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Abstract

In this chapter, we illustrate the advantage of variational princi-

ples for modeling water waves from an elementary practical viewpoint.

The method is based on a ‘relaxed’ variational principle, i.e. , on a La-

grangian involving as many variables as possible, and imposing some

suitable subordinate constraints. This approach allows the construc-

tion of approximations without necessarily relying on a small parame-

ter. This is illustrated via simple examples, namely the Serre equations

in shallow water, a generalization of the Klein–Gordon equation in deep

water and how to unify these equations in arbitrary depth. The chap-

ter ends with a discussion and caution on how this approach should be

used in practice.
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1. Introduction

Surface water waves are a very rich physical phenomenon with a long

research history [5, 35]. In addition to their fundamental physical impor-

tance, understanding water waves is also important for many applications

related to human safety and economy such as tsunamis, freak waves, har-

bor protections, beach nourishment/erosion, just to mention a few examples.

Water waves are a paradigm for many nonlinear wave phenomena in various

physical media. The prominent physicist Richard P. Feynman wrote in his

cerebrated lectures [10]: “Water waves that are easily seen by everyone, and

which are usually used as an example of waves in elementary courses, are the

worst possible example; they have all the complications that waves can have.”

This is precisely these complications that make the richness and interest of

water waves. Indeed, despite numerous studies, new waves and new wave

behaviors are still discovered (e.g. , [26, 27]) and wave dynamics is still far

from being fully understood.

Mathematical and numerical models are unavoidable for understanding

water waves. Although the primitive equations governing these waves are

rather simple to write, their mathematical analysis is highly non trivial and

even their numerical resolution is very demanding. Therefore, simplified

models are crucial to gain insight and to derive operational numerical models.

Most of the time, simplified models are derived via some asymptotic expan-

sions, exploiting a small parameter in the problem at hands. This approach

is very effective leading to well-known equations, such as the Saint-Venant

[31, 35], Boussinesq [1], Serre–Green–Naghdi [13, 29], Korteweg-deVries [17]

equations in shallow water and the nonlinear Schrödinger [22], Dysthe [9]

equations in deep water. These equations being most often derived via some

perturbation techniques, they are valid for waves of small amplitude or/and

small wavelength/water depth ratio. However, for many applications it is

necessary to use models uniformly valid for all depths and that are accurate

for large amplitudes. Moreover, some phenomena [26, 27] do not involve any

small parameter and do not bifurcate from rest. The problem is then to

derive models without relying on a small parameter.

It is well-known in theoretical physics that variational formulations are

tools of choice to derive approximations when small parameter expansions

are inefficient. Fortunately, a variational principle is available for water waves

that can be exploited to derive approximations. There are mainly two vari-

ational formulations for irrotational surface waves that are commonly used,

namely the Lagrangian of Luke [21] and the Hamiltonian of Broer, Petrov

and Zakharov [2, 24, 38]. Details on the variational formulations for surface

waves can be found in review papers, e.g. , [25, 28, 39].

In water wave theory, variational formulations are generally used together
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Figure 1. Definition sketch.

with a small parameter expansion. This is not necessary, however, because

variational methods can also be fruitfully used without small parameter, as it

is well-known in Quantum Mechanics, for example. This was demonstrated

in [4], the present chapter being a simpler illustration of this idea, with some

complementary remarks. A companion presentation with further comments

can be found in [3]. Here, only elementary knowledge in vector calculus is

assumed, as well as some familiarity with the Euler–Lagrange equations and

variational principles in Mechanics [11, 18].

The Chapter is organized as follows. In section 2, the physical hypothesis,

notations and equations are given for the classical problem of irrotational sur-

face gravity waves. In section 3, Luke’s Lagrangian is relaxed to incorporate

explicitly more degrees of freedom. This modification yields the Hamilton

principle in its most general form. The advantage of this formulation is

subsequently illustrated with examples over a fixed horizontal bottom, for

the sake of simplicity. We begin with a shallow water model, followed by a

deep water one and ending with an arbitrary depth generalization. Further

generalizations, shortcomings and perspectives are discussed in section 5.

2. Preliminaries

Consider an ideal incompressible fluid of constant density ρ. The hor-

izontal independent variables are denoted by x = (x1, x2) and the upward

vertical one by y. The origin of the Cartesian coordinate system is chosen

such that the surface y = 0 corresponds to the still water level. The fluid is

bounded below by the bottom at y = −d(x, t) and above by the free surface at

y = η(x, t). Usually, we assume that the total depth h(x, t) ≡ d(x, t)+η(x, t)

remains positive h(x, t) ⩾ h0 > 0 at all times t for some constant h0. A sketch

of the physical domain is shown on Figure 1.

We denote u = (u1, u2) the horizontal velocity and v vertical one. The
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fluid density being constant, the mass conservation implies an isochoric mo-

tion yielding the continuity equation valid everywhere in the fluid domain

∇ ⋅u + ∂yv = 0, (2.1)

where ∇ denotes the horizontal gradient and ⋅ denotes the scalar (inner)

product of vectors.

Denoting with over ‘tildes’ and ‘breves’ the quantities computed, respec-

tively, at the free surface y = η(x, t) and at the bottom y = −d(x, t), the

impermeabilities of these boundaries give the relations

∂tη + ũ ⋅ ∇η = ṽ, ∂td + ŭ ⋅ ∇d = −v̆. (2.2)

Traditionally in water wave modeling, the assumption of flow irrotation-

ality is also adopted because it is relevant in many situations and it brings

considerable simplifications. The zero-curl velocity field condition can be

written

∇v = ∂yu, ∇×u = 0, (2.3)

where × is a two dimensional analog of the cross product.1 The irrotation-

ality conditions (2.3) are satisfied identically introducing a (scalar) velocity

potential φ such that

u = ∇φ, v = ∂yφ. (2.4)

For irrotational motions of incompressible fluids, the Euler momentum equa-

tions can be integrated into the scalar Lagrange–Cauchy equation

p + ∂tφ + gy + 1

2
∣∇φ∣2 + 1

2
(∂yφ)

2 = 0, (2.5)

where p is the pressure divided by the density ρ and g > 0 is the acceleration

due to gravity. At the free surface the pressure is zero — i.e. , p̃ = 0 —

but surface tensions or other effects could be taken into account. Note that

for steady flows, i.e. when the velocity field is independent of time, ∂tφ =

constant = −B and the Lagrange–Cauchy equation becomes the Bernoulli

equation, B being a Bernoulli constant.

In summary, with the hypotheses above, the governing equations of the

classical (non overturning) surface water waves are [16, 32, 36]:

∇
2φ + ∂ 2

y φ = 0, −d(x, t) ⩽ y ⩽ η(x, t), (2.6)

∂tη + (∇φ) ⋅ (∇η) − ∂yφ = 0, y = η(x, t), (2.7)

∂tφ +
1

2
∣∇φ∣2 + 1

2
(∂yφ)

2 + gη = 0, y = η(x, t), (2.8)

∂td + (∇d) ⋅ (∇φ) + ∂yφ = 0, y = −d(x, t). (2.9)

1For two two-dimensional vectors a = (a1, a2) and b = (b1, b2), a × b = a1b2 − a2b1 is a

scalar.
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The assumptions of fluid incompressibility and flow irrotationality lead

to the Laplace equation (2.6) for the velocity potential φ(x, y, t). The main

difficulty of the water wave problem lies on the boundary conditions. Equa-

tions (2.7) and (2.9) express the free-surface kinematic condition and bottom

impermeability, respectively, while the dynamic condition (2.8) expresses the

free surface isobarity.

3. Variational formulations

Equations (2.6)–(2.9) can be derived from the “stationary point” (point

where the variation is zero) of the following functional

L =

ˆ t2

t1

ˆ

Ω

L ρd2xdt

(Ω the horizontal domain) where the Lagrangian density L is [21]

L = −

ˆ η

−d

[ gy + ∂tφ +
1

2
∣∇φ∣2 + 1

2
(∂yφ)2 ]dy. (3.1)

One can check that the Euler–Lagrange equations for this functional yield

directly the water wave equations. (Detailed algebra can be found in [21],

but also on Wikipedia.2)

Integrating by parts and neglecting the terms at the horizontal and tem-

poral boundaries because they do not contribute to the functional variations

(this will be done repeatedly below without explicit mention), Luke’s vari-

ational formulation (3.1) can be rewritten with the following Lagrangian

density:

L = φ̃ ηt + φ̆ dt −
g η2

2
+

g d2

2
−

ˆ η

−d
[ ∣∇φ∣2

2
+

φ2
y

2
]dy. (3.2)

The alternative form (3.2) is somehow more convenient. Note that:

(i) the term φ̃ηt, for example, can be replaced by −ηφ̃t after integration by

parts;

(ii) the term gd2/2 can be omitted because, d being prescribed, it does not

contribute to the variational principle;

(iii) the term gη2/2 can be replaced by gh2/2 via a change of definition of φ.

Luke’s Lagrangian involves a velocity potential but not explicitly the

velocity field. Thus, any approximation derived from (3.1) has an irrotational

velocity field because the latter is calculated from the relations (2.4). The

water wave problem involving several equations, there are a priori no reasons

to enforce the irrotationality and not, for example, the incompressibility

2http://en.wikipedia.org/wiki/Luke’s_variational_principle.
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or the surface isobarity or even any combination of these relations. As it

is well known in numerical methods, enforcing an exact resolution of as

many equations as possible is not always a good idea. Indeed, numerical

analysis and scientific computing know many examples when efficient and

most used algorithms do exactly the opposite. These so-called relaxation

methods have proven to be very efficient for stiff problems. When solving

numerically a system of equations, the exact resolution of a few equations

does not necessarily ensure that the overall error is reduced: What really

matters is that the global error is minimized. A similar idea of relaxation

may also apply to analytical approximations, as advocated in [4].

In order to give us more freedom for building approximations, while keep-

ing an exact formulation, the variational principle is modified (relaxed) by

introducing explicitly the horizontal velocity u = ∇φ and the vertical one

v = φy. The variational formulation can thus be reformulated with the La-

grangian density

L = φ̃ ηt + φ̆ dt −
g η2

2
−

ˆ η

−d
[u2 + v2

2
+ µ⋅(∇φ −u) + ν(φy − v)]dy, (3.3)

where the Lagrange multipliers µ and ν have to be determined. By variations

with respect of u and v, one finds at once the definition of the Lagrange

multipliers:

µ = u, ν = v, (3.4)

so (µ, ν) is another representation of the velocity field, in addition to (u, v)
and (∇φ,φy). These relations can be substituted into (3.3), but it is advan-

tageous to keep the most general form of the Lagrangian. Indeed, it allows

to choose ansatz for the Lagrange multipliers µ and ν that can be different

from the velocity field u and v. The Lagrangian density (3.3) involving six

dependent variables {η,φ,u, v,µ, ν} — while the original Lagrangian (3.2)

only two (η and φ) — it allows more and different subordinate relations to

be fulfilled.

The connection of (3.3) with the variational formulation of the classical

mechanics can be seen applying Green’s theorem to (3.3) that yields another

equivalent variational formulation involving the Lagrangian density

L = (∂tη + µ̃ ⋅ ∇η − ν̃) φ̃ + (∂td + µ̆ ⋅ ∇d + ν̆) φ̆ − 1

2
g η2

+

ˆ η

−d

[µ ⋅u − 1

2
u2 + νv − 1

2
v2 + (∇ ⋅µ + ∂yν)φ ]dy, (3.5)

and if the relations (3.4) are used, this Lagrangian density is reduced to

L = (∂tη + ũ ⋅ ∇η − ṽ) φ̃ + (∂td + ŭ ⋅ ∇d + v̆) φ̆ − 1

2
g η2

+

ˆ η

−d

[ 1
2
u2 + 1

2
v2 + (∇ ⋅u + ∂yv)φ ] dy. (3.6)
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Thus, the classical Hamilton principle is recovered, i.e. , the Lagrangian

is the kinetic energy minus the potential energy plus constraints for the

incompressibility and the boundary impermeabilities.

The Lagrangians (3.1), (3.2), (3.3), (3.5) and (3.6) yield the same exact

relations. However, (3.3), (3.5) and (3.6) allow the constructions of approx-

imations that are not exactly irrotational, that is not the case (3.1) and

(3.2). This advantage is illustrated below via some simple examples. Further

examples can be found in [4, 7].

4. Examples

Here, we illustrate the use of the variational principle via some simple

examples. For the sake of simplicity, we always consider the pseudo velocities

equal to the velocity, i.e. , we take µ = u and ν = v. We also focus on

two-dimensional problems in constant depth, i.e. , one horizontal dimension

(denoted x) with d > 0 independent of t and x. For brevity, the horizontal

velocity is denoted u.

4.1 Shallow water: Serre’s equations

For surface waves propagating in shallow water, it is well known that the

velocity fields varies little along the vertical. A reasonable ansatz for the

horizontal velocity is thus one such that u is independent of y, i.e. , one can

consider the approximation

u(x, y, t) ≈ ū(x, t), (4.1)

meaning that u is assumed close to its depth-averaged value.3 In order to

introduce a suitable ansatz for the vertical velocity, one can assume, for ex-

ample, that the fluid incompressibility (2.1) and the bottom impermeability

(2.2b) are fulfilled. These choices lead thus to the ansatz

v(x, y, t) ≈ − (y + d) ūx. (4.2)

Notice that, with this ansatz, the velocity field is not exactly irrotational,

i.e.

vx − uy ≈ − (y + d) ūxx. (4.3)

This does not mean that we are modeling a vortical motion but, instead,

that we are modeling a potential flow via a velocity field that is not ex-

actly irrotational. This should not be more surprising than, e.g. , using an

approximation such that the pressure at the free surface is not exactly zero.

3ū = 1

h

´ η

−d
udy.
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With the ansatz (4.1)–(4.2), the vertical acceleration (with D/Dt being

the temporal derivative following the motion) is

Dv

Dt
=

∂ v

∂t
+ u

∂ v

∂x
+ v

∂ v

∂y
≈ −v ūx − (y + d) D ūx

Dt
= γ

y + d

h
, (4.4)

where γ is the vertical acceleration at the free surface:

γ ≡
Dv

Dt
∣
y=η
≈ h [ ū2

x − ūxt − ū ūxx ] . (4.5)

The kinetic energy per water column K is similarly easily derived

K

ρ
=

ˆ η

−d

u2 + v2

2
dy ≈

h ū2

2
+

h3 ū2
x

6
. (4.6)

The Hamilton principle (3.6) — i.e. , kinetic minus potential energies plus

constraints for incompressibility and boundary impermeabilities — yields,

for this ansatz and after some elementary algebra, the Lagrangian density

L = 1

2
h ū2 + 1

6
h3 ū2

x −
1

2
g h2 + {ht + [h ū ]x } φ̃. (4.7)

The Euler–Lagrange equations for this functional are

δφ̃ ∶ 0 = ht + [h ū ]x , (4.8)

δū ∶ 0 = φ̃ hx − [h φ̃ ]x − 1

3
[h3 ūx ]x + h ū, (4.9)

δh ∶ 0 = 1

2
ū2 − g h + 1

2
h2 ū2

x − φ̃t + φ̃ ūx − [ ū φ̃ ]x, (4.10)

thence

φ̃x = ū − 1

3
h−1 [h3 ūx ]x, (4.11)

φ̃t =
1

2
h2 ū2

x −
1

2
ū2 − g h + 1

3
ū h−1 [h3 ūx ]x. (4.12)

Differentiation of (4.12) with respect of x yields, after some algebra, the

equation

[ ū − 1

3
h−1(h3ūx)x ]t + [ 12 ū2 + g h − 1

2
h2 ū2

x −
1

3
ū h−1(h3ūx)x ]x = 0,

(4.13)

that can rewritten in the non-conservative form

ūt + ū ūx + g hx +
1

3
h−1 ∂x[h2 γ ] = 0. (4.14)

After multiplication by h and exploiting (4.8), we also derive the conservative

equations

[h ū ]t + [h ū2 + 1

2
g h2 + 1

3
h2 γ ]

x
= 0. (4.15)
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In summary, we have derived the system of equations

ht + ∂x[h ū ] = 0, (4.16)

∂t[h ū ] + ∂x[h ū2 + 1

2
g h2 + 1

3
h2 γ ] = 0, (4.17)

h ū2

x − h ūxt − h ū ūxx = γ, (4.18)

that are the Serre equations. With the Serre equations, the irrotationality is

not exactly satisfied, and thus these equations cannot be derived from Luke’s

variational principle.

Ass*uming small derivatives (i.e. , long waves) but not small amplitudes,

these equations were first derived by Serre [30] via a different route. They

were independently rediscovered by Su and Gardner [33], and again by Green,

Laws and Naghdi [12]. These approximations being valid in shallow water

without assuming small amplitude waves, they are therefore sometimes called

weakly-dispersive fully-nonlinear approximation [37] and are a generalization

of the Saint-Venant [31, 35] and of the Boussinesq equations. The variational

derivation above is obvious and straightforward. Further details on the Serre

equations concerning their properties and numerical resolutions can be easily

found in the literature, e.g. , [8, 20, 34].

4.2 Deep water: generalized Klein–Gordon equations

For waves in deep water, measurements show that the velocity field varies

nearly exponentially along the vertical [14, 15], even for very large unsteady

waves (including breaking waves). Thus, this property is exploited here to

derive simple approximations for gravity waves in deep water.

Let κ > 0 be a characteristic wavenumber corresponding, e.g. , to the car-

rier wave of a modulated wave group or to the peak frequency of a JONSWAP

spectrum. Following the discussion above, it is natural to seek approxima-

tions in the form

{φ ; u ; v } ≈ { φ̃ ; ũ ; ṽ } eκ(y−η), (4.19)

where φ̃, ũ and ṽ are functions of x and t that can be determined using the

variational principle (with or without additional constraints). The ansatz

(4.19) is certainly the simplest possible that is consistent with experimental

evidences.

The ansatz (4.19) substituted into the Lagrangian density (3.6) yields

2κL = 2κ φ̃ ηt − g κη2 + 1

2
ũ2 + 1

2
ṽ2 − (φ̃x − κ φ̃ η) ũ − κ ṽ φ̃. (4.20)

With (or without) subordinate relations, this Lagrangian gives various equa-

tions. We present here only the case without further constraints, thus the
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Euler–Lagrange equations yield

δ ũ ∶ 0 = ũ − φ̃x + κ φ̃ ηx,

δ ṽ ∶ 0 = ṽ − κ φ̃,

δ φ̃ ∶ 0 = 2κηt + ũx − κ ṽ + κ ũ ηx,

δ η ∶ 0 = 2g κη + 2κ φ̃t + κ [ φ̃ ũ ]x.
The two first relations imply that this approximation is exactly irrotational

and their use in the last two equations gives

ηt +
1

2
κ−1 φ̃xx −

1

2
κ φ̃ = 1

2
φ̃ [ηxx + κη 2

x ] , (4.21)

φ̃t + g η = −1

2
[ φ̃ φ̃x − κ φ̃2 ηx ]x . (4.22)

Since equations (4.21)–(4.22) derive from an irrotational motion, they can

also be obtained from Luke’s Lagrangian (3.1) under the ansatz (4.19). That

would not be the case if, for example, we had enforced the incompressibility

in the ansatz because, here, that leads to a rotational ansatz (see [4], §4.3).

To the linear approximation, after elimination of φ̃, equations (4.21)–

(4.22) yield

ηtt − (g/2κ)ηxx + (gκ/2)η = 0, (4.23)

that is a Klein–Gordon equation. For this reason, equations (4.21) and (4.22)

are named here generalized Klein–Gordon (gKG). The Klein–Gordon equa-

tion is prominent in mathematical physics and appears, e.g. , as a relativis-

tic generalization of the Schrödinger equation. The Klein–Gordon equation

(4.23) admits a special (2π/k)-periodic traveling wave solution

η = a cos k(x − ct), c2 = g (k2 + κ2 ) /(2κk2) .
Therefore, if k = κ the exact dispersion relation of linear waves (i.e. , c2 = g/k)

is recovered, as it should be. This means, in particular, that the gKG model

is valid for spectra narrow-banded around the wavenumber κ. Further details

and properties of the gKG are given in [4] (section 4.2) and in [6].

4.3 Arbitrary depth

A general ansatz, for waves in finite constant depth and satisfying identi-

cally the bottom impermeability, is suggested by the linear theory of water

waves:

φ ≈
coshκY

coshκh
φ̃(x, t), u ≈

coshκY

coshκh
ũ(x, t), v ≈

sinhκY

sinhκh
ṽ(x, t),

(4.24)

where Y = y + d. The parameter κ > 0 is a characteristic wave number to

be made precise a posteriori . This ansatz is uniformly valid for all depths

10



because it yields the shallow water one (4.1) as κ → 0, and the deep water

one (4.19) as d →∞. Obviously, the ansatz (4.24) should be valid for wave

fields with wavenumber spectra that are narrow-banded around κ.

Substituting the ansatz (4.24) into (3.6), one obtains

L = [ηt + ũ ηx ] φ̃ − g η2

2
+

ṽ2

2

sinh(2κh) − 2κh
2κ cosh(2κh) − 2κ +

φ̃ ṽ

2
[ 2κh

sinh(2κh) − 1]
+ [ ũ2

2
+ φ̃ ũx − κ tanh(κh) φ̃ ũ ηx ] sinh(2κh) + 2κh

2κ cosh(2κh) + 2κ. (4.25)

Applying various constraints, one obtains generalized equations including

the ones derived in sections 4.1 and 4.2 as limiting cases. In particular, one

can derive arbitrary depth generalizations of the Serre and Klein–Gordon

equations; these derivations are left to the reader. The main purpose of

this section is to illustrate the easiness of deriving approximations uniformly

valid for all depths, contrary to perturbation methods with which the two

main theories (i.e. , Stokes-like and shallow water expansions) have separated

validity domains.

5. Discussion

Via simple examples, we have illustrated above the advantage of using

a relaxed variational principle. Further examples can be found in [4]. The

advantages of this approach is greater on variable depth where it is easy to

derive simple approximations not derivable from asymptotic expansions [7].

Here, we have used the isochoric velocity field (u, v) as subordinate con-

dition, but other conditions can be imposed, as well as imposing different

conditions on (u, v) and (µ, ν). Indeed, the velocity field (u, v) being not

more (nor less) physical than the pseudo-velocity field (µ, ν) and the poten-

tial velocity field (∇φ,φy), the constraints can be imposed by combinations

of these three fields.

The relaxed variational principle provides a common platform for deriv-

ing several approximate equations from the same ansatz in changing only

the constraints. Beside the ansatz and the subordinate conditions, no fur-

ther approximations are needed to derive the equations. Using more general

ansatze (i.e. , involving more free functions and parameters) and well chosen

constraints, one can hopefully derive more accurate approximations.

Although the possibility of using the variational methods without a small-

parameter expansion has been overlooked in the context of water waves,

it has long been recognized as a powerful tool in Theoretical Physics, in

particular in Quantum Mechanics. This approach is even thought in some

undergraduate lectures. For instance, from Berkeley’s course on Quantum

Mechanics [23]:

11



– The perturbation theory is useful when there is a small di-

mensionlessparameter in the problem, and the system is ex-

actly solvable when the small parameter is sent to zero.

– ... it is not required that the system has a small parame-

ter, nor that the system is exactly solvable in a certain limit.

Therefore it has been useful in studying strongly correlated

systems, such as the fractional Quantum Hall effect.

However, in order to be successful, the great power of the variational method

needs to be harnessed with skill and care, as it is well-known in Theoretical

Physics. Indeed, as quoted in the same lecture on Quantum Mechanics:

– ... there is no way to judge how close your result is to the

true result. The only thing you can do is to try out many

Ansätze and compare them.

– ... the success of the variational method depends on the ini-

tial “guess” ... and an excellent physical intuition is required

for a successful application.

But it is also well-known that this approach can be very rewarding:

– For example, R. B. Laughlin [19] proposed a trial wave func-

tion that beat other wave functions that had been proposed

earlier, such as “Wigner crystal”.

– Once your wave function gives a lower energy than your

rival’s, you won the race.4

Thus, despite its “dangers”, the variational approach is a tool of choice for

modeling water waves, specially for problems when there are no obvious

small parameters or if approximations valid for a broad range are needed.

We have illustrated these claims in this chapter.
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