying successive
StADs that eventually result in an architecture [9]. In other words, StAD
claims the reason for which applied patterns prevail in the structure of archi-
tecture.

2.4 Pattern Conformance

Patterns, at the architectural level particularly, have become important con-
structs in existing ADLs such as Wright [I], Acme [13] or UML [I1]. Patterns
allow one to define a domain-specific design vocabulary, together with con-
straints on how that vocabulary can be used in constructing an architecture.
In these ADLs, patterns are initialized by declaring instances of architectural
elements and typing them with pattern elements. An architecture is said to
conform to a pattern if there is no conflict between pattern-typed architectural
elements with respect to pattern constraints. In Acme and Wright, constraints
are written based on first-order predicate logic language and pattern consis-
tency is verified by formal specification checkers [IL[I3]. In UML, constraints,
also known as well-formed rules, are written using OCL (Object Constraint
Language)[28] and pattern consistency is referred to the conformance of model
against meta-model. For instance, in [11] the authors specify pattern by meta-
models which in turn, characterize UML design models. In another work [24],
the authors use UML’s stereotype extension mechanism to incorporate other
ADL’s features, including the description of architectural styles, which are
used to verify the conformity of UML models.

2.5 StAD Conformance

In the structural point of view (skipping informal information such as the con-
text, the problem, the rationale, etc.), a StAD is thus considered as any addi-
tion, subtraction, modification made to the structure of software architecture.
An architecture is said to conform to a StAD if all of StAD-related elements
prevail in the architecture [I8[I9]. This understanding of StAD conformance
implies two requirements: i) given an architectural element, one should be
able to trace back to the architectural decision which it is based on and ii)
the main consequences of an executed StAD, or the changed elements in the
model due to that StAD in other words, must be preserved in the architec-
tural model. In case of StAD about the application of pattern, StAD-related
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elements are in fact those playing roles in the applied pattern. Thus, the StAD
conformance implies that the outcome of the application of that pattern must
be documented.

3 Illustration and problem

To illustrate the need of maintaining StADs and how existing work cannot re-
spond to this need, we take the FRC (Forestry Regulatory Commission) case
study which is described in [36]. FRC is dedicated to commercial activities re-
lated to the forestry industry. It has been expanded in the past and expects to
continue to change which results in costly development. Therefore, SOA (Ser-
vice Oriented Architecture) has been opted to help the system respond more
quickly to changing requirements. During the transition step to SOA solution,
instead of rebuilding existing components, it was considered faster and less ex-
pensive to reuse them. It is the case of the Fines service and the Fvaluations
service which want to access to different repositories managed by a legacy
component called Data Controller, a standalone Java EJB (Enterprise Java
Beans). The Legacy Wrapper pattern [36] was chosen to handle this situation

as illustrated in Figure [T}
- -
- \
Legacy Legacy wrapper

—>
4—
[— /’
component component

\

/

Legend: @ Service Ej Database €5, Reference

Fig. 1 Legacy Wrapper pattern in FRC

More specifically, the DWSA Data Service which is deployed as a web-
service is added to wrap the legacy component Data Controller to assure
a seamless communication. The advantage of this pattern is that it allows
the Data Controller component to perform changes and refactoring efforts
without affecting the other service consumers that bind to it. This pattern im-
plies the constraint stipulating that every service can only connect to the Data
Controller component via the wrapper DWSA Data Service. The application
of the Legacy Wrapper pattern in the FRC architecture is a StAD that needs to
be taken into consideration throughout the evolution of FRC. In the viewpoint
of the existence of related elements, this StAD is considered to be preserved as
long as the legacy component Data Controller and the wrapper DWSA Data



Preserving Architectural Decisions through Architectural Patterns 7

Service exist in the architecture of FRC. On the other hand, in the viewpoint
of the pattern’s structural consistency, this StAD is maintained as long as the
legacy component Data Controller is the only component being able to access
to the wrapper DWSA Data Service.

Later, a new service called Appealed Assessments was added to FRC and
it also needs to access the Data Controller component. The architect that
decided this addition was not completely aware of the rationale behind the
existence of the wrapper DWSA Data Service. He then decided to use the
Service Facade pattern [36]. More specifically, a facade called Data Relayer
is added inside the Appealed Assessments Service with the only purpose to
communicate with the component Data Controller (Figure . The reason
influencing the architect not to use the Legacy Wrapper pattern is that Service
Fagade is simpler to implement, although the service using a facade will be
coupled to the legacy component.

Service facade
— \

—_—> ——)
-« \
Legacy Legacy wrapper
o) component component -

Legend: [ Service Ej Database _)< Reference  $€ AD violation

Fig. 2 Architectural decision violation by adding Service Facade pattern

As we can observe in Figure [2] the constraint of the Legacy Wrapper pat-
tern is violated due to the fact that the Appealed Assessments Service can still
connect to the Data Controller component via the Data Relayer fagade with-
out passing through the wrapper DWSA Data Service. In spite of the existence
of the legacy component Data Controller and the wrapper DWSA Data Ser-
vice, the decision of using Legacy Wrapper pattern has been violated since its
structural consistency is not insured. This example shows that the existence
of StAD-related elements is a necessary condition but not a sufficient one to
detect the violation of StADs. Indeed, one indispensable part of architectural
pattern is constraints imposed on future evolution of concerned elements.

Once informed about the violation, the architect changed the Legacy Wrap-
per pattern to a less rigid version which allows fagade components to connect
to legacy components. Thus, the link between Appealed Assessments Service
and Data Controller is no longer a violation. Later, another architect par-
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ticipated in the project. He was not aware of the extended version of the
Legacy Wrapper and he found that the Appealed Assessments Service must
not access the Data Controller component directly. He deleted the link from
the Appealed Assessments Service component towards the legacy component
Data Controller and the Data Relayer facade as well. Then he added a link
between the Appealed Assessments Service component and the legacy wrapper
DWSA Data Service.

—_—>
&
F— /
Legacy Legacy wrapper

component component

Legend: [ Service @ Database €. Reference $§ AD violation
€ 5 Deleted reference [” 7 Deleted service

Fig. 3 Architectural decision violation by deletion

Despite that the structural consistency of Legacy Wrapper pattern is al-
ways insured (there is no direct access to the legacy component), the decision
of allowing the Data Relayer component (fagade) to access directly to the Data
Controller component (legacy component) as an extended version of Legacy
Wrapper pattern has not been preserved as shown in Figure[3] Thus, the struc-
tural consistency of pattern is also a necessary condition but not a sufficient
one to detect the violation of StADs. Indeed, the obvious prerequisite of an
architecture conformed to a given pattern is that the concerned elements must
exist.

In summary, these examples show that the documentation of StADs about
the application of patterns should focus on two aspects: the existence of related
elements and the structural consistency of the applied patterns. Moreover, they
are complementary aspects and both of them must be considered in evaluating
StADs. In other words, one aspect can not replace the role of the other one and
vice versa. The lack of one of these two aspects could lead to undetected StAD
violations. In the literature, the existing work about ADLs [ILI3] or architec-
tural constraints [37.38] focus solely on the structural consistency aspect. The
validity of StADs is maintained as long as concerned elements structurally
conform to their playing roles in the architecture. Whereas, the other work
about ADs [192IL[I8] on the other hand, focus on the existence aspect. A
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StAD is considered to be preserved as long as modifications to concerned ele-
ments persist in the architecture. The approach presented in the remaining of
this paper consists in combining these two aspects in documenting StADs.

4 General Approach

The main idea behind our work is that StADs about the use of patterns should
be preserved throughout the evolution of the architecture. More specifically,
the existence of pattern-related elements and the structural consistency of
StADs about pattern use should be automatically checked whenever there is a
modification to the architectural model. Because we only concentrate on StADs
about pattern use and for the sake of simplicity, the term StAD throughout
the following this paper is understood as StAD about pattern use. Moreover,
we focus on the structural part of AD to support the conformance checking. It
does not mean that the other parts of AD such as the rationale or the concerns
are not important. Instead, together they make a complete structure of StADs
that supports both the documentation and the automatic checking.

Similar to [46], StAD documentation in our approach goes through three
steps: Pattern creation, StAD integration and StAD verification. Figure [4] de-
picts the process of using StADs in architecture construction.

Life cycle of StAD
Pattern StAD StAD
definition creation verification

Fig. 4 The process of using StAD

Pattern creation consists in the specification of a pattern structure. A
pattern is defined once and used for all concerned StADs. StAD creation is
the step in which the decision about the application of the defined pattern is
created. Finally during the StAD wverification step, the architectural model is
checked whether it complies with the created StAD. If the architectural model
is found to be inconsistent with the created StAD, the architect can come back
to the StAD creation step and recreate another StAD and so forth.

On the purpose of automating the process of StAD documentation, we
use the Model Driven Architecture (MDA) approach [27]. Each artifact is
considered as a model conforming to its meta-model in order to create a sys-
tematic process thanks to model transformations and leverage existing MDA
techniques (e.g. conformity verification).

In the remainder of this section, we will go further into each step in the
StAD documentation process.
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4.1 Pattern definition

We propose the use of a general pattern language for the purpose of pattern
definition. As shown in Figure (Pattern definition part), the abstract syntax
of this language is described using a general pattern meta-model which contains
only architectural elements involved in the pattern definition. These elements
are determined through a survey of well-known architectural patterns such
as those described in [36,@.[6]. In terms of concrete syntax of our language,
one can graphically define a meaningful architectural pattern in form of a
pattern model using necessary elements. Furthermore, pattern models are also
language-independent. With the separation between pattern definition and
architectural design, no modification to the architectural model is needed to
define a pattern, which makes it easy to adapt to different ADLs.

4.2 StAD creation

Links between pattern elements and their correspondent architectural elements
play an important role in keeping track of StAD made to an architectural
model. An explicit linking will facilitate the specification of StADs as well as
their storage. In our approach, links between pattern elements and architec-
tural elements are represented by mapping models (illustrated in the Pattern
integration part of Figure . A mapping model indicates that a StAD has
been applied on an architectural model.

MOF/ECORE
Conformed to .\Conformed to onformed to

StAD creation ) Pattern definition ) StAD verification  J

ADL
Meta-model

Conformed to

Reference

Transform to

; Pattern models ) .

Meta-models

Conformed to

Reference|
Architectural
model

__»:Existing element @ Newly added element __>: Generated element

Conformed to

Conformed to

to

Transform to

Mapping models
(= StADs)

Fig. 5 MDA approach for SStAD documentation
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In the literature, architecture is considered as a set of views which are
representations of system elements and relations associated with them [9].
Each view serves a specific purpose depending on the concerns of one or more
stakeholders. Having taken this viewpoint into account, we propose to consider
an architectural model as a multi-view representation where each view contains
only elements related to a specific StAD. In this scenario, StAD views are
filtered from the architectural model through a transformation mechanism in
which mapping models are the source models and StAD views are the target
models. In fact, we can consider the mapping models as the initial version of
the StAD views where information about the integration of StAD is stored.
Thus, the transformation is the step in which this information are concretized
into StAD views elements.

4.3 StAD verification

To make sure that an architectural model is consistent with created StADs, not
only do the existence of StAD-related elements in an architectural model need
to be verified but also the constraints imposed on them need to be handled.
To achieve the first goal, the presence of StADs in the architectural model is
checked through the completeness of mapping models. Indeed, mapping models
are intermediary bridges between the architectural model and the pattern model
and thus, the incompleteness of mapping models shows the lack of StADs in
the architectural model. To achieve the second goal, the constraints imposed
by patterns on the architectural model are checked through the consistence of
StAD views. To check the conformity of StAD views, we chose to first transform
the pattern models into StAD view meta-models (Pattern verification part in
figure [5) and then, make use of model checking techniques from MDA [27].

5 Pattern definition

The process of creating a pattern consists in instantiating a pattern model from
its meta-model. We first introduce the general pattern meta-model from which
pattern models are created. Then, we clarify the pattern definition process
through a concrete example.

5.1 General pattern meta-model

The general pattern meta-model provides the language to define an architec-
tural pattern. It contains all necessary architectural features from the target
ADL and concepts related to pattern definition. Figure [6] illustrates two parts
of the pattern language: pattern part and structural part. While the pattern
part is general enough to be applied in any paradigm, the structural part rep-
resents concrete elements for each supported language family. The structural
part of one paradigm can be replaced by the structural part of another one.
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In this example we choose the structural part that corresponds to SOA de-
scription languages family. We provide more details about how to replace the
structural part to switch to another language family in Section [8.1

<<enumeration> > L‘m_
2 ConstraintScopd T name : EString
= pattern
= architecture
.3/ Operators multiplicities containingRoles
- o 0.5
T name : EString Multiplicity E Role '
T lowerBound : EInt ¥ name : EString
%‘ T upperBound : EInt
& [E Overlapping| Stringing_|| | ¥ horizontal : EBoolean o.r .
E T vertical : EBoolean roles (')"Ya"ams
8 K
s
£ elements) o+ 0.1 “rnuttiplicity B Constraint
source 0.1 H Element T name : EString
T name : EString T body : EString
target 0.1 iy T scope : ConstraintScope
.
5 H service 0" [Hcomposte] | reference [ Reference |
=4 : .
= T isWSDL : EBoolean | . | o
3
5 promote
= 1 | promote component } g, + 1+
=z B componentService 0.+ |E Component| reference]E ComponentReferen
Z isWSDL : EBool o
service "

targeﬂ 0."

Fig. 6 SOA General Pattern Meta-model

Inspired by the SCA modeﬂ [4], we construct the structural part of our
General Pattern Meta-Model for the SOA description language family as fol-
lows:

— Composite serves as the container to assemble and connect service-oriented
building blocks together.

— Components are basic units of the architecture that represent business
functions from which composite applications are built.

— A component is composed of component services and component references.
The former provide functionalities supported by the component and the
latter play the role of consuming services of other components. A com-
ponent reference can be wired to a component service through its target
attribute. The attribute isWSDL specifies whether the component service
is a webservice or not.

1 SCA is a model created by a group of industrial partners to support building applications
and systems using SOA solution.
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— Thinking of composites as black-box components, they have also services
and references. To be consumed by the world outside of a composite, a
component service of the containing component can be promoted as a
service of the composite. Similarly, to be served by an outside service,
a component reference should be promoted as a composite’s reference.

The pattern aspect part of our meta-model aims at providing functionalities
to characterize a meaningful architectural pattern. We reuse the composition-
centered pattern description language that we proposed in another work [35].
To be more specific, the meta-model allows us to describe a pattern element
at two levels: generic and concrete. Via the multiplicity, we can specify an
element as generic or concrete. A concrete element (not associated with any
multiplicity) provides guidance on a specific pattern-related feature. Being
generic, an element (associated with a multiplicity) represents a set of concrete
elements playing the same role in the architecture. A multiplicity indicates
how many times a pattern-related element should be repeated and how it is
repeated.

-

H Element 1 H Element 2 ‘ ‘ Element n H

Element n

Vertical multiplicity Horizontal multiplicity

Fig. 7 Orientation organization of generic elements

Figure[7]shows two types of orientation organization for a multiplicity: ver-
tical and horizontal. Being organized vertically, participating elements are par-
allel which means that they are all connected to the same elements, e.g. Clients
are all connected to Server in the Client-Server pattern [6]. On the other hand,
being organized horizontally, participating elements are inter-connected, e.g.
Filters are connected to each other via Pipes in the Pipes and Filters pattern
[6]. Each element in the meta-model can be associated with a role. A role spec-
ifies properties that a model element must have if it is to be part of a pattern
solution model [I1]. To characterize a role, we use architectural constraints.
A constraint made to a role on an element helps to make sure that the ele-
ment participating in a pattern has the aimed characteristics. Constraints are
represented in our approach in form of OCL rules. The scope attribute of a
constraint helps to determine the affected area of the constraint. If the scope
equals pattern, the constraint is imposed only on elements contained in the
pattern. Otherwise, the scope equals architecture means that the constraint
involves not only elements in the pattern but maybe also other elements in the
architecture. Let us take an example of a pattern containing two elements A
and B with a constraint saying that among all elements connected to element
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A, there is only element B assuring certain characteristics. This constraint
has an architecture scope since it may involve external elements besides those
defined in the pattern (A and B) to make sense. This attribute is important
to determine pattern-related elements within the architectural model for the
purpose of filtering pattern view (see Section . Patterns in our language
can be composed using two operators: overlapping and stringing. A stringing
operation means a connector is added to the pattern model to connect one
component from one pattern to another component from the other pattern.
An overlapping operation means that two involving elements should be merged
to a completely new element. Figure [§| shows these two types of merging op-
eration.

|
Overlapping operation i Stringing operation
_________ o -
| Patten 1 I r—-—————- i | pattern 1 | | Pattern 1 l
| Pattern 1 [ attern |
| Element 1 | == ——— Lo | Element 1 | | | Element 1 | |
l_ _ _——— ] —— | [Pattern 2 |I b —— | L — —1 |
- ]
—————— =—— I [ Element 12 :| ! ——— = = Fr————t——"
| Pattern 2 | L =——————— | | Pattern 2 | | Pattern 2 |
Element 2 L | l |
I bte—_— - |
]

Element 2 | | L Element 2 | |

L
Legend: # < Merging operator

Fig. 8 Two types of merging operation [35]

The reader can find more information about how to compose patterns using
these operators in [35].

5.2 Architectural Pattern Specification

For the purpose of illustration, we will examine the SOA Legacy Wrapper
pattern [36] which is also mentioned in Section

Based on the general pattern meta-model, we can instantiate the pattern
model for the SOA Legacy Wrapper with the emphasis on the following ele-
ments (as illustrated in Figure E[): the component LegacyComponent specified
with the role LegacyComponent representing the component with legacy imple-
mentations, the component WrapperComponent specified with the role Wrap-
perComponent representing the wrapper services in the pattern. The compo-
nent LegacyComponent is not assigned with any multiplicity since it represents
a concrete legacy component. Otherwise, the component WrapperComponent
is assigned with a multiplicity since it represents many possible wrapper com-
ponents. Furthermore, its vertical multiplicityﬂ indicates that there maybe
many instances of WrapperComponent and they must be vertically connected.
The role LegacyComponent is characterized by the Shielded ByWrapper con-
straint and the OnlyConnectedTo Wrapper constraint. The former stipulates

2 upperbound = -1 indicates that there’s no limited upper threshold for a multiplicity
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Fig. 9 SOA Legacy Wrapper pattern model

that there must exist a component that plays the role WrapperComponent
and is connected to the legacy component, the latter stipulates that for all ex-
isting components, if one does not play the role WrapperComponent then it can
not be connected to the legacy component. Note that the Shielded By Wrapper
constraint has a pattern scope since it involves only elements playing either the
role WrapperComponent or LegacyComponent. The OnlyConnected To Wrapper
constraint has an architecture scope since it involves not only elements playing
the two mentioned roles but maybe also other elements in the architecture.
The last constraint ConsumeLegacy characterizes the role WrapperComponent
and stipulates that there must exist at least one legacy component with all ser-
vices wrapped by the wrapper component. This constraint also has a pattern
scope. Even though the other participating elements in the Legacy Wrapper
pattern model, such as the component service of LegacyComponent and the
component reference of WrapperComponent, do not have specific roles, they
still contribute to the model to make a meaningful pattern.

6 StAD Manipulation

The process of manipulating StADs consists of integrating pattern models to
architectural models and checking the conformance of architectural models
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with associated StADs. The former is made thanks to a mapping model and
the latter is made thanks to a particular view on the architecture.

6.1 Associating a Pattern to an Architectural Model

The association of a pattern with an architectural model consists in manually
creating a mapping model between the former and the latter. Concretely, it
links elements in the architecture that directly relates to elements from the
pattern model. For the sake of simplicity, we do not show the mapping meta-
model here but basically, it consists of one meta-class per type of mapping.
Each meta-class defines a mapping between the source, an architectural meta-
class from the ADL meta-model and the target, an architectural meta-class
from the general pattern meta-model. The reader can find this mapping meta-
model in Appendix [D]

The architecture of FRC case study [36] is chosen to illustrate the documen-
tation of pattern use. Figure [10] sketches the mapping model which associates
the Legacy Wrapper pattern to a part of the FRC architecture. As we can see
in this figure, two components Data Controller and DWSA Data Service in
the FRC architecture are mapped respectively to two components playing the
roles of Legacy Component and Wrapper Component in the Legacy Wrapper
pattern model.

An architectural model can contain different mapping models, each of them
represents a StAD made to the architecture. Thus, the architectural model can
be considered as a set of elements in which each element can play different roles
coming from the same StAD or different ones.

6.2 Filtering StAD views

The architectural views are useful for understanding the overall architecture
of a complex system. In our case, each view represents one instantiation of
a pattern in the architectural model. Thus, a view is produced by applying
a transformation on the mapping model which captures a given StAD. The
transformation serves as a filter to realize two purposes: first, extract from the
architectural model elements related to StADs and second, eliminate language-
specific features of the architectural model to create a language-independent
pattern view model. This transformation can be compared to the one from
PSM (platform specific model) to PIM (platform independent model) in the
MDA approach. To realize this, we leverage the MDA transformation tech-
niques. More precisely, we use Kermeta [26] transformation rules to transform
mapping models into StAD view models.

Algorithm [1| illustrates the transformation of a mapping model into a view
model. First, it detects whether the pattern model has an architecture-scope
constraint. If not, the algorithm creates a StAD view model that contains
only pattern-related architectural elements. These elements and their pattern
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Fig. 10 Mapping model for the Legacy Wrapper pattern in FRC (Elements in dashed line
are those added after the evolution of the FRC architecture)

roles are determined via the mapping model. Otherwise, if the pattern model
has at least one architecture-scope constraint, then the algorithm creates a
StAD view model that contains all elements in the architectural model. But,
only the roles related to the concerned pattern are kept in the elements. Pat-
terns with architecture-scope constraints are not usual, as shown through our
experimentation on well-known SOA patterns (see section .

The bottom of Figure [11| represents the filtered StAD view model for the
mapping model before (without elements in dashed line) and after (with ele-
ments in dashed line) the evolution of the architecture described in Figure
As we can recall from the Legacy Wrapper pattern defined in Figure [9] the
scope of the constraint OnlyConnectedToWrapper is architecture. This leads to
the creation of a StAD view that contains all elements in the FRC architecture
with only their roles related to the Legacy Wrapper pattern. In the produced
StAD view there are two elements holding a role in the LegacyWrapper pat-
tern: DWSA Data Service and Data Controller playing respectively the two
roles WrapperComponent and LegacyComponent. The choice of this illustra-
tive pattern is made in order to cover the two kinds of constraint. In general
cases architectural patterns hold mainly constraints with pattern-scope. To il-
lustrate the StAD views generated in this case, we show on the top of Figure
the StAD view for the Legacy Wrapper pattern without taking into account
its architecture-scope constraint.
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Algorithm 1 The StAD view model filtering algorithm

Require: MappingModel M M
Ensure: StAdViewModel VM
: PatternModel PM < M M .target
: ArchitecturalModel AM < M M .source
Flag f < false
: for all Role r € PM.roles do
for all Constraint ¢ € r.constraints do
if c.scope = architecture then
f <+ true
Break
9: end if
10: end for
11: end for
12: if f = false then // No architecture-scope constraint is found // Only
pattern-related elements are filtered
13: for all Mapping m € M M.mappings do

S i e

14: ArchitecturalElement ae <— m.source

15: PatternElement pe < m.target

16: StAdViewElement ade < ae

17: ade.role < pe.role

18: V M.add(ade)

19: end for

20: else // At least one architecture-scope constraint is found // Filtering all
elements

21: for all ArchitecturalElement ae € AM.elements do

22: StAdViewElement ade < ae

23: for all Mapping m € M M.mappings do

24: if m.source = ae then

25: ade.role <— m.target.role

26: end if

27: end for

28: V M.add(ade)

29: end for

30: end if

6.3 StAD Checking

The checking process consists of two steps: first, the completeness of the map-
ping model is verified and if the mapping model’s integrity is assured, in the
second step, the StAD view meta-model is used to check the consistency of
the StAD view model. Whenever the mapping model is detected as incomplete
(e.g. due to the removal of some StAD-related elements in the architecture)
or constraints imposed by the StAD view meta-models on StAD views are not
satisfied, warnings are notified to the architect about which StAD is violated
and which elements in the architectural model are involved.

The conformity of an architectural model with its associated StADs is
checked through the conformity of the corresponding StAD wview with the con-
cerned pattern model. For the purpose of checking, StAD view meta-models are
generated from pattern models. The consistency of an StAD wiew is thus ver-
ified against its corresponding StAD view meta-model using the conformance
operator from the MDA approach.
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Fig. 11 StAD views for the Legacy Wrapper pattern produced from FRC architecture
(Elements in dashed line are those added after the evolution of the FRC architecture)

For every defined pattern model, an StAD view meta-model is generated
containing meta-classes from the general pattern meta-model embedded with
pattern constraints. The Algorithm [2] represents the simplified version of this
transformation.

Algorithm 2 The StAD view meta-model creation algorithm

Require: PatternModel M
Ensure: StAdViewMeta-model MM
1: MM.add(createMetaClasses())
2: for all PatternElement pe € M.elements do
3: Meta-class mc <— M M.getCorrespondingMetaClass(pe) // Select the corre-
sponding meta-class of the StAD view meta-model based on the pattern model element

4: for all Role r € pe.roles do

5: for all Constraint ¢ € r.constraints do

6: mec.add(c)

7: end for

8: if pe.get Multiplicity() # () then

9: Multiplicity m < pe.multiplicity

10: me.add(createMultiplicityConstraint(m))

11: else // Multiplicity constraint without parameter means that the meta-
class should have exactly one instance

12: me.add(create MultiplicityConstraint())

13: end if

14: end for

15: end for

For instance, the Legacy Wrapper pattern model described in the previous
section will be transformed to an StAD wview meta-model with the participa-
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Fig. 12 StAD view meta-model for the Legacy Wrapper pattern.

tion of the following meta-classes: Composite, Service, Reference, Component,
ComponentService and ComponentReference as shown in Figure[I2] The StAD
view meta-model is embedded with invariants imposed on the Component
meta-class as follows:

(1) invariant ShieldedByWrapper:
if role->includes(’LegacyComponent’) then
Component.allInstances()->exists(c: Component |
c.role->includes (’WrapperComponent’) and
self.isConnected(c) = true)
endif;

(2) invariant ConsumelLegacy:
if role->includes(’WrapperComponent’) then
Component.alllnstances()->exists(role->
includes (’LegacyComponent’) and service->
exists(s: ComponentService | self.reference->
collect(target)->includes(s)))
endif;

(3) invariant vertical_WrapperComponent:
if role->includes(’WrapperComponent’) then
Component .allInstances()->forAll(role->
includes (’WrapperComponent’) implies
isParallel(self))
endif;

(4) invariant multiplicity_LegacyComponent:
let s: Integer = Component.allInstances()->
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select(role->includes(’LegacyComponent’))->
size() in s = 1;

(5) invariant multiplicity_WrapperComponent:
let s: Integer = Component.alllnstances()->
select (role->includes (’WrapperComponent’))->
size() in s >= 1;

(6) invariant OnlyConnectedToWrapper:
if role->includes(’LegacyComponent’) then
Component.alllnstances()-> forAll(c: Component |
not c.role -> includes(’WrapperComponent’)
implies not self.isConnected(c) = true)
endif;

A part of invariants on meta-classes correspond to the constraints specified
on the role elements in the pattern model. The other part reflects information
about orientation and multiplicity. We can observe through the example that
the constraints imposed on the roles LegacyComponent and WrapperCompo-
nent in the pattern model are transformed into the invariants ShieldedBy-
Wrapper (1), OnlyConnectedTo Wrapper (6) and ConsumeLegacy (2) on the
Component meta-class. The multiplicity of the role WrapperComponent in the
pattern model is concretized in two other invariants in the Component meta-
class: multiplicity WrapperComponent (5) and vertical WrapperComponent (3).
Since the role LegacyComponent in the pattern model is not associated with
any multiplicity, the invariant multiplicityLegacyComponent (4) restricts the
exact number of LegacyComponent in the pattern view to one.

The FRC architecture passed through an evolution in which two compo-
nents Appealed Assessment Service and Data Relayer (sketched in dashed line
in Figure |10[and Figure are added. As we can observe, its mapping model
is complete. However, the addition of the Data Relayer component violates
the OnlyConnectedToWrapper constraint (6) since it is directly connected to
a component playing the role LegacyComponent.

Similar to UML, this way of StAD specification allows us to introduce two
levels of consistency: meta-model and well-formedness rules. More specifically,
well-formedness rules are expressed in OCL to assert the syntactic correctness
of StAD view models. According to the classification of model consistency
methods presented in [22], this approach is a syntactic-horizontal consistency
one.

7 Implementation

To verify the feasibility of our approach, we developed a tool called ADMan-
ager, which in its actual version, supports the documentation of StADs in
three different languages: SCA [4], Acme [13] and PiADL [29].
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7.1 ADManager tool

With ADManager we aim to make concrete the aforementioned concepts. The
tool provides the following functionalities:

1. Create architectural patterns
2. Integrate StADs to architectural models
3. Verify the consistency of architectural models according to the held StADs.

ADManager is developed based on EMF (Eclipse Modelling Framework) [32].
We choose EMF to realize our tool since we leverage MDA, where models are
basic building units, to develop our approach. As shown in Figure [L3] the tool
consists of five Eclipse plug-ins built on existing Eclipse technologies. They
are:

— Pattern creation plug-in uses EMF and GMF (Graphical Modeling Frame-
Work)El modeling support in order to allow architects to define Pattern
models graphically.

— StAD integration plug-in is an editor supporting the creation of Mapping
models between pattern elements and architectural model elements.

— StAD verification plug-in uses OCL tool to support writing rules in pat-
tern models, during pattern creation, as well as conformance verification
between StAD view models and StAD view meta-models during StAD
checking.

— StAD view meta-model generator plug-in uses Kermeta to implement rules
generating StAD view meta-models from pattern models.

— StAD view generator plug-in uses Kermeta to implement rules generating
StAD views from mapping models.

Note that in Figure[6]the General Pattern Meta-Model for SOA is separated
into two parts: one specific to the SOA description language family and the

3 http://www.eclipse.org/modeling/gmp/
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other for the notion of pattern. The separation of these two aspects gives our
tool the flexibility to support many different ADL families just by switching
to the appropriate structural part of the pattern meta-model. Indeed, besides
SCA, we have been able to support two different ADLs, namely Acme and
PiADL, by keeping the pattern part and modifying the structure part in the
pattern meta-mode

As ADManager is also a consistency management tool, it supports the
following functionalities among those described in [10]:

— Automatic inconsistency detection - The tool automatically extracts pat-
tern view models from mapping models and checks their consistency.

— Visual inconsistency presentation - The tool provides a visual inconsistency
feedback to the user via description dialogues.

— Inconsistency diagnosis - The tool diagnoses a model and presents a user
with a summarized report about which pattern is violated and if so, at
which constraint.

The reader may obtain a complete guiding tutorial video and more in-
formation about the ADManager tool at: http://www-archware.irisa.fr/
software/admanager/|

8 Evaluation

The main contribution which lies behind our work is the documentation of
pattern-centric StADs which maintains both the existence of StADs and their
structural consistency. For this purpose we defined a general pattern defini-
tion language that can be switched from one paradigm to another. Thus, to
evaluate our approach, we first show the ability to adapt our pattern defini-
tion language in two different paradigms. Then we show the effectiveness of
StADs’documentation and their completeness in terms of existence and struc-
tural consistency.

8.1 Application of pattern definition language

To evaluate the support of multi-paradigms, we collected patterns from two
different paradigms, namely SOA and Component-Based Architecture (CBA),
and see how our pattern definition language can support them. There are two
criteria upon which patterns are chosen to be formalized. The first one is that
the pattern’s vocabulary cannot extend beyond the concepts supported by the
corresponding ADL. The second one concerns the scope of the pattern. We
limit selected patterns to the structural aspect, other patterns are considered
to be out of scope.

4 The reader can find these meta-models at the same website of ADManager tool
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8.1.1 SOA patterns

We have examined the SOA patterns from [36] that are summarized in Tablel[]
In that table we reused the categorization of patterns given in [36]. Among
the 80 identified patterns there are up to 50 patterns focusing on the aspect of
service management. Examples of service management patterns are those con-
cern how to physically centralize or decentralize services, how to determine the
boundary of service logic, etc. These patterns in fact do not directly concern
the structural aspect of the architecture. Therefore, they cannot be formalized
using concepts from the ADL.

Table 1 Categories of SOA Patterns from [36]

Architectural | Formalized Pa.tterns with
Pattern category Patterns architecture scope
patterns patterns .
constraints
Serv.1ce inventory o1 10 5 0
design patterns
Service design 33 14 14 9
patterns
Service
composition design 23 6 6 2
patterns
Total 80 30 25 4

As we can observe in the Table [I] among the remaining 30 architectural
patterns there are ones based on architectural concepts that are not supported
yet by Service-Oriented ADLs such as service inventory, service layer, etc. This
explains why only 25 patterns are formalized using our approach (“Formal-
ized patterns” column). Most of the formalizable patterns fall into the Service
design pattern category. Indeed, patterns in this category are good practices
in service organization, encapsulation, implementation, governance and there-
fore, suitable to be architecturally formalized. The column “Patterns with
architecture scope constraints” gives the number of patterns holding at least
one constraint with architecture-scope. Only 4 patterns, among the 25 formal-
izable ones, fall in this case.

8.1.2 CBA patterns

To support the design of CBA patterns, starting from the SOA pattern meta-
model (see Section @, we switched the structural part to another one that
conforms to CBA patterns. Figure shows the CBA pattern meta-model.
More specifically, this structural part consists of the set of architectural ele-
ments: component, connector, port and role. This set of elements is in fact the
necessary design vocabulary for architectural pattern as pointed out in [25L[9].
Switching from the SOA pattern meta-model to the CBA pattern meta-model
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is in fact the matter of disconnecting the structural part of the former and con-
necting the structural part of the latter. More specifically, connecting the CBA
meta-model to the pattern part consists in i) Adding the inheritance relation-
ship between two meta-classes SimpleElement and CompositeElement (CBA
part) and the Element meta-class (Pattern part) and ii) Adding a composition
relationship between the CompositeElement meta-class (CBA part) and the
Element meta-class (Pattern part). Thus, the switching is realized without any
modification in the pattern part of the general pattern meta-model.
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Fig. 14 General CBA pattern meta-model

Using this adapted pattern language, we have tried to model the CBA pat-
tern catalogue described in [2]. Table [2| shows the examined patterns assigned
to different viewpoints.

As we can observe, we have been able to model 14 patterns (Column Struc-
tural patterns) out of the total 24 patterns (Column Pattern). Our pattern
definition language focuses on the structural aspect of architectural patterns.
Thus, the patterns concerning the behavioural aspect are not formalized in
our study. Representatives of behavioural patterns can be those dealing with
invocation mechanism, runtime events, etc. None of the 14 formalized patterns
contain a constraint with architecture scope.

The reader can find a complete list of formalized patterns in two paradigms
SOA and CBA in Appendix [A] and Appendix [B]
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Table 2 Categories of architectural patterns from [2]

Structural Pattern with
Architectural view Pattern architecture scope
pattern .
constraints
Layered view 2 2 0
Data flow view 2 1 0
Data-?entered 3 3 0
view
Adaptation view 3 2 0
Language 3 0 0
extension view
User in.teraction 3 3 0
view
. Comp.onen.t 5 9 0
interaction view
Distribution view 3 1
Total 24 14

8.2 StAD documentation

The following subsections discuss the effectiveness and the completeness of our
support for StAD documentation. We first introduce the materials used in our
study and then go into details of evaluation results.

8.2.1 Evaluation materials

We evaluated our approach with 8 architectural models. These models vary
in terms of size and domain. They are gathered from different sources in the
literature. These models as well as the evaluation results can be found in a
technical report entitled IRISA ArchWare-2013-TR-027] at ADManager’s web-
site. We choose Acme as the ADL to depict these models in this evaluation
but as we stated in section [7.1] it is feasible to change to another ADL since
the pattern meta-model is language independent. In Acme, an architecture is
described using elements such as component, connector, port, role, representa-
tion, attachment, etc. among which components and connectors play the most
crucial roles. Thus, the size of model is expressed according to three types
of measurements: first, by the number of all elements, second, the number of
components and third, the number of connectors. Figure shows the sizes
of the models in terms of model elements, components and connectors. They
differ from small models (49 elements, 7 components and 6 connectors) to big
models (287 elements, 34 components and 36 connectors). The models cover
different domains, from source code management systems, digital publishing
systems to software product line middlewares, etc. The reader can find the list

5 https://www-archware.irisa.fr/files/2014,/05/TRISA ArchWare-2013-TR-021.pdf



Preserving Architectural Decisions through Architectural Patterns 27

of architectural models together with applied patterns and their frequency of
usage in Appendix [C]
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Fig. 15 Size of 8 Acme architectural models in terms of model elements, components and
connectors

One important criterion in choosing these models is that they must fo-
cus on the application of architectural patterns in their design. All of the
chosen models are indeed designed using architectural patterns from different
paradigms such as Enterprise Integration, SOA, etc. On average, there are two
patterns applied per model.

8.2.2 Modeling effort and StAD wviolation detection

We present in this section a quantitative evaluation on the modeling effort
of using our approach and how this effort is paid off through the detection
of StAD violation. As we can recall from section [0} the advantage of using
mappings is twofold: i) They serve as the bridge between the architectural
model and the pattern and thanks to this, the pattern language is indepen-
dent from any ADL; ii) They are a means to stock the decision of applying a
pattern. The question raised is how much effort do we afford to create these
mappings for this aim. We count the number of all mappings for each pat-
tern applied in an architectural model and compare it to the number of model
elements to determine whether the mappings would not overwhelm the archi-
tects. Figure [16] shows the size of mappings comparing to size of architectural
models in terms of components and connectors. We found that the number
of mappings is in average 9.12 (between 3 and 22) and moreover, the average
#mappings/#elements is 26.11%, which is a reasonable number. In fact, see-
ing that mappings take part in the documentation of StADs, the question of
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adding mappings or not can be considered as the trade-off of documenting a
StAD. This trade-off has been also discussed in [401/44].
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Fig. 16 Size of mappings comparing to size of architectural models in terms of components
and connectors

The first benefit gained from our approach is the obtainment of simplified
pattern views. Pattern views serve as a filter of pattern-concerned elements
from the architectural model. We evaluated whether pattern views help reduce
a great number of non-related elements and thus, improve the understanding
of the created StAD. Figure shows the comparison between the size of
pattern view and the size of the architectural model where it is drawn from.
We can observe that most of the pattern views filter out less than 30% of model
elements. Two exceptions are the first pattern view of BRM (49 pattern view
elements over 73 model elements, equivalent to 67%) and the second view of
DPS (91 pattern view elements over 179 model elements, equivalent to 51%).
The reasons for this is that the BRM architecture is constructed using Layers
pattern as the basic principle. Thus, most of the elements participate in the
Layers pattern view. Similarly, most of the components in the DPS architecture
play the role of Data accessors in the Repository pattern. If we consider all
pattern views, pattern view elements are about 25% of the total number of
elements in average.

The second benefit of our approach is a complete mechanism of StAD
violation detections. Our approach emphasizes the combination of mapping
models and pattern models in documenting a StAD. Indeed, mapping mod-
els and pattern models together maintain the existence of the StAD and its
structural consistency. The absence of one of these two artefacts will lead to an
incomplete StAD and thus, undetected violations. To confirm this remark, we
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make the architectural models evolved and see if we can detect the violations
in two cases: 1)without mapping models and ii)without pattern models.

An evolution of an architectural model can fall into two cases: deletion and
addition of elements (modification is the combination of these two operations).
We do not have architects’ participation to set up real-life scenarios which
involve only meaningful evolutions. Instead, we randomly seed deletion and
addition of architectural elements.

Table 3 Deletion of architectural elements

Nb of combi- Nb of Nb of Nb of Nb of
. detected
nations of pattern- detected detected . .
Model . . . . . violations by
meaningful related violations by | violations by our
deletions deletions mapping pattern approach
BRM 157 22 22 16 22
DPS 68719478782 776 776 518 776
JITC 258 32 32 22 32
BTS 3076 30 30 21 30
GCC 4606 10 10 7 10
JBoss 271336 426 426 364 426
Vistrails 190 20 20 14 20
CoCoME 488 460 460 327 460
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Table Blshows the result in the case we delete architectural elements. Theo-
retically, if N = Nb of components + Nb of connectors, then the total number
of combinations of possible deletions is

i(f):zN—l (1)

k=1

This is in fact the sum of every combination of components and connectors. If
we take the case of the biggest model (34 components and 36 connectors), this
sum is up to around 102! possible deletions. Among these deletions, we ex-
clude those when the components are deleted but their associated connectors
remain. It of course makes no sense of a deletion to leave a dangled connector
in the model. Taking this condition into consideration, the number of possi-
ble deletions is reduced significantly and is reported in the column 2 (Nb of
combinations of meaningful deletions) of Table[3| Particularly, the DPS model
has up to 68719478782 possible combinations of deletion because its architec-
ture resembles to that of a strongly connected graph where each component
has connectors to many other components. Among these deletions, those con-
cerning the application of pattern continue to be filtered out (column Nb of
pattern-related deletions). All of these deletions violate the StAD about us-
ing pattern (detected by mapping models or pattern models). It is clear that
100% violated pattern-related deletions can be detected by mapping models
(column Nb of detected violations by mapping) because the latter binds to
every element concerning the former. What is noticeable is that there are a
certain number of pattern-related deletions that can not be detected by pat-
tern models. As we can observe from the column 5 (Nb of detected violations
by pattern), the number of detected violations by pattern models is lower
than the total pattern-related violations. In average, 72% of pattern-related
violated deletions can be detected by pattern models and the rest 28% can
not be detected. The undetected cases of violation by pattern are shown in
our aforementioned technical report. One example of these could be the case
when the first or the last Filters in the Pipes And Filters are deleted. In this
case, the remaining Filters and Pipes would make a perfect Pipes And Filters
pattern without knowing that some Filters and Pipes have been deleted. In
other words, the decision about using the Pipes and Filters pattern has been
affected while the pattern model itself cannot recognize it. Another example
is the case when the entire pattern (whatever pattern) is deleted. The pattern
model is useless since its instances disappeared, leaving the task of keeping
track of the decision of using pattern to mapping model. Our approach (last
column) detects all violations that were detected by mapping models.

Table [ shows the result in the case we add elements to the architectural
models. Since we focus our evaluation on architectural patterns, where the
most significant modifications happen at a coarse granularity level (compo-
nent and connector), we consider only additions of component and connector.
Among them, we continue to limit the additions to those of connectors between
existing components (the combinations of addition are not taken into consid-
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Table 4 Addition of architectural elements
Nb of Nb of Nb of bl
Model Nb o'f .total pattern- .detgcted .detcicted violations by
additions related violations by | violations by our
additions mapping pattern approach
BRM 30 6 0 3 3
DPS 55 39 0 0 0
JITC 30 0 3 3
BTS 57 0 5 5
GCC 36 0 3 3
JBoss 145 52 0 30 30
Vistrails 21 6 0 3 3
CoCoME 44 34 0 24 24

eration). The reason for this limitation is that unlike the case of deletions
where the number of simulated deletions are finite (seeing that the number
of existing elements is fixed), the number of additions is infinite (seeing that
we can arbitrarily add elements to the architecture). Besides, the change of
an elements definition (name, type, etc.) is considered as the deletion of the
element and the addition of a new element (old element with its new def-
initions). Thus, we took the most basic cases of deletion H The number of
the possible additions is reported in column 2 (Nb of total additions). Only
a part of these additions relates to patterns. These pattern-related additions
are shown in column 3 (Nb of pattern-related additions). Column 4 (Nb of
detected violations by mapping) shows that none of the violated additions can
be detected by mapping. This is true because the integrity of mapping models
is always maintained despite of any addition and thus no violation can be de-
tected. Otherwise, the additions that affect the structural consistency of the
applied pattern will be detected by pattern model. As shown in column 5 (Nb
of detected violations by pattern), pattern models can detect a part of vio-
lated pattern-related additions. In average, 53% of pattern-related additions
are violated and detected by pattern models. The violated cases of addition
are shown in the aforementioned technical report. One example of them could
be when we add a Pipe between two distant Filters to create a cycle which
is not permitted in Pipes and Filters pattern. Our approach (last column)
detects all violations that were detected by pattern models.

The two above evaluations show that depending on the applied patterns,
there are violations that can only be detected by the mappings but not by the
pattern model and vice-versa. This is also the point that makes our approach
stand out from the existing works which focus either only on the existence of
ADs element or the structural consistency of ADs element. We combine both
mapping, which assures the existence of ADs element, and pattern model,

6 This is also discussed as a threat to validity in Section
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which assure the structural consistency of ADs element, to verify StAD and
thus, all violations are detected.

For the purpose of providing enough information to replicate the evalua-
tion, in the following we go to some details with examples about the evaluating
process as well as the measurements. Considering the case of the first evalu-
ation (e.g. the deletion seeding evaluation), we first proceed with the mea-
surement of the number of combination of meaningful deletions of a model. A
meaningful deletion is one that involves either a connector or a component and
does not leave a dangled element. Since a connector is always connected to two
components, the deletion of a single component will always leave at least one
connector dangled. Thus, a meaningful deletion of a component must affect all
of its connectors. Figure [18| shows an example of a simple architectural model
(on top of the figure) with three components: Comp 1, Comp 2 and Comp 3
and two connectors: Con A, Con B. On the bottom right of the figure is a
meaningful deletion, in which Comp 2 and its associated connector Con A are
removed respectively. At the bottom, in the middle is the case when Comp
1 and its surrounding connectors Con A and Con B are deleted. Finally, the
bottom left of the figure is the case when Comp & and Con B are deleted.
From these 3 cases of component deletions we can create 7 combinations of
component deletions (e.g. three 1-combinations, three 2-combinations and one
3-combination).

Con A

ConB

ConB

Fig. 18 Example of meaningful deletions

Thus totally we have 5 meaningful deletions (2 deletions of connectors
and 3 deletions of components). From these 5 deletions we can create 10 dif-
ferent combinations of deletions (e.g. 3 combinations of connector deletions
and 7 combinations of component deletions). If we take all possible deletions
into consideration, there are up to 31 combinations of deletions (e.g. from
1-combinations to 6-combinations). This is to see how the filter reduces the
number of possible deletion combinations.

Next, two scenarios are set up: the first one only involves mappings in
violation detection and the second one only involves pattern model. First, let
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us assume that our example is a Client-Server pattern where Comp 1 is the
Server and Comp 2, Comp 3 are the Clients. In the first scenario, every element
in the model is mapped to the AD. Thus, every deletion of mapped element is
considered a violation. For instance, in our example, the deletion of Comp 2
and Con A will be counted as a violation since both of them have been mapped.
Thus, three of possible deletion combinations will be detected as violation. In
the second scenario, pattern-related elements are directly assigned with roles
and the conformance is checked against a pattern meta-model. For instance,
the deletion of Comp 1 will trigger a violation since the pattern constraint is
not assured. However the deletion of Comp 2 and Con A will not be detected
as a violation since the rest of the model (e.g. Comp 1, Con B and Comp
3) will make a perfect Client-Server pattern. Among the three combinations
of deletion, only one is detected (the case when Comp 2, Comp 3, Con A,
Con B are all deleted and leave no Clients) with the pattern meta-model. Our
approach combines these two ways of detecting deletion violation and thus,
can detect three cases of violation.

Algorithm 3 The evaluation algorithm
Require: Model M

1: Set of meaningful connector deletions SetConDels « {} // An empty set of
deletions of connectors
2: Set of meaningful component deletions SetCompDels < {} // An empty set of

deletions of components

3: for all Element e € M.elements do

4: if e is Connector then

5: SetConDels < e // Add the Connector in question to the set of mean-
ingful connector deletions

6: end if

7 if e is Component then

8: Set of related elements SetEles < get Related Elements(e) // Derive a set
of the Component and its surrounding Connectors

9: SetCompDels < SetEles // Add the the set of Component-related ele-
ments in question to the set of meaningful deletions

10: end if

11: end for

12: Set of meaningful deletion combinations SetDelCombs —
getCombinations(SetConDels) U getCombinations(SetCompDels) // De-
rive the set of combinations of meaningful deletions of connectors and components

13: for all Set s € SetDelCombs do // From each combination, perform the dele-
tions and verify the model’s conformity

14: Perform the deletions based on s

15: Verify the conformity of the model using mappings

16: Verify the conformity of the model using pattern

17: Verify the conformity of the model using mappings and pattern
18: end for

Algorithm [3shows the skeleton of the evaluation process. From an architec-
tural model, we try first to determine the set of meaningful connector deletions.
Next, we create a set of meaningful component deletions (for each given com-
ponent taking into consideration surrounding connectors). Then thanks to a



34 Minh Tu Ton That et al.

combination generation algorithm, we obtain a set of combinations of mean-
ingful deletions (including connector deletions and component deletions). For
each combination of meaningful deletions we apply to the model and verify
its conformance using mappings, pattern and both, respectively. Note that
the manipulation of model and its elements, and the measurement are done
thanks to EMF and its accompanied technologies. We do not show an example
of addition seeding and violation detection here but the set-up and applying
scenarios remain the same.

8.2.3 Threats to validity

This section discusses the study’s various threats to validity.

Internal validity: Internal validity is the degree to which conclusions can
be drawn about the causal effect of independent variables on the dependent
variable. In the case of seeding deletion operations, our independent variable
is the effect of detecting violations with/without our approach. Similarly, the
same measurement is performed in the case of seeding addition operations.
We excluded meaningless deletions to reduce the number of treated deletions.
However, in case of meaningful deletions and meaningless deletions mixed
together, the approach can take more effect. We also chose to separate these
two independent variables to highlight the drawbacks of using mapping models
or pattern models independently. However, in case of seeding deletions and
additions one after another, the effect of one independent variable can affect
the other one and vice versa.

Ezxternal validity: In the study, we simulate the architecture’s evolution by
seeding modifications (deletions and additions). Except for deletion operations
when we can determine all possibilities of deleting elements in a model, the
addition operations are unpredictable. In the study we treated only additions
of connectors between components because the number of these additions is
finite. Moreover, deletions and additions are not the only cases of architecture
evolution, there are also other types of evolution at the finer granularity level,
e.g. elements can be renamed, a connector can change type, and so on. Thus,
this evaluation cannot generalize the effect of our approach in the evolution of
architecture in general. However, the more cases of evolution, the more likely
StAD violations are detected by mapping models and pattern models, and
thus the more likely the approach has effect.

9 Related work

Our work directly concerns three aspects: definition of ADs, AD conformance
checking and pattern-oriented architecture. Thus, in the following we will dis-
cuss work related to these three aspects.
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9.1 AD Documentation

In the literature there are many proposed models and tools supporting AD doc-
umentation. Among these works, we can mention some representative models
such as the architectural decision template [40], the ontology of design deci-
sions [20] or recently the MAD 2.0 model [42], and tools such as Archium [17],
ADDSS [17], AREL [33]. We can observe that most of these works concentrate
on capturing and characterizing ADs but little focus is paid on the automated
checking of design decision compliance in architectural models. In our work, we
do not attempt to just define another AD model but propose a way to define
StADs which allows to automatically detect their violation in the architectural
model.

In [46], Zimmermann et al. point out the importance of reusable ADs in
decision identification, decision making and decision enforcement and propose
a model to document reusable ADs. Furthermore, in [47], they propose to
weave pattern information into reusable architectural decision models to ben-
efit their mutual interests. Besides that, in [14], Harrison et al. compare pattern
and AD and think that the former can be leveraged to document the latter.
These ideas focus on the fact that pattern use is an important information that
completes the AD. Having taken them into consideration, we go further with
our approach, which add the pattern formalization into the representation of
StADs.

9.2 AD Conformance Checking

Being one of the first work dealing with StAD conformance checking, Tiber-
macine et al. [3738] propose a family of architectural constraint languages to
describe the structural part of StAD. Architectural constraints are used as a
means to formalize StADs. With our approach we raise the level of abstraction
by using architectural patterns to document StADs. StADs are no longer ar-
chitectural constraints imposed on the architectural model but self-contained
semantic pattern models. Thus, with a library of architectural patterns (de-
fined with our approach) the architect does not have to directly manipulate
constraints to define StADs.

The topic of StADs about the use of patterns has become an interesting sub-
ject in researches about ADs. Patterns are considered to be important sources
to offer an effective way of capturing StADs [15]. The notion of pattern-centric
StADs have also been used in [43[45] to emphasize the documentation of de-
cisions when applying patterns in the architecture. The idea consists in lever-
aging the information contained in the applied pattern to inexpensively docu-
ment the StAD about the application of pattern. In these approaches, similar
to the description of patterns, the documentation of StADs about pattern use
also exists in textual form. Another way of documenting StADs about pattern
use is to construct StADs in form of linking elements between the StAD model
and pattern-related elements in the architectural model [I921[I8]. Contrary
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to the textual form, this form of representing StADs can be used to automat-
ically check the conformance of StADs. Indeed, the idea of linking StADs and
architectural artifacts to maintain the consistency during their co-evolution
has been discussed in [8[T9,2T123]. While the explicit link in [8] only serves
for the traceability from decisions to design artifacts, the linking model de-
fined in [T92T23] also aims at checking the conformance of the architectural
model. More specifically, in [I9], the authors propose to reinforce the outcome
of StAD by using model differences. The outcome of StAD is considered as
a set of model changes. Model changes serve as bindings between affected
model elements and model differences. The architectural model is consistent
with made StADs iff affected model elements prevail. Similar to [19], in [23],
the authors influence the outcome of StAD by using actions. A StAD is pro-
vided with a set of actions which in turn are concretized into design model
elements. Particularly, checking rules are automatically derived from the ac-
tions via a transformation mechanism. The common point of these two works
is that reusable StAD is represented by a set of changes in the architectural
model. The architectural model is said to be consistent with StAD as long as
these changes prevail. This can be compared to our work as if the checking
is realized based solely on the completeness of the binding model. However,
in our approach, the conformance of the StAD against its architectural model
is checked through not only the mapping model but also the rules imposed
by the StAD model itself. Indeed, by using pattern to describe the StAD, we
make sure that it is reflected semantically in the architectural model. In [21],
the authors propose to impose OCL constraints at model level to insure StAD.
Many different decision types are introduced, each one is represented by an
OCL rule. We think that it is more general and complete to represent StAD
by pattern model. Actually, a pattern itself can be considered as a decision
type which encompasses structures and rules. Please also note that the general
idea of this proposal is presented in our previous work [34]. In this paper, we
elaborate the presented approach and conduct an evaluation on it.

9.3 Pattern-oriented Architecture

Our idea of using a role-based approach to model patterns is inspired by the
work of France et al. [I1]. The authors propose to incorporate role information
at the UML meta-model to facilitate the use of design patterns. Our approach
is not just limited for object-oriented patterns but other language families
such as architectural patterns, service-oriented patterns,... can be applied as
well. Existing pattern-oriented ADLs such as Wright [I] or Acme [I3] propose
to build the architecture based on style specifications. Architectural elements
are instantiated from architectural types and the consistency of the system is
checked through constraints written at the architectural style level. However,
in these languages the trace of the use of architectural styles is not preserved.
In other words, the consistency of the style applied in the system is checked
only if its instances exist. Thus, in case of removing elements involved in a style
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(representing an StAD) there are some violations that cannot be alerted to the
architect during an evolution of the architecture (as shown in our study). In
our approach, we make explicit the link between the pattern and its instances
and, as we have shown throughout the paper, it contributes an important part
in StAD’s documentation.

10 Conclusion

To address the issue of additional costs caused by the non-explicitness of the
ADs, we proposed a solution where the ADs are not only explicit, but also
first-class elements in the architecture definition. We specifically focused on
ADs related to pattern application. Our approach leverages the combination
of mapping models and formalized architectural pattern models. This com-
bination brings two major advantages: i) it increases the level of AD reuse
during the design stage, ii) it allows automate checking of the existence of
ADs that must be maintained after the architecture’s evolution. More impor-
tantly, we show that this is the more complete way comparing to related work
to detect StAD violation. We have implemented our approach through a pat-
tern definition language, a process and a tool to automate the checking of
the architecture’s consistency, with respect to the concerned ADs, during its
evolution.

We used the MDA approach for two main purposes: i) During the defini-
tion of the pattern description language, this has allowed us to make a clear
separation between the concepts specific to patterns and those specific to the
architecture. This separation aims at making our pattern description language
easily adaptable to various ADLs of different paradigms as shown through our
evaluation. ii) To check the conformance of the architecture with respect to
certain patterns, the model refinement mechanism has facilitated the extrac-
tion of views targeting the concerned patterns.

With our approach a company can build its own library of patterns repre-
senting some of its accumulated best practices. Thus, it becomes possible to
automatically check that the produced architectures conform to the defined
best practices. However, if the company uses different ADLs with different
paradigms, or decides to move to an other paradigm, it will take an effort to
redefine all existing patterns to fit the new paradigm. But, there are often
common patterns in different paradigms (e.g. pipe and filter). This is a limita-
tion in our approach of pattern description. A solution to this limitation would
be to describe, in a generic manner, patterns that do not rely on a particular
paradigm. Then, provide a means for their projection in each paradigm to
avoid the redefinition of pattern. This is one of our future work.

Even though we validated that our approach is not limited to a given
paradigm and that it detects more violations than the existing approaches,
it still needs further validation about its potential extra cost and the accep-
tance by architects. To achieve this kind of validation, we need a controlled
experiment. This is one another future work.
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Appendix A Formalized SOA pattern

Table [B] shows the list of formalized SOA patterns along with the number
of architectural elements, the involved roles and the number of multiplicity
elements.

Appendix B Formalized CBA pattern

Table [6] shows the list of formalized CBA patterns along with the number
of architectural elements, the involved roles and the number of multiplicity
elements.

Appendix C List of architectural models

Table [7] shows the list of architectural models used in the evaluation along
with the applied patterns and their frequency.

Appendix D The SOA mapping meta-model

Figure [19| shows the mapping meta-model in case of SOA pattern. Elements
from the left side of the figure are those from SCA meta-model. Elements from
the right side of the figure are those from the SOA pattern meta-model. Each
pair of these elements is linked by an mapping element from the mapping
meta-model (in the middle of the figure) via the source and target references.
All mapping elements are contained in the root mapping element.
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Table 5 List of formalized SOA patterns

Sub-controller

Sub-controller

Nb of Nb of
Pattern category Patterns Roles multi-
elements s
plicities
Rules 9 Service, Rule 1
Centralization service
o Dual Protocols 1 Protocol
Service inventory . . )
Service Grid 1 Service
Internal inventory
Inventory 3 service, Inventory 9
Endpoint endpoint, External
consumer
State 9 Service, State 1
Repository repository
Service Facade 3 Service, Facade, 0
Consumer
Service Data 9 Service, Replicated 1
Replication database
Partial State 9 Service, Deferral 0
Deferral state repository
Partial 9 Service, Data 0
Validation validator
Service Decoupled 9 Service, Service 0
Contract contract repository
Legacy
Legacy 9 Component, 1
Wrapper ‘Wrapper
Component
Exception 9 Service, Exception 0
Shielding Shield
Message 9 Service, Message 0
Screening screener
Trusted 1 Service, Trusted 0
Subsystem Subsystem
Service .
. Internal service,
Perimeter 2 . R 1
Perimeter service
Guard
Proxy 2 Service, Prox; 0
Capability ’ Y
Decomposed Service,

. 2 1
Capacity Decomposed proxy
Canonical Service with

1 - 0
Protocol uniform protocol
Redundant.Im— 1 Redundant service 1
plementation
. Service,
Interme.dlate 2 Intermediate logic 0
Routing
router
A h Service,

Service composition sync r'onous 3 Intermediary 0
Queuing buffer, Consumer
Brokered 3 Service, Broker, 1

Authentication Consumer
Data Format Serv.lce,
Intermediary data
Transforma- 3 1
tion formatter, Legacy
component
Service Agent 1 Service Agent 0
Agnostic 9 Service, 0
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Table 6 List of formalized CBA patterns
Nb of
Pattern category Patterns Nb of Roles multi-
elements .
plicities
Layers 9 Layer, Layer 1
Layered connector
Client layer,
Indirection 4 Indirection layer, 0
Layer Sub-system, Layer
connector
Pipes and . .
Data fl
ata flow Filters 2 Filter, Pipe 1
Shared Client, Repository,
. 3 1
Repository Data accessor
Data-centered . .
. Client, Active
Active .
. 3 repository, Data 1
Repository
accessor
Blackboard,
Blackboard 3 Knowledge source, 1
Data accessor
Client, External
server, Micro
. Microkernel 5 kernel, Internal 2
Adaptation
server, Layer
connector
Client layer,
Interceptor,
Interceptor 4 Sub-system, Layer 0
connector
. Model, View,
Model-View- 4 Controller, MVC 0
Controller
User interaction connector
Presentation-
Abstraction- 2 PAC agent, PAC 0
connector
Control
2 9 Component, 0
Connector
Client, Server,
. . Client-Server 3 Request/Reply 1
Component interaction
connector
Peer to peer 2 Peer, Peer 1
connector
Client, Server,
Distribution Broker 4 Broker, Broker 0

connector
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Table 7 List of architectural models

Architectural . Applied
models Description patterns Frequency
BRM A revenue management system Layers 1
DPS A digital publishing system Repository 2
. o Pipes and
JITC A source code comprehension aiding Filters 1
system
Repository 1
BTS A bond trading system Pipes and 1
Filters
GCC A digital TV system middle-ware P1p‘es and 1
Filters
Broker 1
JBoss An open source J2EE implementation Microkernel 1
Pipes and 1
Filters
A data explorati d visualizati Pipes and 1
Vistrails ata exploration and visualization Filters
open-source system
Repository 1
CoCoME A supermarket sales system Layers 1
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