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HOMOGENIZATION OF SYSTEMS WITH EQUI-INTEGRABLE COEFFICIENTS

Marc Briane1 and Juan Casado-Dı́az2

Abstract. In this paper we prove a H-convergence type result for the homogenization of systems
the coefficients of which satisfy a functional ellipticity condition and a strong equi-integrability con-
dition. The equi-integrability assumption allows us to control the fact that the coefficients are not
equi-bounded. Since the truncation principle used for scalar equations does not hold for vector-valued
systems, we present an alternative approach based on an approximation result by Lipschitz functions
due to Acerbi and Fusco combined with a Meyers Lp-estimate adapted to the functional ellipticity
condition. The present framework includes in particular the elasticity case and the reinforcement by
stiff thin fibers.
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1. Introduction

This paper is devoted to the asymptotic behavior of vector-valued systems with M equations, in a regular
bounded open set Ω of RN , {−Div (AnDun) = f in Ω

un = 0 on ∂Ω,
(1.1)

where An is a sequence of equi-coercive (in a functional sense, see Eq. (2.1)) but not necessarily equi-bounded
tensor-valued functions. The equi-bounded case was studied by Spagnolo [30] by G-convergence, and by Murat,
Tartar [28] (see also [31]) by H-convergence. Then, in the scalar case assuming the L1-boundedness and the
equi-integrability of the sequence |An|, Carbone and Sbordone proved a compactness result for the equation (1.1)
using De Giorgi’s Γ -convergence [20, 21] (see, also [7, 19] for a presentation of Γ -convergence). On the other
hand, Fenchenko and Khruslov [23] (see also [24,25]) were the first to show the appearance of nonlocal effects in
the homogenization of equation (1.1) when |An| is bounded in L1(Ω) but not equi-integrable. To this end they
considered a medium reinforced by very thin fibers. Several works [3, 8, 9, 12, 13, 15, 16, 27] have extended this
seminal article on the limit closure of equations (1.1) in connection with the Beurling–Deny [6] representation
of Dirichlet forms. All these contributions are strongly based on the truncation principle (which is also called
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H-convergence.
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the Markov property in Dirichlet forms theory) and the maximum principle as a by-product, which are specific
to the scalar case.

The vector-valued case for which (1.1) is actually a system is much more delicate since the truncation principle
does not hold. In the case of elasticity [4] the homogenization of fiber reinforced media can lead to nonlocal effects
as in the scalar case. Under this particular geometry and the boundedness of |An| in L1(Ω), the appearance of
nonlocal effects is induced by the loss of equi-integrability for |An|. However, contrary to the scalar case which is
constrained by the Beurling-Deny representation, when the fibers are very stiff – i.e., |An| is not equi-bounded
in L1(Ω) – fourth-order derivatives may appear at the limit in dimension three [29] as well as in dimension
two [10, 11]. Actually, Camar-Eddine and Seppecher [17] proved that in dimension three the Γ -convergence
closure for the L2-strong topology of the elastic energies associated with equations (1.1) agrees with the whole
set of the lower semi-continuity quadratic functionals which are null for the rigid displacements. This closure set
thus contains functionals with nonlocal terms and derivatives at any order. In the more general framework of
systems (1.1) the closure set is far to be clear. A first step in the understanding of the homogenization of such
a system, with an equi-coercive but not equi-bounded sequence of tensor-valued functions, would be to know if
the sole equi-integrability of |An| in L1(Ω) implies a compactness result for the sequence (1.1) as in the scalar
case [18]. Up to our knowledge there is no general result in this direction.

In this paper we prove a H-convergence type result (see Thm. 2.3) for system (1.1) assuming that there exists
a functionally equi-coercive and equi-bounded sequence Bn of tensor-valued functions such that

lim
n→∞ ‖An − Bn‖L1(Ω)(M×N)2 = 0. (1.2)

This assumption includes the case where An takes non-uniformly bounded values only in some set Fn with
|Fn| → 0, as in the fiber reinforcement setting (see Rem. 2.2). Contrary to the truncation of the solution un

of (1.1) used in the scalar case [18], our method is based on the approximation result by Lipschitz functions
due to Acerbi and Fusco [1, 2], which can be regarded as a truncation of the gradient Dun. Moreover, the
Lp-Meyers estimate is an alternative key ingredient of our approach. At this level we give an extension of the
proof of [5] (see Prop. 3.1), which takes into account that the strong ellipticity of An is functional rather than
pointwise. This functional ellipticity allows us to include the elasticity case in a general framework. Indeed,
the pointwise ellipticity with respect to the symmetrized gradient combined with Korn’s inequality implies a
functional ellipticity with respect to the whole gradient.

In view of the compactness result [18] which is restricted to the scalar case, our conjecture is that a
H-convergence result holds for system (1.1) if An is functionally equi-coercive but simply bounded and equi-
integrable in L1(Ω)(M×N)2 . This is of course a weaker condition than (1.2). Very recently we have proved the
conjecture in [14] but only for dimension N = 2. The method based on a div-curl lemma also provides a com-
pactness result in dimension N > 2, under the assumption that |An| is bounded in Lρ(Ω) with ρ > N−1

2 . This
condition is more restrictive than the equi-integrability in L1(Ω), and cannot be compared to condition (1.2).
In particular, it is not sharp in the fiber reinforcement setting contrary to condition (1.2). To conclude, the
present approach is quite different, does work in any dimension and is well adapted to the fiber reinforcement
problem.

Notations

• M and N are two positive integers.
• A denotes a tensor-valued function taking its values in R(M×N)2 .
• : denotes the scalar product in RM×N , i.e. ξ : η = tr

(
ξT η

)
for any ξ, η ∈ RM×N .

• ∇u denotes the gradient of the scalar distribution u : RN → R.
• Du denotes the Jacobian matrix of the vector-valued distribution u : R

N → R
M , i.e.

Du :=
[

∂ui

∂xj

]
1≤i≤M, 1≤j≤N

.
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• div denotes the classical divergence operator acting on the vector-valued distributions.
• Div denotes the vector-valued differential operator taking the divergence of each row of a matrix-valued

distribution,

Div U :=

⎡
⎣ N∑

j=1

∂Uij

∂xj

⎤
⎦

1≤i≤M

, for U : R
N → R

M×N .

• c denotes a positive constant which may vary from line to line.

2. The main result

Let Ω be a regular bounded domain of RN , N ≥ 2, and let M be a positive integer. Consider a sequence An,
n ∈ N, of tensor-valued functions in L∞(Ω)(M×N)2 which satisfies the following properties:

• there exists a sequence Bn of tensor-valued functions in L∞(Ω)(M×N)2 such that

∀u ∈ H1
0 (Ω)M ,

⎧⎪⎪⎨
⎪⎪⎩

α

�
Ω

|Du|2 dx ≤ min
(�

Ω

AnDu : Du dx,

�
Ω

BnDu : Du dx

)

β−1

�
Ω

|BnDu|2 ≤
�

Ω

BnDu : Du dx,

(2.1)

for given constants α, β > 0, and

lim
n→∞ ‖An − Bn‖L1(Ω)(M×N)2 = 0; (2.2)

• there exists a constant C > 0 such that the generalized Cauchy–Schwarz inequality holds

(Anξ : η)2 ≤ C (Anξ : ξ) (Anη : η) , a.e. in Ω, ∀ (ξ, η) ∈ R
M×N × R

M×N . (2.3)

Remark 2.1. Assumption (2.1) implies the pointwise estimates

α |ξ|2|η|2 ≤ Bn(ξ ⊗ η) : (ξ ⊗ η) ≤ β |ξ|2|η|2, a.e. in Ω, ∀ (ξ, η) ∈ R
M × R

N . (2.4)

We refer to Lemma 22.5 of [19] for a similar computation. For the reader’s convenience, let us check briefly (2.4):
Putting in the first inequality of (2.1) the functions u(x) := ϕ(x) cos (k η · x) ξ, with k ≥ 1, ϕ ∈ C1

c (Ω),
(ξ, η) ∈ RM × RN , it follows that

α

�
Ω

|ξ|2|η|2 ϕ2(x) sin2(k η · x) dx ≤
�

Ω

Bn(x)(ξ ⊗ η) : (ξ ⊗ η)ϕ2(x) sin2(k η · x) dx + O(k−1).

Then, passing to the limit as k → ∞ and using the arbitrariness of ϕ we get the first inequality of (2.4).
Similarly, we deduce from the second inequality of (2.1) that∣∣Bn(x)(ξ ⊗ η)

∣∣2 ≤ β Bn(x)(ξ ⊗ η) : (ξ ⊗ η) a.e. x ∈ Ω,

which implies ∣∣Bn(x)(ξ ⊗ η)
∣∣ ≤ β |ξ||η| a.e. x ∈ Ω, (2.5)

and thus the second inequality of (2.4).
Now, decomposing any matrix Q ∈ RM×N on the canonical basis, namely

Q =
M∑
i=1

N∑
j=1

Qij fi ⊗ ej,

we easily obtain from inequality (2.5) the existence of a constant γ > 0 depending on β, M, N , such that∣∣Bn(x)
∣∣ := max

Q∈RM×N , |Q|=1

∣∣Bn(x)Q
∣∣ ≤ γ a.e. x ∈ Ω. (2.6)
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Remark 2.2. Condition (2.2) is equivalent to the existence of a functionally equi-coercive, equi-bounded se-
quence B̃n in L∞(Ω)(M×N)2 such that for any ε > 0, there exists a sequence of measurable sets F ε

n of Ω
satisfying

|An − B̃n| ≤ ε a.e. in Ω \ F ε
n , lim

n→∞ |F ε
n| = 0 and lim

n→∞

�
F ε

n

|An| dx = 0. (2.7)

Indeed, condition (2.7) implies convergence (2.2) with Bn := B̃n, since

lim sup
n→∞

(�
Ω

|An − Bn| dx

)
≤ lim sup

n→∞

(
ε |Ω \ F ε

n| +
�

F ε
n

|An| dx +
�

F ε
n

|Bn| dx

)
= ε |Ω|.

Conversely, assume that convergence (2.2) holds. For ε > 0, define the measurable set F ε
n and the tensor-valued

function B̃n by
F ε

n :=
{|An − Bn| > ε

}
and B̃n := Bn. (2.8)

The first assertion of (2.7) is clearly satisfied. Then, by the strong convergence (2.2) Lebesgue’s measure of F ε
n

tends to 0, and �
F ε

n

|An| dx ≤
�

F ε
n

|An − Bn| dx + |F ε
n| ‖Bn‖L∞(Ω)(M×N)2 → 0,

which yields (2.7). Note that if the equi-coerciveness of An and Bn are pointwise rather than functional, then
we may take ε = 0 in condition (2.7) and choose

Fn :=
{|An − Bn| > 1

}
and B̃n :=

{
An in Ω \ Fn

Bn in Fn.

Condition (2.7) is relevant in the case of a fiber reinforced medium for which the set F ε
n is composed of

stiff thin fibers, while the surrounding medium has uniformly bounded coefficients. In this setting, the loss of
equi-integrability with respect to condition (2.7) corresponds to

lim sup
n→∞

�
F ε

n

|An| dx > 0. (2.9)

In fact, condition (2.9) may lead to pathologies in the homogenization process of system (2.10): nonlocal effects in
conductivity [3,9,16,23] and in elasticity [4], but also the appearance of second gradients in elasticity [10,11,29].

We have the following H-convergence type result:

Theorem 2.3. Assume that the conditions (2.1) and (2.2) are fulfilled. Then, there exist a subsequence of n,
still denoted by n, and a tensor-valued function B in L∞(Ω)(M×N)2 satisfying the estimates (2.1) such that for
any distribution f ∈ H−1(Ω)M , the solution un in H1

0 (Ω)M of the equation

−Div (AnDun) = f in Ω, (2.10)

satisfies the convergences

un ⇀ u weakly in H1
0 (Ω)M and AnDun ⇀ BDu weakly in L1(Ω)M×N , (2.11)

where u is the solution in H1
0 (Ω)M of

−Div (BDu) = f in Ω. (2.12)

Moreover, the limit tensor B only depends on the sequence Bn.
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3. Proofs

Proof of Theorem 2.3. First note that using a density argument we are led to the case where the right-hand
side f of equation (2.10) belongs to W−1,p(Ω) where p is the Meyers exponent obtained in Proposition 3.1
below. Due to the functional ellipticity (2.1) the sequence un is bounded in H1

0 (Ω)M , thus up to a subsequence
converges weakly to some function u in H1

0 (Ω)M .
The Murat–Tartar H-convergence [28, 31] for linear scalar operators can be extended without restriction to

the linear operators Div (BnD·). Hence, there exists a subsequence of n, still denoted by n, and a tensor-valued
function B such that for any distribution f ∈ H−1(Ω)M , the solution vn ∈ H1

0 (Ω)M of the equation

−Div (BnDvn) = f in Ω, (3.1)

satisfies the convergences

vn ⇀ v weakly in H1
0 (Ω)M and BnDvn ⇀ BDv weakly in L2(Ω)M×N , (3.2)

where v is the solution in H1
0 (Ω)M of (2.12). From the convergences (3.2) and the lower semi-continuity of the

L2-norm we easily deduce that the homogenized tensor B satisfies the estimates (2.1) and (2.6). Therefore, up
to extract a subsequence we can assume that the sequence Bn H-converges to some tensor-valued function B

satisfying the estimates (2.1) and (2.6).
The proof is divided in two steps:

First step: Let un be the solution of equation (2.10), and let ūn be the solution in H1
0 (Ω)M of

−Div (BnDūn) = f in Ω. (3.3)

First of all, by virtue of Proposition 3.1 the sequence ūn is bounded in W 1,p(Ω)M . Then, by the Lusin type
approximation theorem due to Acerbi and Fusco [1] (main theorem p. 1), [2] (Lem. [II-6]), for any k ≥ 1, there
exists a function ūk

n in W 1,∞(Ω)M ∩ H1
0 (Ω)M such that

‖ūk
n‖W 1,∞(Ω)M ≤ k, (3.4)∣∣{ūk

n �= ūn}
∣∣ ≤ c

kp
‖ūn‖p

W 1,p(Ω)M . (3.5)

Now, we will prove that

lim
k→∞

[
lim sup

n→∞

(�
Ω

An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)
dx

)]
= 0. (3.6)

By equations (2.10) and (3.3) we have

�
Ω

An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)
dx

=
〈
f, un − ūk

n

〉− �
Ω

BnDūk
n :
(
Dun − Dūk

n

)
dx −

�
Ω

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx

=
�

Ω

Bn

(
Dūn − Dūk

n

)
:
(
Dun − Dūk

n

)
dx −

�
Ω

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx. (3.7)
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To estimate the first term on the right-hand side of (3.7), we use that (3.4) and (3.5) imply that ūk
n is bounded

in W 1,p(Ω)M independently of n and k. Therefore, using the bound (2.6) and Hölder’s inequality, we get∣∣∣∣
�

Ω

Bn

(
Dūn − Dūk

n

)
:
(
Dun − Dūk

n

)
dx

∣∣∣∣
≤ γ

�
{ūk

n �=ūn}

(|Dūn| + |Dūk
n|
) (|Dun| + |Dūk

n|
)
dx

≤ γ
(‖ūn‖W 1,p(Ω)M + ‖ūk

n‖W 1,p(Ω)M

) (‖un‖H1(Ω)M + ‖ūk
n‖H1(Ω)M

) ∣∣{ūk
n �= ūn}

∣∣ 12− 1
p

≤ c k1−p
2 . (3.8)

To estimate the second term on the right-hand side of (3.7), we take m > 0 and we use the decomposition∣∣∣∣
�

Ω

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣
≤
∣∣∣∣∣
�
{|Dun|≤m}

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
�
{|Dun|>m}

An Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣∣+
∣∣∣∣∣
�
{|Dun|>m}

Bn Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣∣ . (3.9)

The first term on the right-hand side of this inequality can be estimated by∣∣∣∣∣
�
{|Dun|≤m}

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣∣ ≤ k (m + k) ‖An − Bn‖L1(Ω)(M×N)2 . (3.10)

Taking into account (2.3), we can estimate the second term on the right-hand side of (3.9) by∣∣∣∣∣
�
{|Dun|>m}

An Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣∣

≤ C

(�
{|Dun|>m}

An Dūk
n : Dūk

n dx

) 1
2
(�

{|Dun|>m}
An Dun : Dun dx

) 1
2

+
�
{|Dun|>m}

An Dūk
n : Dūk

n dx

≤ c k

(�
{|Dun|>m}

|An| dx

) 1
2

+ k2

�
{|Dun|>m}

|An| dx. (3.11)

For the third term on the right-hand side of (3.9) we use∣∣∣∣∣
�
{|Dun|>m}

Bn Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣∣ ≤ γ k ‖un‖H1(Ω)M

∣∣{|Dun| > m}∣∣ 12 + γ k2
∣∣{|Dun| > m}∣∣. (3.12)
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The estimates (3.9) to (3.12) show that∣∣∣∣
�

Ω

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx

∣∣∣∣ ≤ k (m + k) ‖An − Bn‖L1(Ω)(M×N)2

+ c k

(�
{|Dun|>m}

|An| dx

) 1
2

+ k2

�
{|Dun|>m}

|An| dx

+ γ k ‖un‖H1(Ω)M

∣∣{|Dun| > m}∣∣ 12 + γ k2
∣∣{|Dun| > m}∣∣. (3.13)

Also note that
sup
n∈N

∣∣{|Dun| > m}∣∣ ≤ 1
m

sup
n∈N

�
Ω

|Dun| dx ≤ C

m
,

hence supn∈N

∣∣{|Dun| > m}∣∣ → 0 as m → ∞. Then, since by (2.2) An is equi-integrable in L1(Ω)(M×N)2 , we
can pass to the limsup successively in n and in m in inequality (3.13) to get

lim
n→∞

�
Ω

(An − Bn)Dūk
n :
(
Dun − Dūk

n

)
dx = 0. (3.14)

Finally, (3.7) combined with (3.8) and (3.14) yields

lim sup
n→∞

(�
Ω

An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)
dx

)
≤ c k1−p

2 , ∀ k ≥ 1, (3.15)

which implies the double limit (3.6) since p > 2.

Second step: Determination of the limit of the flux AnDun.
On the one hand, by (2.3), the Cauchy–Schwarz inequality and the estimates (2.2), (2.6) we have�

Ω

∣∣An

(
Dun − Dūk

n

)∣∣dx

≤ c

�
Ω

|An| 12
(
An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)) 1
2 dx

≤ c

(�
Ω

|An| dx

) 1
2
(�

Ω

An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)
dx

) 1
2

≤ c

(�
Ω

An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)
dx

) 1
2

. (3.16)

This combined with (3.6) yields

lim
k→∞

[
lim sup

n→∞

�
Ω

∣∣An

(
Dun − Dūk

n

)∣∣ dx

]
= 0. (3.17)

On the other hand, using the functional ellipticity (2.1) and the Hölder inequality combined with estimate (3.5),
we have �

Ω

|Dun − Dūn|2 dx

≤ 2
�

Ω

∣∣Dun − Dūk
n

∣∣2 dx + 2
�
{ūk

n �=ūn}

∣∣Dūk
n − Dūn

∣∣2 dx

≤ c

�
Ω

An

(
Dun − Dūk

n

)
:
(
Dun − Dūk

n

)
dx + c k2−p, (3.18)
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which by (3.6) implies that

lim
n→∞

�
Ω

|Dun − Dūn|2 dx = 0. (3.19)

Now, consider the decomposition of the flux

AnDun = BnDūn + An

(
Dun − Dūk

n

)
+ (An − Bn)Dūk

n + Bn

(
Dūk

n − Dūn

)
, (3.20)

which by (2.6), (3.4), (3.5) gives
�

Ω

|AnDun − BnDūn| dx

≤
�

Ω

∣∣An

(
Dun − Dūk

n

)∣∣dx + k

�
Ω

|An − Bn| dx + c k1−p,

∀ k ≥ 1. (3.21)

This combined with the double limit (3.17) and (2.2) yields

lim
n→∞

�
Ω

|AnDun − BnDūn| dx = 0. (3.22)

Let us conclude. By limit (3.19) un and ūn actually converge weakly in H1
0 (Ω)M to the same limit u. Moreover,

thanks to the H-convergence of Bn to B and the associated convergence of the flux (3.2), the sequence BnDūn

converges to BDu weakly in L2(Ω)M×N . This combined with (3.22) implies that the sequence AnDun also
converges to BDu weakly in L1(Ω)M×N . Hence, we deduce the convergences (2.11) and the limit equation (2.12).
Note that the convergences (2.11) only depend on the sequence n for which Bn H-converges. Moreover, the limit
equation (2.12) only depends on the H-limit of Bn. Therefore, Theorem 2.3 is proved. �

In the Proof of Theorem 2.3 we have used the following extension to systems of the celebrated Meyers Lp-
estimate [26]. The proof follows the scheme of [5] with an adaptation due to the functional ellipticity (2.1). We
will give a sketch of the proof to illuminate this point.

Proposition 3.1 (Meyers Lp-estimate). Let α, β > 0 and let Ω be a regular bounded open set of RN . There
exist a number p > 2 and a constant C > 0 which only depend on α, β and Ω, such that for any B tensor-valued
function satisfying the conditions (2.1), (2.6), and for any f ∈ W−1,p(Ω)M , the solution u ∈ H1

0 (Ω)M of

−Div (BDu) = f in Ω. (3.23)

satisfies the estimate
‖u‖W 1,p(Ω)M ≤ C ‖f‖W−1,p(Ω)M . (3.24)

Proof. Consider the decomposition of [5] in the proof of Theorem 4.3:

1
γ + c

B = B1 + B2 with B1 :=
1

γ + c
(Bs + c I) and B2 :=

1
γ + c

(Ba − c I), (3.25)

where Bs is the symmetric part of B, Ba is the antisymmetric part of B, γ > 0 is given by (2.6) and c > 0. We
have ⎧⎨

⎩
�

Ω

B1Du : Du dx ≥ μ

�
Ω

|Du|2 dx, ∀ v ∈ H1
0 (Ω)M

|B1| ≤ 1, |B2| ≤ ν a.e. in Ω,

(3.26)

where by choosing c > γ2−α2

2α ,

0 < ν :=

√
γ2 + c2

γ + c
< μ :=

α + c

γ + c
< 1. (3.27)
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Following [5] the solution u of (3.23) satisfies

u + R u =
1

γ + c
(−Δ)−1f where R := (−Δ)−1 (Δ + T1 + T2) , Ti := −Div (BiD·) . (3.28)

First, let us estimate the bound of the operator R from H1
0 (Ω)M into H1

0 (Ω)M . Since Δ is an isometry from
H1

0 (Ω)M onto H−1(Ω)M , we have by (3.26)

‖R‖H1
0(Ω)M ≤ ∥∥(−Δ)−1‖H1

0(Ω)M ,H−1(Ω)M

(
‖Δ + T1‖H1

0(Ω)M ,H−1(Ω)M + ‖T2‖H1
0(Ω)M ,H−1(Ω)M

)
= ‖Δ + T1‖H1

0 (Ω)M ,H−1(Ω)M + ν.
(3.29)

Moreover, noting that Δ + T1 is a self-adjoint operator we have again by (3.26)

‖Δ + T1‖H1
0(Ω)M ,H−1(Ω)M = sup

v∈H1
0 (Ω)M\{0}

∣∣∣∣
�

Ω
(I − B1)Dv : Dv dx�

Ω |Dv|2 dx

∣∣∣∣ ≤ 1 − μ. (3.30)

Therefore, we obtain that
‖R‖H1

0(Ω)M ≤ 1 − μ + ν < 1. (3.31)

Next, let us estimate the bound of the operator R from W 1,p
0 (Ω)M into itself, for p > 2. At this level, the proof

is different from the one of [5]. Let S be the operator defined by

S : Lp(Ω)M×N → W 1,p
0 (Ω)M , Sh := Δ−1

(
Div(h)

)
. (3.32)

Then, denoting by D the derivative operator we have that D◦R◦S is a linear operator which maps continuously
Lp(Ω)M×N into itself. By the Riesz–Thorin theorem (see, e.g., [22] Sect. 10.11) we have for p, q ∈ (2,∞) with
p < q,

‖D ◦ R ◦ S‖Lp(Ω)M×N ≤ ‖D ◦ R ◦ S‖θ
L2(Ω)M×N‖D ◦ R ◦ S‖1−θ

Lq(Ω)M×N with
1
p

=
θ

2
+

1 − θ

q
, (3.33)

which fixing q > 2 and using (3.31) implies that

lim sup
p→2, p>2

‖D ◦ R ◦ S‖Lp(Ω)M×N ≤ ‖D ◦ R ◦ S‖L2(Ω)M×N

= ‖R ◦ S‖L2(Ω)M×N ,H1
0 (Ω)M ≤ ‖R‖H1

0(Ω)M < 1.
(3.34)

We also have for any v ∈ W 1,p
0 (Ω)M ,

‖R v‖W 1,p
0 (Ω)M = ‖D(R v)‖Lp(Ω)M×N

= ‖ (D ◦ R ◦ S)Dv‖Lp(Ω)M×N ≤ ‖D ◦ R ◦ S‖Lp(Ω)M×N‖v‖W 1,p
0 (Ω)M .

(3.35)

Therefore, estimates (3.34) and (3.35) give ‖R‖W 1,p
0 (Ω)M < 1 for p close to 2, which combined with equa-

tion (3.28) concludes the proof. �

Acknowledgements. The authors wish to thank the unknown referees for their careful reading and relevant comments
which have improved the presentation of the paper. They are grateful for support from the Spanish Ministerio de
Economı́a y Competitividad through Project MTM2011-24457, and from the Institut de Recherche Mathématique de
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