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Abstract—Although there are contributions on component-
oriented languages, components are mostly implemented using
object-oriented (OO) languages. In this perspective, a component
corresponds to a set of classes that work together to provide one
or more services. Services are grouped together in interfaces that
are each implemented by a class. Thus, dependencies between
components are defined using the semantic of the enclosed
classes, which is mostly structural. This makes it difficult to
understand an architecture described with such links. Indeed,
at an architectural level dependencies between components must
represent functional aspects.

This problem is worse, when the components are obtained
by re-engineering of legacy OO systems. Indeed, in this case
the obtained components are mainly based on the consistency of
the grouping logic. So, in this paper we propose an approach
to identify the interfaces of a component according to its
interactions with the other components. To this end, we use formal
concept analysis. The evaluation of the proposed approach via
an empirical study showed that the identified interfaces overall
correspond to the different functional aspects of the components.

Keywords—Object-Oriented Application, Component-Based Ar-
chitecture, Interfaces Identification, FCA (Formal Concept Analy-
sis)

I. INTRODUCTION

Nowadays, components are most often built using object-
oriented technology. This is normal as, usually, new program-
ming paradigms are defined using previous ones. That was the
case for classes that are built on the procedural paradigm.

Classes are designed to hide their implementation (pro-
cedural details), i.e., encapsulation principle. This is also
true for components that need to hide their implementation
(details of contained classes). Components must expose only
their provided and required interfaces. The organization of
these interfaces should not reflect the implementation details
of their component. They must be organized according to
the component’s business logic independently of classes that
actually provide services exposed by the interfaces.

This problem appears when building components from
scratch. However, it is more blatant during automatic restruc-
turing of an object-oriented application into a component-
based application. Indeed, in this case the approach of ex-
traction of components is mainly based on the consistency of
the groups of classes. In addition, the obtained components
often have a large number of classes, which complicates the

identification of their interfaces. There are two advantages of
this type of restructuring: i) allowing a better understanding
of the system to achieve its current maintenance thanks to its
extracted architectural representation based on the component
paradigm. ii) facilitating its future maintenance by its reim-
plementation within a component technology while relying
on its architectural representation. Most of the work on the
extraction of components from object-oriented applications
consider components as clusters of classes with a set of
provided methods and a set of required methods [12], [13],
[19], [32].

To the best of our knowledge, one of the most important
works that projects the extracted components on a concrete
component model used an extracted component oriented archi-
tecture [1]. In this work, the organization of the interfaces was
achieved through a direct mapping to the component’s classes.
Although this projection is an improvement with respect to
the existing work, it still reveals the details of the component
implementation. The disadvantage is that if the definition of
component interfaces is strongly influenced by structural as-
pects, coming from the object approach (component’s internal
classes), it complicates the understanding of the relationships
between components. Indeed, component interfaces should
represent its functional aspects and its relationships with the
other components should imply only that.

In this paper, we propose to consider the problem of orga-
nizing the interfaces of a component starting from its classes
and all their exposed methods. Thus, our starting point is the
result obtained by the majority of the works on component
extraction from object-oriented applications. More concretely,
we view interface organization as a clustering problem based
on dependencies between the exposed methods (services) and
components that use them. Formal-concept analysis techniques
are used to perform the clustering. The idea behind this is that
when a component uses another, it means that it needs one
or more specific aspects from the latter. The analysis of all
interactions of a component allows us to define its various
exposed aspects. Each aspect is represented by a subset of
the exposed methods and will be implemented as an interface
of the component. This applies to the provided interfaces.
Similarly, in a context where components are extracted from
the same application, the required interfaces of a component
are defined according to interfaces provided by the other
components that it uses.

The rest of the paper is organized as follows: Section II in-



troduces some definitions, highlights the component extraction
issues, the interfaces identification and gives an overview of
Formal Concept Analysis (FCA). The interfaces identification
approach is presented and illustrated with an example in
section III. Our approach is evaluated and discussed through an
empirical study in Section IV. Concluding remarks are given
in Section VI.

II. BACKGROUND AND RELATED WORK

The goal of our work is to organize the interfaces of the
extracted components, from an object oriented application,
according to their interactions. The perspective is to produce an
architecture with more meaningful bindings, which simplifies
the system understanding. This step is very important for the
projection of the produced architecture into a concrete com-
ponent model while avoiding object oriented design influence.

This section gives the necessary background, including the
related work, to the presentation of our contribution.

A. Architecture Extraction

Software architecture plays an important role in at least
six aspects of software development: understanding, reuse,
construction, evolution, analysis and management [10]. Many
approaches and techniques were proposed in the literature
to support software architecture recovery [12], [13], [19],
[32], [8], and often the problem is redefined as a software
clustering problem. The software clustering problem consists
of finding a good partition of software modules based on
various criteria, in particular, the dependencies among these
modules [18]. Dependencies are extracted by static analysis,
dynamic analysis, or using a combination of both (so-called
hybrid approaches).

Among the approaches that use static analysis, Pourhaji
Kazem et al. [21] proposed a genetic algorithm for clustering
based on weighted module dependency graph. Saeed et al. [24]
used the Rigi tool to extract the function dependency graph and
presented a new clustering algorithm called the “combined”
algorithm to implement software architecture recovery. Man-
coridis et al. [17] extracted the file dependency graph from
the source code and used a clustering algorithm based on a
genetic algorithm.

With regard to approaches that use dynamic analysis, Yan
et al. [33] described a technique that uses run time observations
about an executing system to construct an architectural view
of the system. In a previous work, we proposed an approach
to restructure an object-oriented application into a component-
oriented one [3]. This approach is based on dynamic calls,
i.e. actual calls at runtime with use cases, to determine the
dependencies between classes. These dependencies are then
used by a genetic algorithm to derive groups of classes
representing components

For hybrid approaches, Richner et al. [22] presented an
environment supporting the generation of tailorable views of
object-oriented systems from both static and dynamic infor-
mation. Claudio Riva et al. [23] proposed a technique for
combining the analysis of static and dynamic architectural
information to support the task of architecture reconstruction

B. Interface Identification

We find that the reverse engineering research commu-
nity has been actively investigating techniques to decompose
(partition) the structure of software systems into subsystems
(clusters) [26], [5], [20], [15], [29], [4], but regrettably the
most part of researchers limited themselves to that, ignoring
the problem of provided/required interfaces identification. In
the context of restructuring an application, required interfaces
of a component, i.e., what the environment should provide in
terms of services to the considered component, are defined
so that they match the provided interfaces by the used
components, i.e., what the component should provide in terms
of services to its clients. For this reason, the first step to
perform is to define the provided interfaces for all components.

Among the few studies that have addressed the problem of
interface identification, we can cite the work by Chouambe
et al. [6]. The starting point in their approach is a list of
classes and interfaces (in the sense of OO programming)
and the relationships between each other in the analysed
software system. They create two lists L1 and L2 of tuples
consisting each of a class and an interface. Tuples of L1

consist of the implementation relationship between classes
and interfaces, whereas tuples of L2 represent the used-by
relationship between classes and interfaces. Thereafter, they
consider classes as components and the interfaces implemented
in the analysed system as the provided interfaces of the
extracted components and the interfaces used as the required
ones. Although the idea is interesting, it is completely based on
the OO application logic. Consequently, to implement/package
the identified components according to a concrete component
model, one must first identify the provided interfaces and then
implement them in the application language.

A trivial solution would be to create a unique interface
offering all the exposed methods (services). This solution is,
however, undesirable since it requires the other components
to use a single interface regardless of the services they need,
which implies that components provide only one aspect, which
is unlikely. An alternative solution was proposed in [1]. In this
work, exposed methods are grouped by their classes, i.e., one
interface per contained class, if it holds methods used by the
other components. Figures 1 shows the result of this strategy
for an extracted component.

Although this solution offers more interfaces to be used
by the other components, it violates some component ori-
ented principles. Indeed, the interface definition is based on
the internal structure of the components. Thus, it violates
the encapsulation principle (black box) of the component
paradigm. To be consistent with this paradigm, the organization
of interfaces should be based on the functional aspect of the
component and not on its concrete implementation.

C. Formal Concept Analysis (FCA)

We consider interface organization as a clustering problem.
In this perspective, we use formal concept analysis (FCA) [9]
to group exposed methods into interfaces. FCA is a classifica-
tion technique that is based on the lattice theory.

Much works have already used formal FCA for soft-
ware clustering problems. For example, in legacy system re-
engineering, FCA was used to identify objects in procedural



Fig. 1. Organization of the interfaces based on contained classes

code [25], [30]. FCA was also used for restructuring existing
OO code [7], [27], refactoring existing code toward aspect-
oriented [28], [31] or component-oriented [16], [2] paradigms.

FCA allows the identification of groups of elements having
common attributes. FCA considers contexts defined with the
triple (O,At,As). O is the set of elements (in our case the
calling components), At the set of attributes (in our case the
called methods) and As the relation that associates elements
to attributes. As is generally represented by an association
matrix, with the elements as rows and attributes as columns.
An example of a formal context is shown in Table I, with
a set of elements O = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and a set
of attributes At = {a, b, c, d, e}. In this table, element 1, for
example, has the attributes a and e.

TABLE I. A FORMAL CONTEXT FOR THE ELEMENTS O AND THE

ATTRIBUTES At.

a b c d e

1 × ×

2 × ×

3 × ×

4 × × ×

5 × ×

6 × ×

7 × ×

8 × ×

9 × × ×

10 × ×

FCA extracts the set of all formal concepts from a formal

context. A formal concept is a maximal set of elements (called
extent) sharing a maximal set of attributes (called intent). We
can express the formal concept as a pair of corresponding
sets (E, I) such that:
Extent E = {e ∈ O | ∀i ∈ I, (e, i) ∈ As} (covered objects)
and
Intent I = {i ∈ At | ∀e ∈ E, (e, i) ∈ As} (shared attributes).

For the example of Table I, co1 = ({4, 6, 8, 10}, {b, d})
is a formal concept because the objects 4, 6, 8, and 10 share
exactly the attributes b and d, and conversely. On the contrary,
({6}, {b, d}) is not a formal concept as it is subsumed by
co1 (subset of the extent and the same intent). In addition
to the set of all formal concepts, it is possible to define an
inheritance relationship between concepts. The concept co1 is
more general than the concept co2 if the extent of co2 is a
subset of the one of co1, and the intent of co2 is a superset of
the one of co1. Formal concepts and their relationships form a
concept lattice. The concept lattice obtained from the context
of Table I is illustrated in Figure 2 (left).

In Figure 2 (right), we can see that the concept
co2 = ({4}{b, d, e}) is a sub-concept of concept co1 =
({4, 6, 8, 10}, {b, d}) because it inherits the attributes b and
d and adds the attribute e.



Fig. 2. Example of formal concept lattice (left) and a focus on concept co2 (right).

III. INTERFACE IDENTIFICATION APPROACH

Conceptually, as depicted in Figure 3, a component is
intended to implement a high-level feature (e.g., image pro-
cessing). This feature is generally offered through a set of
facets (e.g., create images, convert images, merge and overlay
images, etc). For efficient use of a component and to give
meaning to its bindings in an architecture, the various aspects
of a component must be represented by separate interfaces.
When components are derived from an OO application, each
component correspond to a set of classes. The services offered
by components are the exposed methods of their classes.
However, the notion of interface is not explicitly defined. To
create interfaces, one should identify component facets from
the code.

Fig. 3. Aspects involved in interface definition

To identify the various functional facets of a component,
we rely on the way the other components use it. Indeed, for
a given component, the subset of features, which are used
by another component, partially highlights one or more of
its functional aspects. The analysis of all the facets of a
component, which are highlighted by its use by all the other
components of the application, allows us to identify a coherent
set of interfaces (facets) that the component should expose.
Thus, we can treat the problem of interface organization as
a clustering problem based on dependencies between compo-
nents.

A dependency is defined by the pair (calling component,

called service). Using this definition of dependencies, we use
a formal concept analysis to classify services according to the
components that use them.

Figure 4 gives an overview of the proposed approach
for the identification of the component’s interfaces. The
identification is the result of four steps: the first three steps
are performed automatically while the last one needs a
collaboration with the designer.

In the following sections, we detail the steps of our ap-
proach through an illustrative example. This example concerns
the Logo application, which was already used to illustrate
our approach for component extraction [3]. The identified
components for Logo are as follow:

• Component 1: The Language Parser component is
used to read the logo code, to interpret it according
to the Logo grammar, and to launch appropriate java
treatments.

• Component 2: The Evaluator that receives a list of
instructions to evaluate it in the current lexical envi-
ronment.

• Component 3: The Graphical Display component dis-
plays the results of a Logo program.

• Component 4 The Graphical User Interface (GUI)
component represents the graphical interface through
which beginner programmers interact with the appli-
cation.

As can be understood through the definition of the above
components, the Logo application is a programming learning
tool with a graphical display of results.

A. Formal Context Construction and Classification

For each component we build a formal context. This context
summarizes the dependencies of the other components with
the current one. In our approach, we consider that these
dependencies already exist and have been determined during
the component extraction process. In the case of redefining



Fig. 4. An overview of the component’s interface identification approach

the components’ interfaces of an already existing component-
based application, it is possible to have these dependencies by
a simple analysis of its source code.

The formal context is created as a matrix with lines
corresponding to the calling components and columns corre-
sponding to the services called on the component.

Table II shows a part of the formal context associated to
the Logo’s Language Parser component.

TABLE II. FORMAL CONTEXT FOR THE LANGUAGE PARSER

COMPONENT

m1 m2 m3 m4 m5 m6

C1

C2 × × × ×

C4 × × × ×

The component’s methods are referred in the table by their
number and the correspondence is given in figure 5. Thus, this
component is used by only two components (Graphical Display
and Evaluator components). In fact, the GUI component never
directly accesses to the Language Parser component.

For each formal context corresponding to a called compo-
nent, the FCA classifier module derives a concept lattice in
which services are grouped according to the calling compo-
nents. Lattice construction follows the principles described in
Section II-C.

The lattices corresponding to the matrix of Table IIis shown
in Figure 5.

Fig. 5. The concept lattices for the Language Parser component

In the constructed lattices only concepts that hold services
(circles with a coloured top) are interesting. If a concept holds
a component (bottom coloured) it is even more interesting
because it shows the aspect highlighted by that component.

B. Lattice Interpretation

The aim of the Lattice Interpreter stage is to suggest
interfaces for the called component based on its corresponding
lattice. Some of concepts may be considered as interfaces
thanks to their use by a single component (lower level of
the lattice) while others are consequence of a combination of
components (upper levels of the lattice).

In the example of Figure 5, three interfaces may be taken
into account for the Language Parser component. This may
seem obvious because the Logo example was deliberately
chosen for its small number of components in order to simplify
the explanation of our approach. But when the application
contains a large number of components, which is for example
the case of applications taken for the empirical study (see
Section IV), the number of concepts (interfaces) in a lattice
can be very large. So, it is not reasonable to let the designer
solely responsible for determining the optimal combination of
concepts.

Thus, the Interpretation stage aims to offer a combination
of concepts that satisfies the following properties:

1) It must contain all the services exposed by the com-
ponent.

2) Each service belongs to only one concept: this is
dictated by the clustering problem, but it means that
a method of a class can participate in only one aspect
of the component that contains it.

3) the number of concepts should not exceed a limit set
by the designer. Indeed, the number of interfaces per
component is one of the quality properties that each
company defines according to its experience.

4) Among the combinations of concepts which satisfy
the above conditions, the proposed solution must
optimize the objective function defined below.



dev(C) =

∑

i∈Ci
devI(i)

|Ci|

with Ci = {interfaces of C} (1)

devI(I) =

∑

c∈Iu
devIbyC(I, c)

|Iu|

with Iu = {components using I} (2)

devIbyC(I, C) =

∑

m∈I
NotUsedBy(m,C)

|I|

with I = {methods in the interface} (3)

NotUsedBy(m,C) =

{

0 if m is used by C

1 otherwise
(4)

The objective function measures the quality of the selected
combination of concepts with respect to aspects. In our ap-
proach, the aspects of a component are determined by the
components that use it. Thus, the optimum would be to have
an aspect (interface) per user component. As the objective
function measures the deviation, then the best solution is
the one that gives the minimum result. The deviation for a
component corresponds to an average of the deviations of all its
interfaces (equ. 1). The deviation for an interface is the average
of its deviations with all components that use it (equ. 2). The
deviation of an interface with respect of a user component
is the portion of its methods that are not used by the latter
(equ. 3).

Having the lattice corresponding to a component and the
objective function, it becomes possible to propose the com-
bination of concepts (component’s interfaces) that meets all
the conditions mentioned above. The selection of the concepts
representing the solution is done through the following steps:

1) In the first step are selected only concepts that
are associated with user components. The maximum
number of interfaces (rule 3) can be exceeded and
the problem will be solved when negotiating with the
designer (see next subsection).

2) If the specified number of interfaces is not reached,
then the lattice is visited level by level, from the
bottom, and are selected concepts that contain the
largest number of methods. This process is stopped
when the specified number of interfaces is reached.

3) This step is useful only if after reaching the fixed
number of interfaces there are still non selected
concepts while they contain methods. Each of these
concepts will be completely fused with an already
selected concept. The aim is to avoid break up an
already identified concept.

For the last step, the search for non selected concepts is
done by browsing the lattice, level by level, from the top. Thus,
we first consider the most constraining concepts. For each, we

determine the set of its sub-concepts that are already selected.
We consider the fusion of the concerned concept with each
concept of that set and we measure the objective function at
the interface level (equ. 2). The fusion which obtains the best
score will be realized.

Our approach promotes the identification of concepts
against a strict compliance with the limitation of the number of
interfaces. We believe it is easier to merge identified concepts
than identify new ones from existing ones.

C. Refining the Solution

The previous stages are an aid, based on a heuristic
approach, to the designer to get a solution which is close to
the optimal. Thus, the proposed solution can be considered as
the final solution, but it simplifies the work of the designer to
achieve the latter. Moreover, it is not possible to automatically
find a meaningful name for each interface. At this stage,
the designer can refine the proposed solution (eg. moving
methods, merging interfaces or splitting an interface), but
the most important is giving a meaningful name to each
interface. Merging interfaces can result from an exceeding
of the maximum number of interfaces that the designer has
chosen. In this case, of course, our objective function will be
useful to the designer to find the best fusion.

Once the provided interfaces are defined, it is easy to
extract the required interfaces. The component’s required in-
terfaces are defined such as to correspond to the provided
interfaces that it uses. Thus, a component-based architecture
of the legacy application can be proposed. For instance, the
extracted architecture for the Logo application is shown in
Figure 6. As we can see, connections between components
contain names with a semantic meaning that simplifies the
understanding of the architecture.

IV. EMPIRICAL STUDY

Through this study we want to show the importance of
the influence of the object paradigm on the definition of
component interfaces when components are built using this
paradigm. But we also want to validate that our approach
provides consistent interfaces.

To this aim, we selected component-based applications and
for each we have achieved the following:

First step:

• Extract dependencies between components.

• Based on the extracted dependencies and our objective
function, measure the quality of the declared inter-
faces.

Second step:

• From the already extracted dependencies, apply our
approach to propose interfaces to components

• Measure the quality of the proposed interfaces using
our objective function

• Take randomly a small number of interfaces to mea-
sure the number of changes that the designer may have
to make.



Fig. 6. The extracted component-based architecture for the Logo system.

Thus, in the second step we consider the components as
if they were extracted, we deliberately ignore their declared
interfaces to propose new ones. Below we explain the most
important aspects of this study and we give the results.

A. Selected Applications

For the purposes of the study, we need to reproduce the
situation that corresponds to an object-oriented application re-
structured into component-based application. Thus, the chosen
component-based applications must not contain anything other
than their specific classes. We want to avoid any interference
from classes added by the component framework. To meet
these criteria, we decided to select only applications developed
within the OSGi component model. Indeed, in OSGi, except
business classes, there are no additional classes to define the
component. In OSGi, a component is known as a bundle. Each
bundle is defined by a single JAR file which packages the
module (code and resources) and a manifest file which contains
the extra meta-data. In fact, the logical bundle is equated with
the physical bundle JAR file (the module) [11].

TABLE III. SELECTED APPLICATIONS

Application Description Nb. of

compo-

nents

Code

Size

(KLOC)

version

MAT Eclipse Memory Analyser

Tool

13 86 1.2.0

Eclipse E4 Eclipse Platform 28 20 4.0

IMP IDE Meta-Tooling Platform 36 117 0.2.1

We selected 3 OSGi component-based applications that
are all open-source projects and developed in JAVA. We have
tried to collect applications having different sizes (number of
components in an application and its code size) and belonging
to different development teams. Table III provides a short
description of these applications.

B. Results

Table IV summarizes the results of our study on the
applications when considering as interfaces of a component
all interfaces (Java meaning) and public classes that are in its
exported packages.

TABLE IV. OBTAINED RESULTS BEFORE THE USE OF OUR APPROACH

Application # declared

interfaces

# declared

but not used

interfaces

# used but

not

declared

interfaces

Average

DevC

MAT 481 373 2 0.603

Eclipse E4 168 161 5 0.573

IMP 1655 1639 5 0.597

The fourth column shows the number of interfaces (as
defined above) that are not reported in the exported packages,
but are used by other components. This is achieved by breaking
the rules that must be observed for developing OSGi compo-
nents. The number of interfaces that are in this case shows
the weakness of the component interface design. The number
of the third column also shows this design weakness, since
the majority of components are created specifically for their
application.

The last column gives the average value of our objective
function DevC for all components of the application. For
this calculation, we have considered only interfaces that are
declared in exported packages. If an interface is declared but
not used, it receives 1 for DevC (max value). Thus, the number
of declared interfaces but not used (column 3) is heavily
involved in the weak score of the average DevC.

Figure 7 shows the results of the objective function DevC
for each component from each application. In each graph,
at the same time are represented the results related to the
interfaces derived with our approach (solid line) and those
declared in the manifest file of components (dashed line). We
can notice that the results are much better for components with
interfaces that were proposed by our approach. In some cases
they are not the same set of services which are considered in
the calculation of a component DevC. This is the case when
some methods of a class are used while the latter does not
belong to an exported package.

It is true that the penalty assigned to unused interfaces
(1 for DevI) degrades the result of the declared component
interfaces. But, at the same time it also shows how the
components were poorly designed in terms of defining their
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Fig. 7. Comparative results for DevC before and after the use of our approach

interfaces.

C. Discussion

The obtained results are the same regardless of the appli-
cation, as shown in Figure 7. Thus, the problem is not related
to the context of the application (scope or development team).
The common element is the use of object-oriented approach
for building components.

The other problem we have noticed is the use of an already
existing packages for declaring interfaces. Indeed, with the
OSGi framework provided interfaces are declared in a package
to export. But programmers use classes that already belong
to packages, while the latter are designed for object-oriented
design. The logic used to group classes in a single package,
according to the object-oriented approach does not correspond
to the logical grouping of features according to aspects. This
is highlighted by i) the number of interfaces declared by
components (in their exported packages) which are not used
by the other components. ii) the existence of interfaces that are
used but do not belong to exported packages (see Table IV).

The results obtained with our approach depends on the
maximum number of interfaces per component set by the
designer. Not knowing the semantics of each component of
each application, we set this number at 1.5 times greater than

the number of user components of each component. There is
no doubt that a good knowledge of the components makes it
possible to set the limit of the number of interfaces to the
correct value and thus get better results.

V. THREATS TO VALIDITY

Our study may be concerned by internal and external
threats to validity. We discuss below these two kind of possible
threats.

A. Internal Validity

The internal validity is threatened by the chosen tool
to extract dependencies between components. We used the
JDT Eclipse parser to build the static call graph. Indeed, if
dependencies are extracted from a dynamic call graph (actual
calls), they may be a little bit different from those obtained
from a static call graph. The dynamic call graph may contain
calls related to classes dynamically loaded and may miss calls
that the used use cases do not cover.

The number calls related to classes dynamically loaded is
very small wrt to calls within an application. Thus, they do not
impact the results of our study. But, the number of possibly
missed calls by use cases may be important. Indeed, it is hard
to get use cases covering all possibilities of an application.



That is why we chose the use of a static call graph to extract
dependencies between components.

B. External Validity

The external validity is threatened by the language and
the framework with which the chosen applications have been
developed. We chose applications developed with the Java
language. As our study is based on static calls, we do not
believe that the results may be different with another object-
oriented language. We have chosen the OSGi framework
because there are no additional classes that the business classes
have to interact with.

The use of our approach for redefining interfaces of already
existing components, constructed within a framework that adds
its own classes (eg. J2EE), can give an inconsistent result. But
our approach has been built to be integrated in a process of
restructuring of object-oriented applications into component-
based applications. In this case, there are only application-
specific classes.

VI. CONCLUSION

According to Lehman’s first law [14], software systems
must be continually adapted, or they become progressively
less satisfactory. In the same time, the software evolution
is becoming more and more complex and expensive. This is
explained by the Lehman’s second law [14] which states that
as a software system evolves its complexity increases unless
work is done to maintain or reduce it. Given the advantages
of the component paradigm, re-engineering object-oriented
applications into component-oriented applications seems to be
a promising choice. It helps companies reducing their software
maintenance and evolution costs. Especially if this process is
automated in a large part. In this context, automated identifi-
cation of components and their interfaces is an important first
step. In this paper, we have proposed an interface identification
approach that is defined as a continuation of a component
identification process. The aim is to build a consistent and
understandable architecture that facilitates the maintenance
and/or the mapping of the application to a concrete a com-
ponent model.

Our study of existing applications has shown how the
designer is influenced by the object paradigm when designing
her/his components. In case of a correctly built application, but
mainly with component on the shelf, our objective function can
give unsatisfactory results. Indeed, the latter are often generic
in order to cover a wide space of application domains. So they
can hold aspects that are not relevant to the target application.
However, our objective function can be used to choose between
competing components to minimize the size of unnecessary
code in the application.

To project an architecture, which is extracted with our
approach, on an existing component framework, we can use
the façade and the factory design patterns. For the latter, its
use can raise some difficulties. Indeed, the life-cycle of objects
from a group of classes (component) is somehow managed by
some third parties in the legacy application. To put their life-
cycle within the component that holds the concerned classes,
we need first to conduct a study on the dynamics of these
objects in order to reproduce it within the component. This
aspect will constitute our main future work.
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