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Francesca Poggiolesi

On defining the notion of complete and
immediate formal grounding

Abstract

The aim of this paper is to contribute to the recent debate on the no-
tion of grounding. More precisely, we will focus on the notion of complete
and immediate formal grounding and we will provide a definition of it
through the concepts of derivability and complexity. We will show that
this definition allows us a subtle and precise analysis of the concept of
grounding in several paradigmatic cases.

1 Introduction

Consider the following sentences

1. In Europe well-functioning thermometers are higher in summer than in
winter because in Europe it is warmer in summer than in winter.

2. The action is wrong because it was performed with the sole intention of
causing harm.

3. The ball is red and round because the ball is red and the ball is round.

Each of these sentences contains the expression because and each of them
can be divided into an antecedent, i.e. what comes after the because (“in Europe
it is warmer in summer than in winter”, “the action was performed with the
sole intention of causing harm” and “the ball is red and the ball is round”), and
a consequent, i.e. what comes before the because (“in Europe well-functioning
thermometers are higher in summer than in winter”, “the action is wrong”, “the
ball is red and round”, respectively). In each case not only can we say that the
consequent follows from the antecedent, but also, and most importantly, that
the consequent is determined, or explained or accounted for the antecedent. In
other terms, in each of the sentences listed above, the antecedent constitutes
the reason why or the ground of the truth of the consequent.

Sentences 1–3 are sentences standardly used to exemplify the concept of
grounding, which is a concept that has been receiving impressive and increasing
interest in contemporary philosophical and logical literature (e.g. [5, 10, 11, 15,
18, 19]). Grounding is often described as an objective relation amongst truths
that is explanatory in nature. The linguistic expression because represents one
way of conveying the grounding concept; another common way of conveying this
concept is given by the expression in virtue of.
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Several scholars have stressed the importance of the grounding concept for
philosophical inquiry. Correia and Schnieder [8] clearly state that “it is a phe-
nomenon of the highest philosophical importance”; Fine [12] goes even further
and claims “Once the notion of ground is acknowledged, then I believe that it
will be seen to be of general application throughout the whole of philosophy.”
This paper aims to contribute to the debate concerning this notion.

Our starting point will be a distinction, first introduced by a milestone in
the history of the study of grounding, namely the Bohemian thinker Bernard
Bolzano, between material and formal grounding. While material grounding is
a relation that “depends on the particular character of the ideas involved” [21,
p. 266] (our translation), formal grounding is a relation that overlooks such a
particular character and only “relies on the form of the propositions involved”
[21, p. 266] (our translation). Thus, while sentences 1 and 2 are examples of
material grounding, sentence 3 is an example of formal grounding.

In this paper we do not aim to analyze both material and formal grounding;
rather, we will restrict our attention to the concept of formal grounding. Our
goal is to give a definition of this notion. With respect to such a goal, we would
like to emphasize two things. The first concerns its originality. In the recent
literature on grounding, we can either find discussions on the properties that
grounding satisfies (e.g. see [10, 15]) or about the very existence of the notion
of grounding (e.g. see [9]), but, as far as we know, little has been said on how
to define such a concept (Bolzano [2] represents a great exception to this trend
and we will actually use some of his brilliant intuitions). The second thing to
note is the importance of such a goal. Not only it seems crucial per se to have
a definition of formal grounding, but also, such a definition could open a new
perspective on how to develop a logic of formal grounding.

The paper will be organized as follows. In Section 2 we will introduce classi-
cal logic as the background framework of our research and then investigate the
relationship between the classical notion of derivability and formal grounding.
Section 3 will serve to introduce the concept of complete and immediate formal
grounding that will be the specific object of our study; in Section 4 we will
examine the relationship between grounding and complexity and introduce a
precise definition of complexity. While Section 5 will be used to analyze the
case of disjunction and argue for the need for another element, other than deriv-
ability and complexity, in the definition of formal grounding, Section 6 will serve
to finally state our definition of complete and immediate formal grounding. In
Section 7 we will outline some differences between our approach to the concept
of grounding and the most prominent approaches (see [7, 13, 20]) in the con-
temporary literature. Finally, in Section 8, we will draw some conclusions and
depict some lines of future research.
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2 Classical logic, derivability and formal ground-
ing

In what follows classical logic will be the framework where we will develop our
research on the notion of formal grounding.

Definition 2.1. The language Lc is composed of a denumerable stock of propo-
sitional atoms (p, q, r, . . . ), the logical operators ¬, ∧ and ∨ and the parentheses
(, ). Formulas are constructed as usual and the set of well-formed formulas of
Lc will be denoted by F .

Semantically, classical logic is defined by means of the standard truth-tables
containing the two truth values, truth and false. Syntactically, by relying on the
means of the natural deduction calculus (e.g. see [23]), we can easily introduce
the notion of derivability which is denoted with the symbol `. M ` A stands
for: there exists a natural deduction derivation d from the multiset of formulas
M to the formula A. The theorems of soundness and completeness (e.g. see
[23]) show a perfect correspondence between the semantic and the syntactic
perspectives.

Here we are interested in understanding the link between classical derivabil-
ity and formal grounding. Even at the first glance, the concept of grounding and
the concept of derivability seem to be closely connected. But what exactly does
their relationship amount to? Certainly, that A is derivable from the multiset
of formulas M does not imply that M ground A. To see this, consider the case
of conjunction. While A is derivable from A ∧ B, nobody would ever say that
A ∧B is the ground of A. What about the inverse then? If M formally ground
A, does this imply that A is derivable from M? According to Bolzano, this is
the case. Formal grounding is grounding amongst propositions which are also
derivable:

Let’s see this: Bolzano distinguishes between material and formal
grounding. The second notion, formal grounding, is grounding be-
tween propositions which are also derivable and it is defined as a
special kind of derivability. [1, p. 197, italics ours]

Thus for Bolzano formal grounding is a special type of classical derivability.
This claim is extremely important for our work. Indeed, if we seriously think
that formal grounding is a special sort of classical derivability, then the task
of defining formal grounding amounts to the task of finding those criteria that
make classical derivability particular. This is precisely what we are going to do
in the next sections and what we will focus our attention on. Let us conclude this
section by drawing the following general picture, in the light of the observations
that we have just made: the background framework of our research is constituted
by classical logic, its two truth values and a notion of derivability which typically
formalizes proofs by means of which we demonstrate that something is true. On
this basis, by imposing certain specific and adequate criteria, we aim to draw
out a notion of formal grounding that deals only in truths and that is supposed
to represent proofs by means of which we demonstrate why something is true.
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3 Complete and immediate grounding

According to what we have said in the previous section, if our aim is to find
a definition for the notion of formal grounding, our starting point should be
the classical notion of derivability. Now a derivation is usually seen as a tree
in which every edge corresponds to an inferential step. Then, even a formal
grounding (proof) can be seen as a (special) tree (see [1, 17, 22]) in which
every edge corresponds to a single grounding step. We are going to call the
single grounding step of a grounding tree immediate grounding; while the whole
grounding tree will be called mediate grounding. Such a terminology has been
firstly introduced by Bolzano [3] and then taken up by Fine [12].

The immediate–mediate distinction is not the only one that we can make
concerning the concept of (formal) grounding. There is another central distinc-
tion to be drawn which appears to correspond to what Bolzano called complete
and partial grounding and which is related to what is referred to nowadays as
the difference between full and partial grounding.

According to Fine [12] A is a partial ground of C if A on its own or together
with some other truths is a ground of C. Thus, given that A and B are the
full ground of A ∧ B, each of A and B will be a partial ground of A ∧ B. The
notion of full ground is never explicitly defined but we can take it as A is a full
ground of C if the truth of A is sufficient to guarantee the truth of C. Bolzano’s
distinction between complete and partial ground is slightly different. Following
the analysis of Sebestik [21] and Tatzel [22, p.13], for Bolzano the (multi)set of
all, and only, those truths each of which contributes to ground the truth C is a
complete ground of C. On the other hand, each of the truths that compose the
complete ground of C is said to be a partial ground of C.

It seems that Bolzano and Fine both attempt to describe a same distinction,
although the way they draw the line between the two concepts is different. For
Fine a partial ground of a truth C can also be the full ground of C, while for
Bolzano this can never be the case, since partial and complete grounds are two
disjoint concepts [2, p. 268]. Moreover, while for Fine, the full ground of a truth
C does not need to correspond to the (multi)set that gathers together all the
truths that ground C - for Fine full ground is just a sufficient condition - for
Bolzano this is precisely what characterizes the complete ground of a truth C.

In what follows we will focus on the concept of complete and immediate
formal grounding in the Bolzanian sense; the precise goal of this paper will
actually be to give a definition of the notion of complete and immediate formal
grounding. (Thus the notions of complete and mediate, partial and immediate
and partial and mediate formal grounding are left for future research). This
restriction to what might seem a narrow object of study is actually a common
strategy in the literature. Indeed, this is very close to what Bolzano himself
was doing: he took the concept of complete and immediate formal grounding as
central and thought this was the concept to be characterized in the first place.
The definition of the other concepts would have followed consequently (see [22]).

A similar remark can be found in Fine. On the one hand Fine claims that
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The notion of immediate ground would appear to give us something
genuinely new ; and I find it remarkable how strong our intuitions
are about when it does and does not hold. [...] It is the notion
of immediate ground that provides us with our sense of a ground
theoretic hierarchy. [12, p. 51, italics ours]

And then he continues with

It is for this reason that pride of place should be given to the full
notion in developing an account of ground. [12, p. 50, italics ours]

The agreement of these two illustrious philosophers on the central role that
the concept of complete and immediate formal grounding recovers seems to
represent a very good reason for focussing on this notion.

4 Complexity and complete and immediate for-
mal grounding

Let us now get at the heart of the matter by trying to identify those conditions
that allow us to pass from classical derivability to the concept of grounding.
In particular, since we focus on the notion of complete and immediate formal
grounding, we will have to find those conditions that allow us to pass from
a singular inferential step to the concept of complete and immediate formal
grounding.

In the past as well as in the recent literature on grounding, one of the noted
characteristics of this notion is complexity (e.g. see [1, 4, 7] ). Bolzano was the
first to explicitly claim that in a grounding relation the grounds must be less
complex than their conclusion1. Indeed, if grounding is an objective relation that
is explanatory in nature, it seems hard to claim that a truth B is explained by a
truth A which is more complex than B. Thus, in a grounding chain, complexity
decreases as one goes from the conclusion to its grounds. In particular, in the
case of complete and immediate grounding, the grounds must be completely
and immediately less complex than their conclusion. But what exactly does
being completely and immediately less complex mean? Can we have a precise
definition of this notion? While intuitively it might seem easy to decide when
a truth is (completely and immediately) less complex than another, to draw
the formal counterpart of such a notion is not straightforward. The rest of the
section will be dedicated to this task. The result will play a crucial role in our
definition of complete and immediate formal grounding.

Anyone who is acquainted with classical logic will certainly know that in this
framework there already exists a way of counting the complexity of a formula A,
and a notion, that of subformula, that might be seen as describing the relation
of being less complex. So one might think that we actually already have the

1As Betti [1] puts it “This idea can be found everywhere in Bolzano’s writings, starting
from his early mathematical works”.
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tools needed for a definition of being fully and immediately less complex. In
order to avoid any confusion, let us present these two notions and then explain
why they do not work in the grounding framework. This will also shed light on
the features required from a notion of being fully and immediately less complex
that is appropriate for grounding.

Definition 4.1. The complexity of a formula A, cm(A), is inductively defined
in the following way:

- cm(p) = 0

- cm(¬A) = cm(A) + 1

- cm(A ◦B) = cm(¬(A ◦B)) = cm(A) + cm(B) + 12

Definition 4.2. A is a subformula of B if, and only if, one of the following
holds:

- A = B

- B = ¬C and A is a subformula of C

- B = (C ◦D) and A is a subformula of C or a subformula of D

Given these two definitions it seems straightforward to define the notion of
being completely and immediately less complex in the following way.

Definition 4.3. In the classical logical framework, a multiset M is completely
and immediately less complex than a formula C if, and only if:

- if C = ¬B, than M = {B},

- if C = B ◦D, than M = {B, D}

Thus a multiset M is completely and immediately less complex than a formula
C of complexity n if, and only if, it contains all and only those subformulas of
C whose sum of complexities is n− 1.3

The question now is: does Definition 4.3 work in the grounding framework?
In order to answer this question, let us point out the virtues of this Definition
before turning to its problems. As for the virtues, in the case of (certain)
conjunctions and disjunctions, it seems to work fine. (Let us call this virtue
V.) Consider for example the formula p ∧ q. According to Definition 4.3 the
multiset {p, q} is completely and immediately less complex than p∧ q; since p, q
are standardly taken to be the complete and immediate formal grounds of p∧ q,
this is precisely what we would like to have.

As for the problems, these are three. The first (we will call it P1) concerns
conjunction and disjunction. Consider indeed a formula of the form (p∧ q)∧ r.

2From now on ◦ = ∧,∨.
3It is straightforward to notice that both the “completely” and the “immediately” features

of the notion of being completely and immediately less complex have been taken into account.
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Then it seems that we would like to claim that, not only the multiset {p∧ q, r}
is completely and immediately less complex than (p∧ q)∧ r, but that also each
of the multisets {q∧p, r}, {r∧p, q}, {p∧ r, q}, {q∧ r, p}, {r∧ q, p} is completely
and immediately less complex than (p ∧ q) ∧ r. Of course Definition 4.3 does
not allow us to draw such a conclusion.

The other two problems linked with Definition 4.3 concern negation. Con-
sider for example the formulas A and ¬¬A: A is generally considered (see
[7, 12, 20]) as the complete and immediate formal ground of ¬¬A, thus it
also needs to be completely and immediately less complex than ¬¬A; however,
according to Definition 4.3, it is ¬A, and not A, that is completely and immedi-
ately less complex than ¬¬A. (We will call this problem P2.) A similar situation
arises with ¬(A ∨ B): ¬A, ¬B are generally considered (see [7, 12, 20]) as the
complete and immediate formal grounds of ¬(A ∨ B), thus they also need to
be completely and immediately less complex than ¬(A∨B); instead, according
to our definition, it is A ∨ B to be fully and immediately less complex than
¬(A ∨B). (We will call this problem P3.)

Given this situation, we can conclude that Definition 4.3, which arises from
Definitions 4.1 and 4.2, does not work in the grounding framework. Thus we
need an alternative notion that has the same virtue V of Definition 4.3, but
that, at the same time, overcomes problems P1 - P3. In order to achieve the
desired result, we will proceed in three steps (that are analogous to those that
we have just seen in the classical framework): we will introduce a new way
of counting the complexity of a formula A that is adequate for the grounding
framework; then, we will explain what counts as a subformula A of a formula
B in the grounding framework. Finally, by exploiting the first two notions, we
will define the notion of being completely and immediately less complex in the
grounding framework.

Let us start by presenting our measure of complexity. We give its formal
definition and then we explain the ideas that motivate it.

Definition 4.4. The g-complexity of a truth A, gcm(A), is defined in the
following way:

- gcm(p) = gcm(¬p) = 0

- gcm(A ◦B) = gcm(¬(A ◦B)) = gcm(A) + gcm(B) + 1

- gcm(¬¬A) = gcm(A) + 1

The main difference between our measure of complexity, that we call g-
complexity for grounding complexity, and the one standardly adopted in classical
logic concerns the value assigned to negation, so let us try to explain this point
in detail.

In classical logic one usually deals with two truth values, truth and falsity.
The possibility of using the falsity as a truth value has a consequence for our
way of evaluating the complexity of a formula. Consider a simple formula that
starts with a negation, like ¬p; of this formula we say that it has complexity
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p + 1, since a logically less complex way of conveying that ¬p is true is to say
that p is false. Consider for example the sentence “it is not raining” is true. An
equivalent, though logically less complex, way to claim that “it is not raining”
is true is to say that “it is raining” is false. Thus the complexity of “it is not
raining” is equal to that of “it is raining” + 1.

In the grounding framework, things are different; in the grounding frame-
work only truths count and falsehoods do not play any role at all. It is then
natural that this has a consequence for the way we evaluate the complexity of
a formula, that indeed from now on will be called the complexity of a truth.
In the grounding framework, if we consider a truth like ¬p, it is no longer the
case that there exists a logically less complex way of conveying the same thing
that this truth conveys, since it is no longer the case that we can use the value
falsity. This implies that ¬p no longer has complexity p +1, but it has the same
complexity as p. Consider again the example “it is not raining” is true. In the
grounding framework there is no logically less complex way of conveying the
same thing; indeed “it is not raining” is as atomic as “it is raining” and thus
they have the same complexity value 0.

Analogous reasoning can be applied to the complexity of more complex
truths like ¬(A ∧ B) or ¬(A ∨ B). Even in these cases, since the value fal-
sity does not have any role, we can no longer claim, as in the classical case,
that their complexity is equivalent to the complexity of A∧B +1 and A∨B +
1, respectively; instead, their complexity will be the same as the complexity of
A ∧B and A ∨B, respectively.

Let us then move to the case of double negation. In case of double negation,
the negation counts since gcm(¬¬A) = gcm(A) + 1. The argument behind this
way of counting double negation is once more the same. Consider the sentence
“it is not the case that it is not raining” is true. The less logical complex way of
saying the same thing is obtained by simply taking “it is raining” is true. Thus
the complexity of “it is not the case that it is not raining” is equal to that of
“it is raining” + 1.

We thus have a measure of complexity which seems adequate for the ground-
ing framework. In order to formulate a notion of subformula which is adequate
for the grounding framework - from now on we will call this type of subformula
subtruth, to distinguish it from the classical one - we need two further notions:
the notion of the converse of a truth D, denoted by D∗, and the relation ∼=.

Let us start by introducing the notion of the converse of a truth.

Definition 4.5. The converse of a truth D, written D∗, is defined in the fol-
lowing way

D∗ =
{
¬n−1E, if D = ¬nE and n is odd
¬n+1E, if D = ¬nE and n is even

The notion of converse of a truth is quite simple to grasp; indeed by con-
sidering a truth A and its converse A∗, we are taking into account two truths
that only differ by one occurrence of a negation symbol but have the same g-
complexity. So for example p and ¬p can be taken as a truth and its converse:
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they both have the same g-complexity 0, but one is the negation, or the con-
verse, of the other. The same holds for ¬¬¬p and ¬¬p: they have the same
g-complexity 1 but the latter has one negation less than the former (and so is
its converse). As we will see briefly, the notion of converse of a truth happens
to be very useful in the definition of the relation ∼= and in the definition of the
notion of subtruth.

Let us now pass to the relation ∼= which is the second notion to introduce
in order to have all the elements needed to formulate the correct definition of
subformula in the grounding framework, i.e. the notion of subtruth. We firstly
introduce the formal definition of ∼= and then we explain the intuitive idea
behind it.

Consider a formula A. We will say that A is a-c equiv to B if, and only if,
A can be obtained from B by applications of associativity and commutativity
of conjunction and disjunction.4 Let us make some examples of formulas A and
B such that A is a-c equiv to B. If A is of the form E ∧ F , then the formula
F ∧E is a-c equiv to it. If A is of the form ¬((B ∨ C) ∧ (D ∨ F )) the formulas
¬((C∨B)∧(D∨F )), ¬((B∨C)∧(F ∨D)), ¬((C∨B)∧(F ∨D)) are a-c equiv to
it. If A is of the form ((B∨C)∨(D∨F )), then the formulas ((B∨D)∨(C∨F )),
((D ∨B) ∨ (F ∨ C)), ((B ∨ F ) ∨ (D ∨ C)) are all a-c equiv to it.

Definition 4.6. A ∼= B if, and only if:

A is a-c equiv to B or A is a-c equiv to B∗

Let us explain the relation ∼= in intuitive terms. First of all note that each
truth is a-c equiv to itself, so we have that not only each truth is in the relation
∼= with itself, but also that each truth and its converse are in the relation ∼=.
The question now is: what kind of relation each truth entertains with itself but
also with its converse? The answer is: the relation of being about, or pertaining,
or concerning a given fact. Let us see this in detail. Of course given two truths
A and A, since they are identical, it is trivial to say that they also are about the
same thing. But consider the more interesting case of a truth and its converse.
Consider for example the truth “it is cold and it is raining” and the truth “it is
not the case that it is cold and it is raining”. In this case one can either focus on
the fact that these truths are opposite since either “it is cold and it is raining”
is true or “it is not the case that it is cold and it is raining” is true; or one
can focus on the fact that these two truths share some essential features: they
have the same complexity, the same atomic formulas and the same connective
used in the same way and a same number of times (as explained in the previous
paragraph, the presence of negation in this case does not make any difference).
In sum, these two truths are about or concern the same thing: they both are
about the conjunction of it is raining and it is cold irrespectively of the truth
value assigned to it. This is precisely what is captured by the relation ∼=.

Let us now pass to two truths A and B such that A 6= B and they are a-c
equiv ; then we have that even these two truths are in the relation ∼=. This

4We omit the formal definition of this notion for the sake of brevity.
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captures the following intuitive idea. Consider the truths “it is raining and it
is cold” and “it is cold and it is raining”; these two truths share some essential
features: the same complexity, the same atomic truths and the same connectives
used in the same way and a same number of times. Thus even of “it is raining
and it is cold” and “it is cold and it is raining” we would like to say that they
are about the same thing, i.e. namely the conjunction of it is raining and it is
cold irrespectively to the order in which they are considered. Therefore even “it
is cold and it is raining” and “it is raining and it is cold” are in the relation ∼=.

Finally we have the case of two truths A and B such that A 6= B and A is
a-c equiv to B and A and B∗ are in the relation ∼=. In order to understand this
case, we can easily adapt the explanation proposed for the other ones.

We have thus finished introducing the relation ∼=. We now have all the
elements to introduce our notion of subtruth, which is the analogue of the
notion of subformula in the grounding framework.

Definition 4.7. A is a subtruth of B if, and only if, one of the following holds:

- A ∼= B

- B ∼= ¬¬C and A is a subtruth of C,

- B ∼= (C ◦D) and A is a subtruth of C or a subtruth of D.

In order to construct the notion of subtruth in an adequate way, we have
done our best to imitate the definition of the notion of subformula, by adapting
each of the concepts present and specific to the notion of subformula and to
classical logic to the grounding framework. The first item of the definition of
subformula states that, if A = B, then A is a subformula of B. The first item of
the definition of subtruth is built analogously but with the substitution of the
notion of identity with the notion of ∼=, that looks like the grounding counterpart
of the identity. This yields: if A ∼= B, then A is a subtruth of B. This implies
that not only A is a subtruth of itself, but also A∗ is a subtruth of A, and
also any truth C, together with its converse, such that C is associatively and
commutatively equivalent to A is a subtruth of it.

Let us pass to the second item. The second item of the definition of subfor-
mula states that if A is a subformula of B, then B = ¬C and A is a subformula
of C. The second item of the notion of subtruth is built analogously via the
following substitutions: as before identity is substituted with the relation ∼=; the
formula ¬C is substituted by the formula ¬¬C because, as we have explained
previously, in the grounding framework the negation counts as such only when
there are two; finally, the notion of subformula is substituted by the notion of
subtruth. We thus have: if B ∼= ¬¬C and A is a subtruth of C, then A is a
subtruth of B. This implies that given a truth ¬¬C, not only C is a subtruth
of ¬¬C, but also C∗ is a subtruth of ¬¬C, and so is any truth D, together with
its converse, such that D is associatively and commutatively equivalent to C.

The parallel between the third items of the definition of subformula and the
definition of subtruth is easily drawn in the light of what we have said for the
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previous two. Therefore, we have a notion of subtruth that seems adequate for
the grounding framework; we can use it to define the notion of being completely
and immediately less complex in the grounding framework.

Definition 4.8. In the grounding framework, a multiset M is completely and
immediately less complex than a truth C, if, and only if:

- if C ∼= ¬¬B, then M = {B} or M = {B∗}

- if C ∼= (B ◦D), then M = {B, D} or M = {B∗, D} or M = {B, D∗} or
M = {B∗, D∗}.

Thus a multiset M is completely and immediately less complex than a truth
C of complexity n if, and only if, it contains all and only those subtruths of C
whose sum of complexities is n− 1.5

We finally have the notion of being completely and immediately less complex
in the grounding framework. This notion has been built in several steps, each
of which has been deeply motivated. So we hope that Definition 4.8 does not
come as a surprise but, instead, looks like the natural conclusion of all we have
said in the last paragraphs.

Let us end the section by (i) giving some examples of truths that are com-
pletely and immediately less complex than another truth, (ii) checking whether
the notion introduced in Definition 4.8 meets all the desiderata that we have
enumerated in Section 3.

Let us start with task (i). We will give examples that are also useful to
understand the role of the notion of converse of a truth and the relation ∼= in
the definition of the notion of being completely and immediately less complex.
Let us start by the truth ¬p∧¬q; the multisets of truths that are completely and
immediately less complex than ¬p ∧ ¬q are {¬p,¬q}, {p,¬q}, {¬p, q}, {p, q}.
Consider now the truth ¬¬p ∧ ¬¬q; the multisets of truths that are completely
and immediately less complex than ¬¬p ∧ ¬¬q are {¬¬p,¬¬q}, {¬¬¬p,¬¬q},
{¬¬p,¬¬¬q}, {¬¬¬p,¬¬¬q}. Note that it is thanks to the notion of converse of
a truth that we can indicate in an uniform way the truths that are immediately
and completely less complex of ¬p ∧ ¬q and ¬¬p ∧ ¬¬q. In order to obtain
such truths, we should in one case erase a negation, and in the other case add
a negation: the operator ∗ takes both these cases into account.

Consider now the truth ¬¬((p ∧ q) ∧ r). Amongst the multisets of truths
that are completely and immediately less complex than ¬¬((p ∧ q) ∧ r), there
are: {(p ∧ q) ∧ r}, {¬((p ∧ q) ∧ r)}, but also {(q ∧ p) ∧ r}, {¬((q ∧ p) ∧ r)},
{(q ∧ r) ∧ p}, {¬((q ∧ r) ∧ p)}, {(q ∧ p) ∧ r}, {¬((q ∧ p) ∧ r)}. The role of the
relation ∼= is to allow all these different multisets.

Let us now turn to task (ii): we should check whether the notion of being
completely and immediately less complex as we introduced it in Definition 4.8
has the virtue V and overcomes the problems P1 - P3 that we have illustrated in

5As it was the case in the classical framework, it is straightforward to notice that both the
“completely” and the “immediately” features of the notion of being completely and immedi-
ately less complex have been taken into account.
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Section 3. As for the virtue V, this is satisfied; to see this, consider a truth like
p ∧ q. According to Definition 4.8, amongst the multisets which are completely
and immediately less complex than p ∧ q there is {p, q} (the others are {¬p, q},
{ p,¬q} and {¬p,¬q}) and this is precisely what we wanted.

Let us now pass to problems P1 - P3 and let us start by analyzing problem
P1. Such a problem has been overcome by Definition 4.8: indeed, amongst the
multisets that are completely and immediately less complex than a truth like
(p∧ q)∧ r, there are the following ones {p∧ q, r}, {q∧ p, r}, {p∧ r, q}, {r∧ p, q},
{q ∧ r, p}, {r ∧ q, p} and this is precisely what we wanted. Let us now move to
problems P2 and P3, which both concerned negation. On the one hand, we have
that, according to our Definition 4.8, amongst the multisets that are completely
and immediately less complex than a truth like ¬¬p there are both {p} and
{¬p}. Thus problem P2 has been overcome. On the other hand, we have that,
according to our Definition 4.8, amongst the multisets that are completely and
immediately less complex than a truth like ¬(p∧q) there is {¬p,¬q} (the others
are {p, q}, {¬p, q} and { p,¬q}). Thus problem P3 has also been solved. So all
our desiderata have been satisfied; this could be taken as an additional sign of
the adequateness of the proposed notion of being completely and immediately
less complex for the grounding framework.

5 The paradigmatic case of disjunction (or why
we need another ingredient to define formal
grounding)

We have seen some salient features of the notion of formal grounding that partly
come from the literature and partly have been developed in this paper. More
precisely, in the previous sections, we have argued that the notion of classical
derivability and the notion of being completely and immediately less complex
are two necessary conditions for complete and immediate formal grounding. The
question now is whether they also are sufficient. In this section we will show that
they are not. In the next section we will introduce the final missing ingredient
in the definition of formal grounding.

In order to show why the notions of classical derivability and being less
complex are necessary but not sufficient for the definition of formal grounding,
we will use the paradigmatic case of disjunctive truths. Let us then consider a
disjunctive truth like A∨B and suppose that A is true. A is then a ground for
A ∨ B. But is A the complete ground for A ∨ B? The answer would seem to
depend on the truth of B. If B is true, then A and B together are the complete
grounds of A ∨ B. And if B is false? In this case, A would seem to constitute
the complete grounds of A ∨ B: but this is only because B is false. Indeed, as
just noted, if B were true, A would no longer constitute the complete grounds
of A ∨ B (it would merely be a partial ground). Hence, in the case where B is
false, it still has a role to play in determining the grounds of A ∨ B: its falsity
ensures that or is a condition for A to be the complete grounds for A ∨ B. To
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capture this role, we shall say that A is the complete grounds for A ∨ B under
the robust condition that B is false, or equivalently, we will say that A is the
complete grounds for A ∨B under the robust condition that the converse of B
is true. Thus, according to this analysis of disjunctive truths, in order to give
the complete and immediate grounds of A ∨ B, a distinction between grounds
and robust conditions is required: indeed either both disjuncts are the complete
grounds of the disjunctive truth, or if only one of them is, this can only happen
under the condition that the converse of the other is true.

This treatment of disjunctive truths seems reasonable and adequate. Let us
make a concrete example of the complete and immediate grounds of a disjunctive
truth. Let us consider the sentence “I take the umbrella or the coffee is good”.
According what we have said up to now, the complete and immediate grounds
of “I take the umbrella or the coffee is good” are the following:

- either “I take the umbrella” and “the coffee is good”;

- or “I take the umbrella” under the robust condition that “the coffee is not
good”;

- or “the coffee is good” under the robust condition that “I do not take the
umbrella”.

Each of the two disjuncts “I take the umbrella” and “the coffee is good”
has always a role to play in determining the complete grounds of “I take the
umbrella or the coffee is good”. If it is true, it belongs to the complete grounds
of “I take the umbrella or the coffee is good”. If it is false, then its falsity in
itself is a condition for the other disjunct to be a complete ground for “I take
the umbrella or the coffee is good”: after all, if “the coffee is good” were true,
“I take the umbrella” would no longer be the complete grounds for “I take the
umbrella or the coffee is good” (and vice-versa for if “I take the umbrella” were
true).

Let us now go back to our analysis of grounding and let us suppose, for the
sake of the argument, that grounding is defined by means of classical derivability
and the notion of being completely and immediately less complex. Let us call
this definition D–C def. Let us try to understand whether D–C def can properly
take into account the disjunctive case alongs the lines set out above. More
precisely, let us try to understand whether D–C def is powerful enough to
render the distinction between grounds and robust conditions that we have
just introduced and that is specific to the disjunctive case. To answer these
questions, let us consider the disjunctive truth “I take the umbrella or the coffee
is good” and let us suppose that “I take the umbrella” and “the coffee is not
good” are both true. Then, according to D–C def, we have that both “I take
the umbrella” and “the coffee is not good” are the complete and immediate
grounds of “I take the umbrella or the coffee is good”. Indeed from “I take
the umbrella” and “the coffee is not good” “I take the umbrella or the coffee is
good” is derivable, and “I take the umbrella” and “the coffee is not good” are
completely and immediately less complex than “I take the umbrella or the coffee
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is good” according to our Definition 4.8 of being completely and immediately
less complex. Thus, if we define formal grounding just in terms of derivability
and complexity, we cannot make any distinction between grounds and robust
conditions. Moreover, we obtain the mistaken conclusion that “the coffee is not
good” is a ground of “I take the umbrella or the coffee is good”. This means
that D–C def is not powerful enough to render the subtle distinctions specific
to the grounding framework; this means that we are lacking an ingredient in
our definition of complete and immediate formal grounding.

6 A definition of the notion of complete and im-
mediate formal grounding

In this section we will introduce and discuss the third and last ingredient of
our definition of complete and immediate formal grounding. Our intuitive idea
can be explained as follows. Let us take as our starting point the claim that
in a grounding relation the consequent is strictly connected to its grounds.
This sounds like a claim which is rather unproblematic (the reader can find
similar claims in [8, 13]), but also quite vague. The question is then that of
making it more precise, i.e. the question is then that of clarifying this idea
of strict connection. In order to clarify the idea of strict connection, we will
use the concept of variation; we will indeed say that in a grounding relation
the consequent varies together with each modification of its grounds. This new
claim seems to present the same characteristics of the previous one: on the one
hand, it sounds acceptable (the idea of explaining a connexion within a variation
is certainly not new, see [14, 16]), but in need of further clarification. Indeed,
if we really want to understand what grounding is about, we need to specify
what kind of modifications the grounds might have and what exactly it means
for the consequent to vary with its grounds. In order to clarify these issues, let
us recall an important point that has already been emphasized several times:
in a grounding framework we only deal with truths and grounding is a relation
amongst truths. In the light of this, the answers to our questions seem easier.
Firstly, we might want to say that the grounds can only be modified in two
ways: either they are true or the negation of each of them is true; secondly,
we might want to assert that for the consequent to vary with its grounds is the
same as for the consequent to track the truth of its grounds: if the grounds are
true, then the consequent is true too; but also, if the negation of each ground
were true, the negation of the consequent would be true too. To put it as Nozick
[16] did, though for grounding rather than for knowledge:

To ground a sentence is to have that sentence track the truth of its
reasons. Grounds and their consequence are connected in a partic-
ular way, the latter tracks the truth of the former.

We have thus clarified the idea of a consequent varying together with its
grounds by means of the idea of a consequent tracking the truth of its grounds.
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Let us now make a further and final step and present the formal counterpart of
this concept of tracking the truth. For this, we will use the concept of classical
derivability. Therefore, not only, like we have already seen, we will say that
in a grounding relation the consequent is derivable from its grounds, but also,
and this is the third and last ingredient of the definition of formal grounding,
that the negation of the consequent is derivable from the negation of each of its
ground. By specifying both these types of derivability, we finally have a proper
account of the notion of formal grounding. Indeed, it is only by specifying both
these types of derivability that we have the full formal counterpart of the idea
of strict connection that lies at the heart of the notion of (formal) grounding.

Let us try to write down these intuitions in a more formal way. For this
let us denote robust conditions with the notation [C], where C is a formula
of the language Lc; moreover we will adopt the following convention ¬(M) :=
{¬B|B ∈M}. We can now formulate the following definition.

Definition 6.1. For any consistent multiset of formulas C ∪M , we say that
under the robust condition C, the multiset M completely and immediately for-
mally grounds A, [C] M |∼ A, if and only if:

- M ` A

- C,¬(M) ` ¬A

- C ∪M is completely and immediately less complex than A, in the sense
of being completely and immediately less complex given in Definition 4.8.

Under the robust condition C, the multiset M completely and immediately
formally grounds A if, and only if, (i) A is derivable from M – we will call this
item positive derivability; (ii) ¬A is derivable from ¬(M) plus C – we will call
this item negative derivability; (iii) C ∪M is completely and immediately less
complex than A – we will call this item complexity. The notion of complexity
describes the grounding hierarchy in which truths are organized; in particular,
the notion of being completely and immediately less complex gives an exhaustive
description of each step of this hierarchy. The notion of positive and negative
derivability tell us which truths in each step of this hierarchy are linked by a
grounding relation.

We finally have the definition of complete and immediate formal grounding.
This definition have been built in several steps, each of which has been justified.
So we hope that Definition 6.1 does not come as a surprise but, instead, looks
like the natural conclusion of all we have said in the previous sections. We
will end up the section by testing our Definition 6.1 on the problematic case of
disjunction. The capacity to deal with this case could be taken as a sign of the
adequateness of the definition itself.

Let us consider again the truth “I take the umbrella or the coffee is good”
and, for the sake of brevity, let us formalize it with p ∨ q. According to what
we have said in the previous section, we would like the complete and immediate
formal grounds of p ∨ q to be:
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• either p and q,

• or p [¬q],

• or q [¬p].

Let us check whether this is the case according to Definition 6.1. Let us
start from the case of p and q; these are indeed the complete and immediate
grounds of p ∨ q according to Definition 6.1: from p and q, p ∨ q is derivable;
from ¬p and ¬q, ¬(p ∨ q) is also derivable; and finally p, q are completely and
immediately less complex than p ∨ q. Let us now pass to p [¬q]; according to
Definition 6.1 p is the complete and immediate ground of p∨ q under the robust
condition ¬q. From p, p ∨ q is derivable; from ¬p and ¬q, ¬(p ∨ q) is also
derivable and, finally, p and ¬q are completely and immediately less complex
than p ∧ q. As for the case q [¬p], this works analogously to the previous one.
Thus Definition 6.1 seems to respond to all our expectations in the case of
disjunction and this, as already emphasized, might be taken as a (first) sign of
the adequateness of our definition. We will use the next section to expose other
interesting characteristics of our notion of grounding.

7 Comparisons between our approach and other
approaches to the notion of grounding

We will dedicate this section to the analysis of the differences between our
account of the notion of complete and immediate formal grounding and the one
that can be found in three articles6 recently published by Correia [7], Fine[12],
Schnieder [20]. This will shed light, not only on the originality of our approach,
but also, and more importantly, on its most noteworthy features.

The differences between our approach to the notion of grounding and the one
adopted by the aforementioned authors are of three kinds: the first concerns the
case of disjunction and negation of conjunction; the second concerns the case
of truths that are associatively and commutatively equivalent, and the third
concerns the case of negation. We will analyze them one by one.

Let us start by the case of disjunction and negation of conjunction. In order
to analyze this case, we will mainly focus on disjunctive truths, leaving aside
truths that have the form of negation of conjunction. We will do this for the
sake of brevity, knowing that everything that can be said about disjunction can
also be said about negation of conjunction.

Let us then consider once more the disjunctive truth “I take the umbrella
or the coffee is good”. According to [7, 12, 20], the full and immediate grounds
of “I take the umbrella or the coffee is good” are the following:

- either “I take the umbrella” and “the coffee is good”
6Each author presents his own analysis of the notion of grounding, which is different from

the analysis given by the other two authors. Nevertheless, these three approaches have enough
common points to be gathered together and compared with our own approach.
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- or “I take the umbrella”

- or “the coffee is good”

Thus their treatment of the disjunctive case is quite distant from the one
presented in Section 5. This difference is simply due to a difference of the
notion of grounding that the approaches want to analyze. While our approach
focuses on the notion of complete and immediate grounding, their approach
concentrates on the notion of full and immediate grounding; the two notions,
though similar, are not the same (see Section 3); in particular, a little reflection
suffices to realize that it is precisely in the case of disjunction (and negation of
conjunction) that their diversity comes to the fore. We can thus conclude that
there is not tension amongst the two results.

Let us now pass to examine the second difference between our approach and
that of Correia, Fine and Schnieder. In order to explain this difference, we
will focus and use truths that have a conjunctive form. However, we note that
this is not limitative in any way: everything that will be said about this type
of truths can easily be adapted to any other type of propositional truth. Let
us then start our analysis. Anyone who is acquainted with the contemporary
literature on grounding [7, 12, 20] will acknowledge that, given a truth of the
form A ∧ B, {A, B} is the unique full and immediate ground of A ∧ B. What
we claim in this paper is something different. We indeed affirm that, given a
truth of the form A ∧ B, not only {A, B} is a complete and immediate ground
of A ∧ B, but so is any multiset {C, D} such that C ∧ D is associatively and
commutatively equivalent to A ∧ B. Since the difference between what is said
in the current literature and our approach is quite significant, we feel compelled
to further justify and explain our position.

For this let us focus on an even more particular example; let us consider the
truth (p ∧ q) ∧ r. According to the way we have defined our notion of complete
and immediate formal grounding (Definition 6.1), not only the multiset {p∧q, r}
is a complete and immediate formal ground of (p ∧ q) ∧ r, but also each of the
multisets {q ∧ p, r}, {p∧ r, q}, {r∧ p, q}, {r∧ q, p} and {q ∧ r, p} is.7 As already
explained in the paragraph above, this is a quite big departure from the current
literature, since, according to Correia, Fine and Schnieder, only the multiset
{p ∧ q, r} is the full and immediate ground of (p ∧ q) ∧ r. The task is then
that of explaining why each of the following multisets {q ∧ p, r}, {p ∧ r, q},
{r ∧ p, q}, {r ∧ q, p} and {q ∧ r, p} needs to be considered as a complete and
immediate ground of the truth (p∧ q)∧ r. In order to develop this task, we will
only concentrate on the multiset {q ∧ p, r}; what is said about this multiset can
easily be repeated for the remaining ones.

Let us then consider {q∧p, r} and the truth (p∧q)∧r and let us analyze their
relationship in the grounding framework. When taken together these truths
undoubtedly stand in a grounding relation; in particular, it seems natural to
claim that the multiset {q∧p, r} is a ground of (p∧q)∧r. This grounding relation
appears so straightforward that it would be up to the one who denies it to argue

7Let us note that in [6] we can find a similar idea for the logic of conceptual grounding.
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against it; the issue is therefore that of understanding what type of grounding
relation is involved. We recall that we only have four possibilities: either it is a
relation of complete (or full) and immediate grounding, or a relation of complete
(or full) and mediate grounding, or of partial and immediate grounding or of
partial and mediate grounding. In the next paragraphs we will try to identify
the appropriate option.

Let us start by the distinction complete – partial, which is the easiest one.
No matter how one defines this distinction, either precisely in terms of complete
– partial or in terms of full – partial, the conclusion is the same: {q∧p, r} cannot
but be a complete or full ground of (p ∧ q) ∧ r. Indeed in {q ∧ p, r} each of the
atomic truths that compose (p∧q)∧r can be found again and nothing is missing.
Thus we have to rule our the option partial grounding. Let us now then move
to the distinction immediate–mediate. Even in this case the situation does not
appear as too complicated. We are indeed in a formal grounding framework
where each grounding step corresponds to the introduction of a new connective.
But {q ∧ p, r} and the truth (p ∧ q) ∧ r precisely differ for one connective,
namely a conjunction; thus only one grounding step separates them and so it is
straightforward to say that they stand in an immediate grounding relation.

Given what we have just seen, we can draw the conclusion that, whatever
approach to grounding one adopts, one is committed to accept that the multiset
{q ∧ p, r} is a complete (or full) and immediate ground of (p ∧ q) ∧ r; actually
we are committed to accept that each of the multisets {q ∧ p, r}, {p ∧ r, q},
{r ∧ p, q}, {r ∧ q, p} and {q ∧ r, p} is a complete (or full) and immediate ground
of (p∧q)∧r. The situation is so because of two things; on the one hand, it cannot
be denied that between the multisets {q ∧ p, r}, {p ∧ r, q}, {r ∧ p, q}, {r ∧ q, p}
and {q ∧ r, p} and the truth (p ∧ q) ∧ r there is a grounding relation. But, once
this is acknowledged, the only grounding relation this grounding relation can
be is the one of complete (or full) and immediate grounding. Therefore this is
an important feature of the concept of grounding that has not been emphasized
before. Our account, instead, properly takes it into account and adequately
treats it.

Let us now move to the analysis of the third and final difference between
our approach and the one presented in the papers [7, 12, 20]. This difference
is quite easy to explain. Consider a truth of the form ¬(A ∨ B): while in our
account a complete and immediate ground of this truth is the multiset {A∗, B∗},
according to [7, 12, 20] the full and immediate ground of this truth is the multiset
{¬A,¬B}. Thus, once more, the two accounts differ and it seems necessary to
better understand such a difference.

For this, consider the question of which of the followings are the complete
and immediate grounds of the truth “it is not the case that it is not raining or
it is not cold”: “it is raining” and “it is cold” on the one hand, and “it is not
the case that it is not raining” and “it is not the case that it is not cold” on the
other hand. In front of this situation we guess that whoever has an intuitive
idea of what grounding is would answer “it is raining” and “it is cold”: these
truths are indeed less complex than the others and of the grounded truth and
thus represent the best option for fulfilling the role of complete and immediate
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grounds.
Let us now show how our approach takes into account these intuitions. For

the sake of brevity, let us formalize “it is not the case that it is not raining or
it is not cold” with ¬(¬p ∨ ¬q). According to our account, the complete and
immediate grounds of ¬(¬p∨¬q) are (¬p)∗ and (¬q)∗, i.e. p and q. Indeed from
p and q, ¬(¬p∨¬q) is derivable, from ¬p and ¬q, ¬¬(¬p∨¬q) is derivable, and p
and q are completely and immediately less complex than ¬(¬p∨¬q). According
to our approach, and contrary to [7, 12, 20]’s approach, ¬¬p and ¬¬q are not
the grounds of ¬(¬p ∨ ¬q): indeed, despite the fact that from ¬¬p and ¬¬q,
¬(¬p∨¬q) is derivable, and from ¬¬¬p and ¬¬¬q, ¬¬(¬p∨¬q) is derivable (and
thus positive and negative derivability are satisfied), ¬¬p and ¬¬q are not less
complex than ¬(¬p ∨ ¬q); actually, according to our measure of g-complexity,
they are more complex. Thus, our approach, and in particular our measure of
g-complexity which has been carefully introduced and well-motivated in Section
4, seem more compelled to formalize some very natural intuitions concerning
the use of negation in the grounding framework. We consider this characteristic
to be an important contribution of our notion of grounding.

8 Conclusions

In this paper we have focussed on the notion of complete and immediate formal
grounding and we have provided a definition for this notion. The two key
ingredients of the definition are: the classical notion of derivability and a notion
of complexity that has been built specifically for the grounding framework.
Thanks to this definition, we have developed an original and accurate analysis
of several emblematic grounding cases.

We think that the results of this paper should serve as a basis for several
different directions of future research. Here we outline three of them, that we
deem as the most significant ones. First of all, it would be important to adapt
our definition of complete and immediate grounding to the cases of complete and
mediate, partial and immediate and partial and mediate grounding. Secondly, it
would be interesting to extend our analysis of grounding from the propositional
case to the first-order case. Finally and most crucially, it would be imperative
to use the results of this paper for developing a logic of grounding that could
potentially differ from those that already exist in the literature.
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