
HAL Id: hal-01102152
https://hal.science/hal-01102152v1

Submitted on 12 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Use of formal methods in embedded software
development: stakes, constraints and proposal

A. Fernandes-Pires, T. Polacsek, V. Wiels, S. Duprat

To cite this version:
A. Fernandes-Pires, T. Polacsek, V. Wiels, S. Duprat. Use of formal methods in embedded soft-
ware development: stakes, constraints and proposal. EMBEDDED REAL TIME SOFTWARE AND
SYSTEMS (ERTS 2014), Feb 2014, TOULOUSE, France. �hal-01102152�

https://hal.science/hal-01102152v1
https://hal.archives-ouvertes.fr

Use of formal methods in embedded software
development: stakes, constraints and proposal

Anthony Fernandes Pires∗†, Thomas Polacsek†, Virginie Wiels† and Stéphane Duprat∗
∗Atos Intégration SAS, 6 impasse Alice Guy, B.P. 43045, 31024 Toulouse cedex 03, France

†ONERA, 2 avenue Edouard Belin, 31055 Toulouse, France

Abstract—In aeronautics, software development is submitted
to strong constraints. The DO-178 certification standard
specifies development and verification objectives. Moreover, its
supplement DO-333 defines guidelines for the use of formal
methods in this context. Formal methods are used in industry for
different purposes and often require the intervention of experts
for their processing. In this paper, we propose an approach
to answer a certification objective using formal methods while
keeping them usable for non-experts. We present an automatic
method to check the compliance of a C source code according to
its Low Level Requirements expressed as an UML state machine
and we show how it addresses objectives of the DO-333.

Keywords: Certification, aeronautics, formal methods, model
driven engineering, verification and validation

I. INTRODUCTION

DO-178/ED-12, Software Considerations in Airborne Sys-
tems and Equipment Certification [9], is the current basis for
software assurance in the civil aeronautical domain. Version B
of this standard was published in 1992. It has been updated
recently into version C [10] and includes technical supplements
to take into account and facilitate the appropriate use of new
software engineering techniques that have emerged since 1992.
DO-333/ED-216 [11] is the formal methods supplement. For-
mal methods can be applied to many of the development and
verification activities required for software. The supplement
proposes guidance for the use of formal methods. It describes
the activities that are needed when using formal methods, new
or modified objectives and evidence needed for meeting those
objectives.

In this paper, we will present a formal verification approach
for avionics software and position it with respect to DO-333.
Section 2 briefly presents DO-178 and DO-333. Section 3
synthesizes our observations on the use of formal methods in
industry. Section 4 deals with our proposal. Section 5 presents
our tool and Section 6 provides the links between our approach
and the DO-333 objectives. Section 7 concludes the paper.

II. DO-178 AND DO-333

A. DO-178

DO-178 does not prescribe a specific development process,
but instead identifies important activities and design considera-
tions throughout a development process and defines objectives
for each of these. DO-178 distinguishes development processes
from integral processes that are meant to ensure correctness,
control, and confidence of the software life cycle processes and
their outputs. The verification process is part of the integral

processes along with configuration management and quality
assurance.

Four processes are identified as comprising the software
development processes in DO-178:

1) The software requirements process develops High
Level Requirements (HLR) from the outputs of the
system process;

2) The software design process develops Low Level
Requirements (LLR) and Software Architecture from
the HLR;

3) The software coding process develops source code
from the software architecture and the LLR;

4) The software integration process loads executable
object code into the target hardware for hardware/-
software integration.

Each of these processes is a step towards the actual
software product.

The results of the four development processes must be
verified. Detailed objectives are defined for each step of the
development, with some objectives defined on the output of
a development process itself and some on the compliance
of this output to the input of the process that produced it.
Figure 1 presents the verification objectives and activities in
relationship with the development artifacts. For example, LLR
shall be accurate and consistent, compatible with the target
computer, verifiable, conformed to requirements standards, and
they shall ensure algorithm accuracy. Furthermore, LLR shall
be compliant and traceable to HLR.

DO-178 identifies reviews, analyses and test as means of
meeting these verification objectives. Reviews provide a qual-
itative assessment of correctness. Analyses provide repeatable
assessment of correctness. Reviews and analyses are used for
all the verification objectives regarding HLR, LLR, software
architecture and source code. Test is used to verify that the
executable object is compliant with LLR and HLR. Test is
always based on the requirements (functional test) and includes
normal range and robustness cases.

B. DO-333

A formal method is defined as a formal analysis carried
out on a formal model. This perspective is important because
it permits discussion of formal methods according to the major
life cycle processes called out in DO-178, especially develop-
ment and verification processes. Development processes are
applicable to formal models, and verification processes are
applicable to formal analyses.

1

System
Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

Low-Level
Requirements

Compliance

Robustness

Compatible With Target

Compliance

Robustness

Accuracy & Consistency

HW Compatibility

Verifiability

Conformance to standards

Algorithm Accuracy

Verifiability

Conformance

Accuracy & Consistency

Complete & Correct

Compliance

Traceability

Architecture Compatibility Compliance

Traceability

Compliance

Compliance

Traceability

Accuracy & Consistency

HW Compatibility

Verifiability

Conformance

Algorithm Accuracy

Consistency

HW Compatibility

Verifiability

Conformance

Partition Integrity

Review/analysis activity

Test activity

Fig. 1. Verification objectives and activities

With formal analysis, the correctness of life cycle data with
respect to a formal model or property can generally be proved
or disproved; therefore, formal analysis is able to replace the
conventional methods of review, analysis, and test, as specified
in DO-178, for some verification objectives. DO-333 guidance
details the potential use of formal methods at each development
level and gives the conditions for the use of a given formal
analysis for a given verification objective.

III. FORMAL METHODS IN INDUSTRY

Without any methodological constraints like DO-178,
adopting formal methods is motivated by industrial expecta-
tions that are cost reduction and quality improvement. Formal
methods are very often a way of obtaining a high degree of
quality earlier and as a consequence, a way of reducing efforts
of verification in later stages of tests and maintenance.

Formal methods are already used in industry. For in-
stance, [12] presents the industrial experience of formal verifi-
cation techniques for avionics software products at Airbus. In
their context, these techniques are used for proving properties
on the code, for analyzing Worst Case Execution Time and for
computing the maximum stack usage. Moreover, foreseeable
use of formal verification techniques for other tasks is also
presented, like the proof of absence of runtime errors. This
use is reported in more recent work [1]. Another example of
the use of formal methods is described in [8]. The authors
present a case study on the formal verification of industrial
code at Dassault Aviation. Furthermore, they report the link of
the application of these techniques with certification objectives

in [1]. More examples on the use of formal methods in industry
can be found in [1], [2] and [7].

Whatever the motivations and the context, we observed in
different projects at Atos that introducing formal methods in
the process often necessitates the participation of experts. First,
we observed that experts can participate directly in the project
in order to perform activities with high added-value. Secondly,
we observed that experts can be in charge of the training of the
team that will use formal techniques and subsequently provide
some support to the team. A mix of these two use cases is not
forbidden as a first iteration in a starting project can be done
by experts and continued by the development team.

IV. OUR PROPOSAL

A. Context

Our goal is to integrate formal verification in an existing
process, in the easiest way for the development teams. We
want both to answer the certification objectives of DO-178 by
using formal methods and to remain in the technical knowledge
of development engineers which are not necessarily expert in
formal methods.

We focus on the verification objective of the compliance
of the executable object code to LLR. To achieve this goal,
DO-333 proposes alternative verification paths as shown on
Figure 2 in replacement of tests: compliance of executable
object code to LLR can be demonstrated using formal analysis
on source code and analysis of property preservation between
source code and executable code.

In this paper we only target the compliance of source code
with respect to LLR using formal analysis. The formal analysis
of the source code can be managed by static analysis. Indeed,
static analysis aims at analyzing a program without executing
it. In particular, it is possible to use static analysis to verify
annotations on the code using deductive proof. These annota-
tions are assertions which can express behavioural properties,
variant, invariant, etc. Deductive proof is a formal technique
allowing proving assertions on the code by deduction.

B. Principle

Our approach is simple: based on formal techniques, we
are looking to automatically derive from the LLR, annotations
to be proved on the code. These annotations are then automati-
cally verified by formal verification using deductive proof. Due
to our industrial context, we choose specific technologies: to
express the LLR, to implement the source code and to conduct
the formal verification.

For expressing the LLR, we choose the UML standard.
UML is a modelling language, widespread and well accepted
in development teams. Here, we focus on its use for the ex-
pression of the software behaviour through state machines. For
the source code language, we choose the C language and we
introduce specific code patterns. For the formal verification, we
choose the Frama-C framework1. It is a free and open-source
tool. In Frama-C, the annotations on the code are expressed
in ACSL. ACSL (ANSI/ISO C Specification Language) is a
behavioural specification Language for C code. It is based

1frama-c.com

2

System
Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

Low-Level
Requirements

Compliance

Robustness

Compliance

Robustness

Review/analysis activity

Test activity

Compliance

Robustness

Compliance

Robustness

Property

preservation

Formal activity

Fig. 2. Alternative verification paths

on first order logic and it allows defining properties on the
implementation without side effects.

A summary of our proposal is available Figure 3. We
detailed the different stages in the next paragraphs.

C. The expression of LLR

We use a subset of UML adapted to our needs and restricted
to a part of the state machine model to express LLR. We
consider state machines run by a clock and composed of simple
states. At each clock tick, the state machine does a number of
actions and then waits for the next clock tick. This stage is
called a cycle. Actions are synchronous and only authorised
in the entry behaviour of a state.

In our state machines, transitions can have a trigger, linked
to an event, and a guard to control its firing. furthermore,
transitions have no effects. The trigger of a transition can
be linked to two events, the tick event which represents a
clock tick, or the completion event which is the default event
in UML. A completion event is automatically generated at
the end of the actions defined in a state or at its entry
if no action is defined. In our subset, this event must be
used as trigger for transitions linking two states occurring

LLR

Source code

Executable
object code

C Code

Formal
verification

Frama-C

ACSL annotations
UML
State Machine

Fig. 3. Our proposal

during the same cycle. The guard of a transition is a simple
boolean expression. This expression is composed of variables,
constants, boolean and arithmetic operators but no quantifier.
Moreover, no function can be used in a guard. Finally, we
authorise only one pseudostate: the initial state.

We add two constraints to our subset. The first one is that
every processing starting within a clock tick ends before the
next clock tick. The second one is that our state machines are
deterministic: we do not authorise conflicting transitions.

In addition, we define a formal semantics compliant with
the semi-formal semantics defined in the UML standard. We
abstract the notion of event by using specific functions to
define the processing of each event. Here, we give some clues
about the formal semantics of the transition functions. For
more details about the whole formal semantics, the reader
could refer to [4].

We define Tc et Ttick, the transition functions which define
respectively the processing of the completion event and the
processing of the tick event. According to the source state, the
event triggering the transition and the guard of the transition,
these functions return a new state. Because we do not have the
disjunction of the guards of all outgoing transitions of a state,
these transition functions can return the value ∅, representing
that no transition has been fired. We can note that to return ∅
or to return the same state as the source state is not the same.
To return the same state means a reflexive transition was taken
and the action defined in the state was executed.

D. The source code

In order to generate annotations on the code, we need
information on it. We need to know how the program is
structured, the prototype of each function and the name and
the type of all the variables. So we propose a code pattern to
follow for the implementation of our state machines.

Firstly, we impose that the names of states and variables
defined in the model hold in the code. Secondly, we define
the states as a specific enumeration type named State, and
we define a specific variable to represent the current state
named current_state. The value ∅ of our semantics is
represented by the value Null in the code, defined within
the enumeration type State. Finally, we map each function
defined in the semantics by a C function in the code. The code
patterns of all the functions are defined in [4].

3

E. The generated annotations

In formal verification, the annotations on the code are
assertions representing the behavioural properties that this code
must verify. These annotations can be expressed by function
contracts on the code. A function contract is composed of
preconditions and postconditions. Its meaning is: the postcon-
ditions must be true after the program execution, provided that
the preconditions are true at its beginning.

Our approach allows generating two kinds of properties as
ACSL function contracts from the LLR: the LLR completeness
and the LLR soundness. LLR completeness ensures that the
LLR are fully implemented. LLR soundness ensures that only
the LLR are implemented.

In this paper, we focus on the generation of these properties
for the transition functions. For each transition functions,
the LLR completeness can be expressed by two behavioural
properties:

(a) For the current state, if the guard of an outgoing
transition is true then the transition function must
return the state targeted by the transition ;

(b) The transition function does not modify the state
machine variables.

The LLR soundness for a transition function can be ex-
pressed by three behavioural properties:

(c) For the current state, if a transition has been fired, i.e.
the new state is returned by the transition function,
then the guard of the transition must be true ;

(d) For the current state, if no guard of its outgoing
transitions is true then the transition function must
return nothing (represented by the Null value in our
code pattern).

(e) If a state is not handled by the transition function
then the transition function must return nothing, i.e.
no transition is fired.

F. The formal verification

The generated function contracts are automatically trans-
formed into proof obligations by the plugin WP2 of the Frama-
C framework and verified by the available solvers, like alt-
ergo3. Then, the user can access the verification result for each
annotation.

G. Example

We illustrate our approach with an example of the landing
gear of an UAV (Unmanned Aircraft Vehicle). We express the
LLR of the software with a state machine given in Figure 4.

The corresponding C code for this example is expressed
using our code patterns. Their application for the implementa-
tion of the Ttick function of the example is given in Listing 1.

The completeness properties and the soundness properties
for the transition functions are generated from the model

2frama-c.com/wp.html
3http://alt-ergo.lri.fr/

Fig. 4. Landing gear example

given in Figure 4 and expressed as ACSL function contracts
on the code, one for each transition function. In ACSL, a
precondition for a function contract is defined by a requires
clause and a postcondition is defined by an ensures clause.
Furthermore, a function contract can be decomposed as a set of
ACSL behavior. An ACSL behavior represents one behaviour
that the function must guarantee according to a condition.
This condition is expressed as an assumes clause in ACSL.
An ACSL behavior is also composed of preconditions and
postconditions.

In our function contracts, the properties (a), (b), (c) and (d)
are defined in an ACSL behavior on the code, one for each
state handled by the transition function (a state is handled by
transition function, if at least one of its outgoing transitions is
triggered by the event associated with the transition function).
The assumes clause of the ACSL behavior is about the value
of the current state. The ACSL behavior is then composed of
different ensures clause:

• The property (a) and (c) are merged in one ensures
clause for each possible outgoing transition of the
state. This ensures clause expresses that the transition
function returns the targeted state of a transition if and
only if the guard of this transition is true.

• The property (b) is defined by an ACSL assigns
clause. This clause allows defining the memory alloca-
tions possibly modified by the function. It is defined
using the ACSL keyword \nothing meaning that no

4

State T_tick(State current_state){
State output_state=Null;
switch(current_state) {
case DefaultPosition:

if (pilot_lever==UP && squat_switch==AIR) output_state=WaitingForTakeoff;
break;
case WaitingForTakeoff:

if (timer>=2 && squat_switch==AIR) output_state=StartRaisingGear;
else if ((pilot_lever==DOWN && timer<2)||squat_switch==GND) output_state=DefaultPosition;

break;
case RaisingGear:

if (pilot_lever==DOWN) output_state=LoweringGear;
else if (pilot_lever==UP && up_switches==OK) output_state=GearUp;

break;
case GearUp:

if (pilot_lever==DOWN) output_state=StartLoweringGear;
break;
case LoweringGear:

if (pilot_lever==UP) output_state=RaisingGear;
else if (pilot_lever==DOWN && down_switches==OK) output_state=GearDown;

break;
}
return output_state;

}

Listing 1. Ttick implementation for the LandingGear example

memory allocation has been modified by the function.

• the property (d) is defined by an ensures clause
representing that if no guard is true then the transition
function returns Null.

The property (e) is defined by an ACSL behavior for the
transition function. The assumes clause is about the value of
the current state. The ACSL behavior is then composed of one
ensures clause defining that the return of the transition function
must be Null for this behaviour.

The full function contract for the Ttick function is given
Listing 2. if we look at the first behavior, it concerns the
state DefaultPosition of the example. The clause
“assigns \nothing;” represents the property (b). As
there is only one outgoing transition from this state triggered
by the tick event, the property (a) and (c) are defined by the
clause “pilot_lever == UP && squat_switch ==
AIR) <==> \result == WaitingForTakeoff;”
(the \result keyword represents the return of the function
in ACSL). The clause “! (pilot_lever == UP &&
squat_switch == AIR) ==> \result == Null;”
represents the property (d). At last, the property (e) is
represented by the behavior called OtherStates.

Regarding the verification of these function contracts, they
have been verified in a few seconds using the Frama-C
framework.

V. A TOOL SOLUTION, AGRUM

As we can generate annotations from the model, we can
automate this generation in order to conceal the major part of
the approach and bring this method to non experts. AGrUM
(ACSL Generator from UML Model) is an Eclipse plug-in to
automatically generate behavioural annotations from a UML
state machine based design to C code. It is free and open-
source. Technically, our plug-in takes advantage of Eclipse-
based tool as Papyrus4 for the design modelling of the software

4www.eclipse.org/papyrus/

and Eclipse CDT5 for the management of the C source code
file. It is a prototype and it only manages the generation of
the annotations for the transition functions, as described in this
paper.

The use of the plug-in is quite easy. The user designs
its software behaviour as state machines using the Papyrus
model editor. He then just has to select its state machine in
the model explorer, open the generation pop-up, select the
C file to annotate and if its code pattern conforms to the
state machine and the model respects the subset, the plug-
in automatically annotates the C file. Then, the annotated C
file can be processed by Frama-C and the user can obtain the
result of the verification.

The AGrUM project is stored in EclipseLabs and
it is available at: http://code.google.com/a/
eclipselabs.org/p/agrum/ Users can find the source
code and an update site to automatically install the plug-in
in an Eclipse SDK 3.7. Furthermore, the website provides
information, the landing gear example presented in this paper
and videos on its use. Note that this plug-in is also fully
compatible with TOPCASED 5.2 or later.

VI. CERTIFICATION OBJECTIVES

Verification objectives and activities are given on Figure 1.
They are attached to the four development processes described
in section 2. In DO-333, objectives are synthesized inside
tables given in annex of the document, these tables reference
specific sections of the document where the objectives are
defined. The four tables that are of interest for our approach
are:

• Table FM.A-4: Verification of Outputs of the Software
Design Process;

• Table FM.A-5: Verification of Outputs of Software
Coding and Integration Processes;

5www.eclipse.org/cdt/

5

/*@behavior DefaultPosition :
assumes current_state == DefaultPosition;
assigns \nothing;
ensures (pilot_lever == UP && squat_switch == AIR) <==> \result == WaitingForTakeoff;
ensures ! (pilot_lever == UP && squat_switch == AIR) ==> \result == Null;

behavior WaitingForTakeoff :
assumes current_state == WaitingForTakeoff;
assigns \nothing;
ensures ((pilot_lever == DOWN && timer < 2) || squat_switch == GND) <==> \result == DefaultPosition;
ensures (timer >= 2 && squat_switch == AIR) <==> \result == StartRaisingGear;
ensures ! ((pilot_lever == DOWN && timer < 2) || squat_switch == GND) && ! (timer >= 2 && squat_switch == AIR)

==> \result == Null;

behavior RaisingGear :
assumes current_state == RaisingGear;
assigns \nothing;
ensures (pilot_lever == DOWN) <==> \result == LoweringGear;
ensures (up_switches == OK && pilot_lever == UP) <==> \result == GearUp;
ensures ! (pilot_lever == DOWN) && ! (up_switches == OK && pilot_lever == UP) ==> \result == Null;

behavior GearUp :
assumes current_state == GearUp;
assigns \nothing;
ensures (pilot_lever == DOWN) <==> \result == StartLoweringGear;
ensures ! (pilot_lever == DOWN) ==> \result == Null;

behavior LoweringGear :
assumes current_state == LoweringGear;
assigns \nothing;
ensures (pilot_lever == UP) <==> \result == RaisingGear;
ensures (down_switches == OK && pilot_lever == DOWN) <==> \result == GearDown;
ensures ! (pilot_lever == UP) && ! (down_switches == OK && pilot_lever == DOWN) ==> \result == Null;

behavior OtherStates :
assumes current_state != DefaultPosition && current_state != WaitingForTakeoff && current_state != RaisingGear

&& current_state != GearUp && current_state != LoweringGear;
assigns \nothing;
ensures \result == Null;

*/
State T_tick(State current_state){

.

.

.

Listing 2. Generated annotations from the model for the Ttick function

• Table FM.A-6: Testing of Outputs of Integration Pro-
cess;

• Table FM.A-7: Verification of Verification Process
results.

There are 10 tables in total, tables FM.A-1, FM.A-8, FM.A-
9, FM.A-10 deal with planning, configuration management,
quality assurance and certification liaison. Table FM.A-2 de-
fines objectives for the software development processes and
table FM.A-3 is about the verification of outputs of software
requirements process.

In this section, we present the objectives addressed by our
approach for the four targeted tables.

A. Fulfilled objectives

As mentioned previously, our approach targets the com-
pliance of source code with respect to LLR. The goal is to
replace test of the executable object code with respect to LLR.
The main certification objective is thus the compliance of
EOC (Executable Object code) with respect to LLR which
is reached by taking the alternative path proposed by DO-333
via the source code. Other objectives are also addressed by our
approach. We give the list below, they are very similar to the
ones given in appendix B of [11]. Figure 5 synthesizes these
objectives.

Fig. 5. Objectives addressed by our approach

For each objective, we give the reference of the objective
inside the table, then we list the sub-objectives given in the
corresponding sections and the associated justification for our
approach.

a) Table FM.A-5, objective FM13: formal method is
correctly defined, justified and appropriate. This supplemen-

6

tary objective must be addressed every time a formal method
is used to achieve a verification objective. It is decomposed
into three part detailed below:

• FM.6.2.1.a Formal notations: The syntax and seman-
tics of the subset of the C programming language are
mathematically defined and verified to be precise and
unambiguous. We have also defined semantics for the
subset of UML that is considered in our approach.

• FM.6.2.1.b Soundness: The verification technique
used in Frama-C is based on Hoare logic that has
been proved sound provided that the logic used for
properties is sound [5].

• FM.6.2.1.c Assumptions: No specific assumption is
used for the verification of the properties on the source
code.

b) Table FM.A-4, Objective FM4: Low-level require-
ments are verifiable:

• FM.6.3.2.d Verifiability: The LLR are expressed in a
restricted subset of UML state machines that can be
translated into ACSL annotations and proved on the
source code. Consequently, the LLR are verifiable.

c) Table FM.A-5, Objective FM1: Source code complies
with low-level requirements:

• FM.6.3.4.a Compliance with LLR: The compliance of
the source code with the LLR is achieved through the
use of two tools: AGrUM which translates the UML
LLR into ACSL annotations, and Frama-C which
verifies that the source code satisfies the ACSL an-
notations. These two tools would have to be qualified
with respect to DO-330 (Tool qualification document).

• FM.6.3.4.c Verifiability: Specific coding patterns are
defined in our approach in order to ensure that the
code will be compatible with the verification tool.

• FM.6.3.4.e Traceability: The verification that the
source code satisfies all the LLR ensures that the LLR
were developed into source code.

d) Table FM.A-6, Objective FM3: Executable object
code complies with low-level requirements:

• FM.6.7.d Compliance with LLR: Formal analysis of
source code is performed to reach this objective. Com-
plementary analyses are necessary to show property
preservation between source code and object code.

e) Table FM.A-6, Objective FM4: Executable object
code is robust with low-level requirements:

• FM.6.7.b Robustness with LLR: Formal analysis of
source code is performed to reach this objective. Com-
plementary analyses are necessary to show property
preservation between source code and object code.

B. Remaining objectives

The following objectives should also be addressed and are
not yet addressed in our approach:

• Table FM.A-5, Objective FM10: Formal analysis cases
and procedures are correct ;

• Table FM.A-5, Objective FM11: Formal analysis re-
sults are correct and discrepancies explained ;

• Table FM.A-7, Objective FM4: Coverage of low-level
requirements is achieved ;

• Table FM.A-7, Objective FM5-8: Verification of soft-
ware structure is achieved ;

• Table FM.A-7, Objective FM9: Verification of prop-
erty preservation between source and object code.

The first three ones are not yet addressed but could easily
be achieved by specific reviews. The two last ones are the ones
that are more difficult to achieve, they necessitates specific
analyses that remain to be defined. Objectives FM5 to FM8 in
table FM.A-7 are the objectives that replace structural coverage
objectives used when test is the verification method. For formal
methods, the coverage objective is lifted to the requirement
level, we have to demonstrate that the requirements that
have been formally proven are complete with respect to the
considered code. Objective FM9 of table FM.A-7 is added
because formal verification is done on the source code and
not on the executable object code, it thus remains to be shown
that the properties verified on source code are still satisfied
on executable object code. This objective can be achieved by
reviews or using formal techniques [6].

VII. CONCLUSION

The approach we described is a proposal for verifying the
compliance of a source code according to LLR, as an objective
of DO-178. It does not aim at being a magical tool which
resolves all the constraints of the use of formal methods but
it aims at opening discussion and providing a way to plug
formal methods in existing development processes, taking into
account certification objectives and the technical knowledge
of the development teams. Moreover, the main advantage of
the approach is to have an automatic verification process with
optimum quality.

Today, the approach covers only a part of the code,
the verification of transition functions of the state machine.
However, the behavioural specification is mainly defined in
the transition functions, and partially in the function managing
the call of the actions, for which the automatic verification
is currently experimented. The other functions are based on
the call of these leaf functions and their implementation is
constant for all state machines. The proof of these functions
is a bit more complex than the proof of transition functions
because of the use of loops in their implementation. But once
their proof realised, it will be available for every case. The
automatic verification of these functions will be studied in a
very close future.

The use of UML allows targeting a lot of users but our
subset needs to be fully formalised to use the approach.
Moreover, it would be meaningful to extend our subset to
use the approach in efficient industrial cases. Indeed, It will
be interesting to extend it to multi-events pattern and to the
use of hierarchical states. We have seen in prior projects
that hierarchical states, like submachine states, can be widely

7

used in the modelling of software [3]. We can note that
we only use UML state machines in our approach. Current
work at Atos aims at studying the use of UML activity
for a similar approach. More precisely, this work focuses
on the generation of ACSL annotations from UML Activ-
ity for automatic formal verification. A demonstration tool
is already available at: http://code.google.com/a/
eclipselabs.org/p/a2acsl-project/.

To finish, the verification results are still given as produced
by the Frama-C tool but the retrieval of these results for a non
expert, in a user-friendly way, is the subject of current work
and should be integrated in the AGrUM tool. In the future,
we would like to take advantage of the correspondance of
code patterns with the modelling to display the possible errors
detected by the deductive proof on the UML model.

REFERENCES

[1] Jean-Louis Boulanger. Utilisations industrielles des techniques
formelles: interprétation abstraite. Hermès science publications-
Lavoisier, 2011.

[2] Jean-Louis Boulanger. Industrial Use of Formal Methods: Formal
Verification. John Wiley & Sons, 2012.

[3] Anthony Fernandes Pires, Stéphane Duprat, Tristan Faure, Cédrik
Besseyre, Jack Beringuier, and Jean-François Rolland. Use of modelling
methods and tools in an industrial embedded system project : works
and feedback. In Embedded Real-time Software and Systems (ERTS2),
France, 2012.

[4] Anthony Fernandes Pires, Thomas Polacsek, Virginie Wiels, and
Stéphane Duprat. Behavioural verification in embedded software, from
model to source code. In Ana Moreira, Bernhard Schätz, Jeff Gray,
Antonio Vallecillo, and Peter Clarke, editors, Model-Driven Engineering
Languages and Systems, volume 8107 of Lecture Notes in Computer
Science, pages 320–335. Springer Berlin Heidelberg, 2013.

[5] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[6] Xavier Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[7] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and
Benjamin Monate. Testing or formal verification: Do-178c alternatives
and industrial experience. Software, IEEE, 30(3):50–57, 2013.

[8] Dillon Pariente and Emmanuel Ledinot. Formal verification of industrial
c code using frama-c: a case study. In Formal Verification of Object-
Oriented Software, 2010.

[9] RTCA/EUROCAE. DO-178B/ED-12B: Software Considerations in
Airborne Systems and Equipment Certification, December 1992.

[10] RTCA/EUROCAE. DO-178C/ED-12C: Software Considerations in
Airborne Systems and Equipment Certification, 2011.

[11] RTCA/EUROCAE. DO-333/ED-216: Formal Methods Supplement to
DO-178C and DO-278A, 2011.

[12] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal
verification of avionics software products. In Ana Cavalcanti and
DennisR. Dams, editors, FM 2009: Formal Methods, volume 5850 of
Lecture Notes in Computer Science, pages 532–546. Springer Berlin
Heidelberg, 2009.

8

