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Software architecture plays an important role for the application understanding be-

fore its maintenance. Unfortunately, for legacy systems code often there is no corre-

sponding (or up to date) architecture. So, several work tackle this problem by extracting

components from the legacy system and define their links. Although these components

allow to get an architectural view of the legacy system, they still can’t be easily im-

plemented in a concrete framework. In fact, restructuring completely the legacy system

facilitates the mapping between the architectural elements and their corresponding ones

in the code. This paves the way to the future maintenance of the system.

Our approach aims to reach this complete restructuring. Thus it goes beyond what

exists in the state of the art by proposing a technique that makes components extracted

from object-oriented applications implementable within a concrete component model.

This is done by using class instances that compose the extracted components to infer

possible instances the components. Thus, we propose for each extracted component its

provided and required interfaces, and a way to construct its instances. We validated the

feasibility of the proposed approach through the Spring framework and we illustrated it

through a legacy Java application.

1 Introduction

Most existing works on extraction of components from a legacy system have as a main

aim the construction of an understandable architecture [10,17,2]. When the legacy sys-

tem is implemented in the object-oriented paradigm, a component is represented by a

cluster of classes with a set of provided methods and a set of required methods. Thus,

the identification of the components consists in finding the groups of classes that are

the most cohesive and loosely coupled. So, the obtained results have the advantage to

offer a more abstract representation via a component-oriented architecture view of the

object-oriented application.

The extracted software architecture facilitates the understanding of the legacy sys-

tem. However it needs to be complemented by a mapping between architectural ele-

ments and their corresponding ones in the code in order to facilitate the achievement of

maintenance. In fact, sets of classes, representing components, can not be easily pro-

jected onto a specific component model [2]. This problem is due to the shift from the

concept of object instances to the concept of component instances. Indeed, it is not

easy to infer a component instances from a set of class instances. Hence, the executable
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version of the application remains in its old form and therefore has no direct corre-

spondence with the architecture. Consequently, there is no direct mapping between the

architecture and the running application.

To solve this problem, we need to be able to project the extracted components on a

concrete component model. This will give the advantage of creating a direct mapping

between architectural elements and their equivalents in the code of the application. To

achieve this purpose, we need to (i) identify the interfaces of the extracted components

to make them consistent with the component paradigm concepts, and (ii) determine

how the concerned classes will be instantiated with respect to component instances.

This second concern, which is neglected in literature on component extraction, is im-

portant as it allows to formalize the notion of component instance, which is necessary

to make the application executable and at the same time its components reusable by

others applications.

In a recent work [16], we proposed a solution for the point (i) based on a static anal-

ysis of the extracted components. In this paper, we propose a solution for the point (ii).

Our approach considers that the extraction of components (cohesive groups of classes)

is already performed. It is based on the hypothesis that an instance of a component

consists of a connected set of instances of its classes. Thus, the objective is to iden-

tify all instances of classes representing an instance of a component in order to build

the component’s factory. This will provide the necessary means for the framework to

run the restructured application. Furthermore, the identification of the component in-

stances allows us to propose a dynamic approach to the identification of the component

interfaces.

To demonstrate the feasibility of our approach, we present its implementation within

the Spring component framework. After that, we apply it on a Java application that we

restructured into a component-based application with the approach presented in [2].

To validate the correction of the restructuring, we have replayed the application’s case

studies on its component-based version and the results were identical to those of its

object-oriented version.

The rest of the paper is organized as follows: in the next section we describe the

process of our approach. Sections 3 shows how to define instances of a component

starting from the objects of its classes. Then, the definition of the component’s inter-

faces and the creation of its instances is described in Section 4. In Scetion 5 we show

how our approach can be implemented using the Spring component framework. Before

concluding, we present the related work in Section 6.

2 Approach

The group of classes, which represents a component, are part of the definition of the

component descriptor. The descriptor of a component is equivalent to the class in the

object-oriented paradigm. Thus, what is lacking with the group of classes is the way to

build instances of the component. Indeed, to create a component-based application, as

in the case of an object-oriented application, it requires creating component instances

and binding them.

For this work, we propose the following definition for a component instance:



Enactment of Components Extracted from an Object-Oriented Application 3

Fig. 1. Process of the proposed approach.

Definition 1 : An instance of a component consists of all instances of its classes, which

have had connections during the execution of the application and thereby forming

a connected group.

Objects surrounded by a dashed line in figure 3 is an example of component in-

stance. To build component instances, we must first identify the instances of classes

that compose them and their links. This is why our approach, as shown in Figure 1,

begins with the execution of the application’s use cases in order to extract traces of

method calls between objects. This information will be summarized in an object call

graph (step 1 of the process).

The use of the application’s use cases is a way to get only objects that actually play

a role in the functionalities provided by the system. Thus, all the other objects from

classes held by the application are naturally avoided and have no chance to infer in the

proposed process.

By analysing all objects, instances of classes belonging to the same component, we

can find several connected groups. It is these groups of objects that represent instances

of the component. Thus, we can reduce the obtained object call graph to a component

call graph in order to focus on the relationships between component instances (step 2

of the process).

The identification of component instances is interesting only to deduce a way to

build them. For a given component, some of its instances may have similarities when

considering the type of their involved objects. Thus, these component instances suggest

a common constructor. Indeed, these component instances have a similar configuration

of their constituent objects that we define as follows:



4 Abderrahmane Seriai, Salah Sadou, and Houari A. Sahraoui

Definition 2 : Two instances of the same component belong to the same configuration

if and only if their subsets of objects, which are directly concerned by the compo-

nent’s incoming calls, are similar.

Definition 3 : Two sets of objects are similar if and only if they contain the same num-

ber of class instances for each involved class.

Finding all possible instance configurations for each component is the goal of the

step 3 of our process. Once the possible instance configurations of a component are

identified, we need to define a constructor for each of them. Subsequently, to each

configuration of instances, we associate a component provided interface (goal of the

step 4). Thus, with our approach, each component interface highlights one of its aspect,

which is emerged by the configuration. For a component, its required interfaces will be

defined according to the identified provided interfaces of all components on which it

depends.

In the following sections, we describe each step of our approach.

3 From Object to Component Call Graph

An important step in our approach is to identify component instances, and their bind-

ings, by considering the classes they hold. The component instances will consist of

objects from its classes. For this aim, we first construct an object call graph in order to

transform it into a component instance call graph.

3.1 Object Call Graph

The first step of our approach consists of identifying all possible class instances for the

entire application and build their links. This leads to the construction of a call graph

specific to class instances (objects).

To get this call graph, we run the application with all its use cases to capture the

execution traces. An execution trace corresponds to a directed tree T (V,E) where V is

a set of nodes and E a set of edges between nodes. Each node Vi represents an instance

of the class (Cli). An edge 〈Vi, Vj〉 indicates that an instance i calls a method of an

instance j. The root of T (V,E) corresponds to the entry point of the system.

As shown in Figure 2(left), the nodes of the tree are labeled by the identifier, the

actual types of the objects that are called and the concerned methods. As the execution

traces are based on method calls, it is possible to have nodes containing the same object

(same identifier) with calls on different methods. This is the case for object d0 which

appears twice for two different methods (see left part of Figure 2). So, these nodes are

grouped in the same one in order to get a graph where each object is represented by

exactly one node. Thus, the resulting node contains all called methods. An example

of such a transformation is given in the right part of Figure 2. The resulting graph

corresponds to what we call Object Call Graph (OCG).
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Fig. 2. Example of execution trace tree (left) and its corresponding object call graph (right).

3.2 Component Call Graph

The identification of component instances is based on our definition of component in-

stance (see Section 2). Thus, starting from the OCG of an application, we need to iden-

tify the sub-OCG that may be associated with each component. Recall that our working

hypothesis is that for each component, we know the classes composing it. Thus, finding

the sub-OCG associated with a component leads to find the sub-OCG composed of all

objects that are associated with the component.

Figure 3 (left side) shows examples of such a sub-OCG. Objects associated with the

same component are marked with the same symbol (circle, triangle or square). For in-

stance, the dimmed objects are associated with the same extracted component (triangle

symbol), which holds the classes A, B, C, D, E and J. When an object is marked

with several symbols, it means that it is used inside several components and thus, its

class is used to define these components. This situation arises when components ex-

change object references through service calls. We will discuss the responsibility of

creating this kind of objects in the next section.

By analyzing the sub-OCG of a component, we can identify sub-graphs. These sub-

graphs correspond to possible instances of the component. Figure 3 (right side) pro-

vides a representation of the OCG that is reduced to component instances. That is what

we call Component Call Graph (CCG). Thus, in a CCG, nodes are instances of com-

ponents, and edges correspond to calls between components. In other words, edges

correspond to calls between objects belonging to different components. For example,

instances of the component represented by the dimmed sub-OCG in the right part of

Figure 3 are shown as dimmed nodes in the right part of the same figure. One of these

instances is Comp1.1, which contains objects a1, b1, d0 and e0. The listed meth-

ods (mth14, mth15) are those called on these objects by instances of other compo-
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Fig. 3. (a) Example of sub-OCG, (b) Example of component call graph.

nents. To each method name mthi, are associated the full method signature and the class

to which it belongs.

In the case of an object that is shared by several component instances, all calls to

(or from) this object, and coming from (or to) other objects held by these components,

are considered internal and therefore, not visible at the CCG level. For example, in

the OCG of Figure 3, the object j0 belongs to two component instances of different

types (square and triangle). Thus, the call from c1 to j0 is considered internal to the

component instance of triangle type and the call from f1 to j0 is considered internal

to the component instance of square type. This is why in the corresponding CCG (right

part of the figure) there is no edge between the component instances Comp2.1 and

Comp1.1.

4 Interface Identification

By analyzing the instances of a component, we can identify similar configurations of

objects they contain. According to the definition given in Section 2, component’s con-

figurations help in defining its provided interfaces. At the same time, a configuration

of a component reflects one of its aspects. Thus, we can also use the configuration to

define a constructor for the component.

In the following, we describe our approach to identify configurations of a compo-

nent as well as the constructors associated with them.

4.1 Configuration Identification

In Figure 3, the two instances Comp1.0 and Comp1.1 of component COMP1 have in

common the fact that their accessible objects from outside (other components) are of the

same type (b0 and b1 of type B and shown in bold). Thus, these component instances

are associated with the same configuration. This configuration is characterized by the

fact of exposing an object of type B as an interface to other components.
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The two component instances, which have given rise to this configuration, show

that only the methods mth1, mth2, mth14, and mth15 of the class B are used by the

other components. Moreover, one of the two instances of the component (Comp1.0)

requires an instance of another component (Comp2.0). As the latter belongs to a given

configuration, so we can link the dependency to this configuration.

Thus, we define a configuration as a triple (ObjInt, MethInt, ReqConf) where:

ObjInt corresponds to a set of objects belonging to component instances of the con-

figuration, which are called by other component instances.

MethInt corresponds to the union of sets of methods from component instances of the

configuration that other component instances use.

ReqConf is the set of configurations of component instances that are required by those

of the current configuration.

For instance, the configurations of the component given in the example above cor-
respond to the following triplets:

({b0:B,b1:B},{mth1,mth2,mth14,mth15},{configuration1 of COMP2})

and

({c0:C,c1:C},{mth6,mth7,mth8,mth9},{configuration1 of COMP2})

From a configuration of a component, we can deduce one of its provided interfaces

and some of its required interfaces. Indeed, the list of methods associated with the con-

figuration correspond to a provided interface of the component. Thus, each provided

interface is associated with one and only one configuration of the component. Further-

more, as the configuration requires configurations from other components, the provided

interfaces associated with those configurations define the required interfaces of the tar-

geted component.
Thus, the provided interfaces of a component correspond to the set of provided

interfaces suggested by its configurations. And its required interfaces correspond to
the union of the provided interfaces associated with the configurations required by its
configurations. From the example given above, we deduce the following required and
provided interfaces:

Provided interfaces = {{mth1,mth2,mth14,mth15},

{mth6,mth7,mth8,mth9}}

Required interfaces = {{mth3,mth4}}.

From the list of objects held by a configuration, we can also define the necessary con-

structors for the component instances associated with this configuration. We will show

that in the next sub-section.

4.2 Component Constructors

With the notion of configuration, we have grouped a set of component instances around

the same provided interface. Although these instances are used through the same types

of objects, the way to create them is not necessarily the same.

Indeed, each object can have different constructors that can be used independently

to create component instances associated with the same configuration. Thus, we must
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Component  Descriptors Component instances 
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b3:B 

b2:B 
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e2:E 

e3:E 

<INIT>(type3,type4) 

Interf1 

Fig. 4. Example of transformation of object constructors into a Factory method pattern.

consider each component instance to analyse calls to constructors of its objects that

are directly concerned with the provided interface. The objectives of this analysis are:

(i) Identify objects whose construction is made by other components. (ii) Determine

the precedence of creating these objects. iii) Determine the different combinations of

constructors that are used to construct these objects.

Indeed, we are only interested in objects that are created outside of the component as

the other objects are necessarily created by objects from the same instance component

(connected graph).

Figure 4 shows a component (Component1) that requires an interface of another

component (Component2). This interface concerns only objects of types A and B.

When tracing the different use cases, we distinguish three instances of component

Component2 that are associated with this interface (see the right part of the figure).

We note that the objects concerned by the interface were created by using different

combinations of their constructors.

The different combinations of object constructors are grouped as a Factory method

pattern. This pattern allows the construction of the various component instances that are

associated with the same configuration (required interface). Thus, each provided inter-

face of a component is associated with a Factory method pattern for the construction of

component instances to be used through this interface.
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Calls to object constructors of a component instance are actually dispersed in the

component that uses this instance. Recall that each component instance is associated

with a given provided interface. Thus, a component that uses a component instance will

require an interface of the same type to which the component instance is associated

with. Therefore, any references to objects of the component instance that is in the user

component, must be transformed into a single reference to the component instance.

In the left part of Figure 4, component instances of Component1 use component

instances of Component2 through object references (aAtt and bAtt) of type A and

B. The type of these references must be replaced by the type of the required interface

(Interf1). Moreover, these references must be initialized with the same component

instance. This implies that each component instance holds its own identification, which

will be communicated to all the objects that constitute it. This is equivalent to the this

attribute in the object paradigm. As shown in Figure 4, the component’s classes will

be changed in order to add a reference to the component instance as an attribute and

a parameter in their constructors for initializing this attribute. The propagation of the

identifier of a component instance to all objects that constitute it will be initiated by

its associated Factory method pattern. Objects shared by different component instances

(necessarily from different components) will receive the identifier of the component

instance that created them.

Thus, calls to constructors of objects belonging to the required component instance

will be replaced by a request of required component instance from the component in-

stance to which the object belongs. As shown in the class F of Figure 4, bAtt = new

(var1, var2) is replaced by bAtt = compInst.getRef1Interf1(). This

implies that in the component descriptor, there is a getter method for each required

interface.

The call to the Factory method of the provided interface of a component can be set

in the component that requires this interface as it can be placed outside all components

and thus constitute the configuration file of the application. The choice of the con-

crete implementation of the Factory method pattern depends on the targeted component

framework. In the following section, we give a solution within the Spring component

framework.

5 Case Study

The objective of our approach is to make components extracted from an object-oriented

application projectable on a concrete component model. Thus, we chose the case of

Spring as a concrete model and framework. Our approach relies on the existence of

extracted components represented by sets of classes. In the past we had done this work

on a concrete application called Logo.

Below we give a brief description of the Logo application, followed by the tools

developed for the implementation of our approach and we conclude by showing how

the components are projected onto Spring by using the Logo application as example.
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5.1 Logo Application

The Logo application consists in a language for learning programming and its inter-

preter. The latter has a graphical interface which allows writing the code and a window,

which shows the result of this code graphically. This system was selected for two rea-

sons: (i) its reasonable size allows us to perform a deep analysis of the results. (ii) we

already extracted its components. (iii) one of its developers was available to comment

the results.

The component-based architecture of the Logo interpreter, which was extracted

thanks to the approach proposed in [2], contains four components:

– The Language Parser component is used to read the logo code, to interpret it ac-

cording to the Logo grammar, and to launch appropriate java treatments.

– The Evaluator that receives a list of instructions and evaluates them one after an-

other in the current lexical environment.

– The Graphical Display component displays the results of a Logo program that

makes the connection between the Logo code, its evaluation, and its visual results.

– The Graphical User Interface (GUI) component represents the graphical interface

through which beginner programmers interact with the application.

The components above consist of sets of classes.

5.2 Process and Tools

We defined a tool for each step of our process (see Figure 1). All the tools were imple-

mented in Java using JVMTI3. These tools are as follow:

Tracer This tool allows the generation of execution traces (instances creation, method

calls, attribute access, etc). This was made using a custom extraction agent written

in C that utilizes the JVMTI API. This agent crops at each entrance or exit into/from

a method, the relevant information, such as the class and the instance where the

method is executed, the current thread, etc.

ObjectCallGraphBuilder Using the traces provided by the Tracer, this tool constructs

an object call graph.

ComponentConfigurationBuilder Using information about contained classes for each

component and the object, this tool uses algorithms from graph theory to generate

connected sub-graph for each component (its different instances). It also provides

the component’s configurations.

ComponentInterfacesExtractor This tool analyses dependencies between the objects

involved in a configuration and those from the other components in order to define:

(i) the provided interface associated with the configuration. (ii) the components that

require this interface. (iii) the constructors for the component instances associated

with the interface.

3 Java Virtual Machine Tool Interface (JVMTI) API is a tool that provides both a way to inspect

the state and to control the execution of applications running in the Java virtual machine (VM)

(http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti)
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ComponentToSpring This tool generates the classes representing component instances

according to the Spring framework. It also modify classes of a component in order

to make their objects aware about the component instance they constitute. Finally,

it produces the configuration file for the application.

The first step of our experiment consists in executing scenarios corresponding to

the 15 identified Logo use cases. Examples of such use cases are ”file creation/saving”,

”code writing in the editor”, ”code interpretation”, etc. Thanks to the Tracer, events

that occur in the Logo application during the execution of these use cases are collected.

Each event indicates which object calls which other object and on which method. Since

we are interested only in events involving classes of the Logo application, we filtered

all the noises produced by the agent tracer. Indeed, the used extraction agent is listening

to all events at each entrance or exit of methods, even those that come from libraries

and mouse/ keyboard events, etc.

After that, the ObjectCallGraphBuilder, and the ComponentConfigurationBuilder

are executed to build the component instance configurations for each component. After

the identifying component interfaces thanks to the ComponentInterfaceExtracor, the

ComponentToSpring tool produces the necessary classes to make the component-based

version of the application according to the Spring framework.

Bellow, we detail how these classes are generated.

5.3 Generated code for Spring

As shown in Figure 5, each component is represented by an abstract class. All its con-

figurations correspond to concrete classes of the abstract class that represents it.

Fig. 5. Class diagram representing a component within the Spring framework.

The interface associated with a configuration of a component is represented by a
Java interface as shown in the example below. Thus, each configuration implements its
corresponding interface.

public interface IEvaluationHandling {

public void initEnv(HashMap<String, Object> penv);

public Object evalList(ArrayList<Object> listInstruction);

}
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Both interface method above come from two different classes. These are the classes of
the objects involved in the configuration associated with the interface. This interface is
implemented by the class that represents its configuration. The code below gives a brief
description of such a class.

public class ConfEvaluationHandling extends EvaluatorComp

implements IEvaluationHandling {

//required interface

IErrorHandling required1;

//Objects of the configuration

Library lib;

InputOutout inOut;

// Constructor of component instances

public ConfEvaluationHandling(IErrorHandling req1){

//injection

required1=req1;

//creation of objects of component instances

ObjectFactory();

}

//customized Factory for this configuration

private void ObjectFactory(){

lib = new Library (this);

inOut = new InputOutout (this);

}

@Override

public void initEnv(HashMap<String, Object> penv) {

lib.initEnv(penv);

}

@Override

public Object evalList(ArrayList<Object> listeInstruction){

return lib.evalList(listInstruction);

}

...

}

This class inherits from the abstract class representing the component. This is the way to

associate a configuration to a component. The first attribute corresponds to the required

interface. It will be injected via the constructor of the class using the configuration file

(see below for an example). The two other attributes correspond to the objects that are

directly involved in the configuration. The Factory method ObjectFactory creates

the objects associated with the component instances. Note the ”this” given to construc-

tors of the objects that allows them to know the component instance to which they are

associated. Methods of the interface are implemented as redirections to the correspond-

ing objects.
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Below you have an excerpt of the configuration file for the Logo application in its
component-based version.

<!-- Definition for EvaluatorComp-instance2 bean -->

<bean id="EvaluatorConf2"

class= "com.irisa.evaluatorcomp.ConfEvaluationHandling">

<constructor-arg ref="ParserConf1"/> </bean>

<!-- Definition for ParserComp-instance1 bean -->

<bean id="ParserConf1"

class="com.irisa.parsercomp.ConfErrorHandling">

<constructor-arg ref="GuiConf2"/> </bean>

<!-- Definition for GuiComp-instance2 bean -->

<bean id="GuiConf2"

class="com.irisa.guicomp.ConfEventsHandling">

...

</bean>

For the first created component instance (EvaluatorConf2) we can notice that the

reference on the component instance (ParserConf1) is injected via the constructor

of the component. This will be used for the required interface of the component instance

(EvaluatorConf2).
The main statements in the launcher of the Logo application in its Sprint version are

the follow:

IEventsHandling mainApp = (ConfEventHandling)

context.getBean("GuiConf2");

mainApp.main(args);

The first statement allows to retrieve an instance of the EventHandling component and

to use it through its IEventsHandling interface. This component contains the class that

holds the launcher (main method) of the Logo application, which is provided through

the IEventsHandling interface. Thus, the second instruction starts the application.

To validate the component-based version of the Logo application, we replayed the

15 use cases, which were used to extract execution traces, and we got the same results.

After that, we checked that the generated components can be used independently from

each other. We reused the EvaluatorComp component in an application that allows

to test the validity of Logo expressions through a command line. So we built a fairly

simple component that allows to enter a Logo expression through the standard input.

It requires the IEvaluationHandling interface of the EvaluatorComp compo-

nent. It uses mainly the evalList method to submit the proposed expression. The

returned result is translated into an understandable message and then printed on the

standard output.

Obviously, we used an instance of ParserComp component that is required by the

EvaluatorComp component. Apart from this component instance, which is perfectly

appropriate, the reuse of the component do not generate any problem.

6 Related Work

The reverse engineering research community has been actively investigating techniques

to decompose (partition) the structure of software systems into subsystems (clusters or
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component). In this section we target only work concerning the recovery of components

in a legacy system.

6.1 Architecture Extraction

Software architecture plays an important role in at least six aspects of software devel-

opment: understanding, reuse, construction, evolution, analysis and management [6].

Many approaches and techniques were proposed in the literature to support software

architecture recovery [9,11,14,8,18,12,13], and often the problem is seen as a software

clustering problem. The software clustering problem consists of finding a good partition

of software modules based on various criteria, in particular, the dependencies among

these modules [9]. Dependencies are extracted by static analysis, dynamic analysis, or

using a combination of both (so-called hybrid approaches).

Among the approaches that use static analysis, Pourhaji Kazem et al. [11] proposed

a genetic algorithm for clustering based on the weighted module dependency graph.

Saeed et al. [14] used the Rigi tool to extract the function dependency graph and pre-

sented a new clustering algorithm called the “combined” algorithm to implement soft-

ware architecture recovery. Mancoridis et al. [8] extracted the file dependency graph

from the source code and used a clustering algorithm based on a genetic algorithm.

With regard to approaches that use dynamic analysis, Yan et al. [18] described a

technique that uses run time observations about an executing system to construct an ar-

chitectural view of the system. In a previous work, we proposed an approach to restruc-

ture an object-oriented application into a component-oriented one [2]. This approach is

based on dynamic calls, i.e. actual calls at runtime with use cases, to determine the de-

pendencies between classes. These dependencies are then used by a genetic algorithm

to derive groups of classes representing components.

For hybrid approaches, Richner et al. [12] presented an environment supporting the

generation of tailorable views of object-oriented systems from both static and dynamic

information. Claudio Riva et al. [13] proposed a technique for combining the analy-

sis of static and dynamic architectural information to support the task of architecture

reconstruction.

All these work achieve the starting point of the approach proposed in this paper (ie,

sets of classes representing components). Thus, these work are complementary to our

approach.

6.2 Component Instance Identification

In the field of Component-oriented programming (COP) , where the components are

created from scratch (bottom-up approach) [4], a component instance is uniquely iden-

tified with regard to the other instances, and is obtained from a component class (com-

ponent descriptor), to enable use of the features associated with the component during

the execution time. A variety of component-oriented languages have been proposed in

the literature [4,3,5,19] to define components ( component classes andor component

instances). These component languages are either dedicated to only software specifica-

tion and are not executable (eg. UML 2.0 [7]) or dedicated as well as to transform mod-
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els [4,15] into executable codes or to write programs by hand. SCL [4] is an example

of the latter case, which defines the component by a descriptor that can be instantiated.

Regarding the field of restructuring object-oriented systems into component-based

systems, to the best of our knowledge, there is no work that identifies instances of

extracted components.

7 Conclusion

The work presented in this paper aims to complete work on the extraction of compo-

nents from legacy systems. Indeed, our approach allows to completely restructure an

object-oriented application into a component-based application. Thus, it makes perma-

nent mappings between elements from the extracted architecture and their correspond-

ing ones in the code of the application. Identifying the different instances of a com-

ponent highlights its various aspects. Defining the interfaces of a component based on

the various configurations of its instances is a way to make it reusable according to its

different aspects.

Thus, we performed this work as a continuation of the work we have already done

on the extraction of components from an object-oriented application [2]. Given the as-

sumption we made (ie, the components are represented as a set of classes), the proposed

approach also applies to all work on the extraction of components from object-oriented

applications. However, our approach requires the existence of use cases in order to

identify instances of components.

We have shown that instances of a component can be used to define its interfaces.

We have already proposed an approach for the identification of interfaces of a com-

ponent through a static analysis (on source code) of its dependencies on other compo-

nents [16]. We used the same application as a case study (Logo) and we found some

differences in the identified interfaces. In fact, static analysis takes into account objects

that may be created but do not really exist in the context of the application (polymor-

phism). On the other side, dynamic analysis allows to get objects related to classes dy-

namically loaded. But the obtained interfaces are related to the context of the concerned

application.

In one of our old work we presented an approach for component extraction that

relies on a combination of static analysis (on source code) and dynamic analysis (calls

between objects) [1]. This combination of the two approaches of analysis allowed to

better cover aspects of extracted components. We think this may be the case with the

definition of component interfaces. Thus, we expect in a future work the definition of

component interfaces based on a combination of the two types of analysis in order

to deduce dependencies between instances of components and getting more reusable

components.
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