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TRACKING PERFORMANCE ACHIEVEMENT FOR CONTINUOUS-TIME
DELAYED LINEAR SYSTEMS SUBJECT TO ACTUATOR SATURATION
AND OUTPUT DISTURBANCES

Adel Mahjoub, Vincent Van Assche, Fouad Giri, and Fatima Z. Chaoui

ABSTRACT

Controlling continuous-time input-delayed nonminimum-phase linear systems is addressed in the presence of actuator saturation
and output-disturbances. Focusing on output-reference tracking, the control design is dealt with in the pseudo-polynomials ring. A
quite appealing L, -tracking performance is shown to be achievable in the presence of arbitrary inputs i.e. the output reference
and the output disturbance. The performance is formulated in terms of a well defined output-reference mismatch error (ORME),
depending on the inputs’ rate and their compatibility with the actuator saturation constraint.

Key Words: Linear systems, input delay, actuator saturation, tracking performances.

I. INTRODUCTION

Controlling linear systems via saturating actuators has
been studied extensively, especially over the last 15 years.
The solutions proposed so far have been developed following
two main paths, respectively referred to as anti-windup com-
pensator (AWC) synthesis and direct control design (DCD).
In the first approach, a predefined controller ensuring satisfac-
tory control performances in the absence of actuator saturation
is supposed to be available. Then, an additional compensator is
designed to minimize the adverse effect of actuator saturation
on closed-loop performances. The DCD problem is one where
the input constraint is accounted for at the controller design
stage. In addition to actuator saturation, physical systems are
also subject to (less or more significant) dead-times and several
approaches have been proposed in past years to solve various
control problems involving system delays [1,2]. The point is that
relatively few works have dealt with the problem of controlling
delayed systems through saturating actuators. In [3,4] the AWC
is designed to ensure L, stability of the operator relating
the control saturation error u = u — sat(u) (the difference
between the control input u generated in the closed-loop without
input saturation and the same signal passed through the saturation
nonlinearity) to 7 =z — Z (the error between the control sys-
tem performance outputs with and without input saturation).
However, the class of inputs (references, disturbances) for
which the condition u € L, holds is not explicitly defined.
Furthermore, it is not clear how the constrained closed-loop system
behaves when the inputs are not constraint-compatible so that
u¢l, . The problem of controlling delayed systems through
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saturating actuators has also been dealt with using the DCD approach
and a number of results have been obtained e.g. global stabilization
[5], asymptotic stabilization with optimized domain of attraction
[6,7]. Extensions to multiple and distributed actuator delays and sat-
urations were investigated in [8]. A common point to all former
works is that only system stabilization results have been achieved,
assuming all inputs to be null (reference signals and output distur-
bances). In this paper, the focus is placed on asymptotic tracking
of arbitrary-shape reference signals when input-delayed
nonminimum-phase stable systems are controlled via saturating
actuators and their outputs are subject to disturbances. The con-
trol design is presently dealt with in the ring of a pseudo-
polynomial making use of the (finite-spectrum) pole-placement
technique [9,10]. A saturating controller is thus developed and
analyzed using tools from the pseudo-polynomial algebra and
the input-output stability [11]. It is formally proved that, in ad-
dition to closed-loop global stability, the controller enjoys a
quite interesting L, -tracking performance. Specifically, it is
formally established that the (nonlinear) performance mapping,
ORME — ey, is L, -stable where e, denotes the tracking error
and ORME, the output-reference mismatch error, is a well defined
quantity depending on the rate of the reference signal and its
compatibility with the constraint induced by the actuator satura-
tion. Note that, in practical applications, reference compatibility
may be difficult to check or even lost due to model uncertainties.
Then, it is of practical interest to analyze the tracking capability
of the controller facing constraint-incompatible reference signals
of arbitrary shape. This issue has not previously been investigated
in the context of input-constrained dead-time systems [3]. It turns
out that the L, -tracking performances established in the present
paper constitute original results. The present control design and
analysis approach, which is not very usual in constrained dead-
time systems, finds some roots in [12] where the focus was made
on discrete-time systems. The present paper is an improved and a
much more complete version of the conference paper [13]. It is
organized as follows: Section II is devoted to formulating the
control problem; the controller is designed in Section III and



analyzed in Section IV; the corresponding tracking performances
are illustrated by simulation in Section V.

II. CONTROL PROBLEM STATEMENT

We are interested in controlling input-delayed linear systems
of the form:

B —ST
3(6) = 20 is) () <D
A(s) = 5"+ an1s" + o+ ars + ao, @

B(S) = b,,,m‘nil + ...+ bls + b()
in presence of the input constraint:

|u(D)] < un )

where (u(?), ¥(#)) are the system input and output and (ii(s), y(s))
their Laplace transforms; similarly w() represents the disturbance;
uyr> 0 the maximal control amplitude; the integer » is the system
order and the real numbers (a;, b;) its parameters. It is supposed
that A(s) is Hurwitz and (sA(s), B(s)) are coprime and by # 0.
The aim of the present study is to develop a controller that
makes the tracking error,

ey =y—y 4
as small as possible, where y* denotes any bounded reference input.
The point is that the nonminimum phase nature of the system makes
perfect tracking (e.g. e, € L,) unachievable in presence of arbitrary-
shape reference signals. The class of (constant) system inputs for
which perfect matching is achievable will be called constraint-
compatible. To formally define this notion, introduce the following
signal:

(1) =5 07+ D)~ wlr )

=207 (4 1) = w(t + 1)
by

It is readily checked that, if the control system inputs ( y*, w)
are constant, using (1) one can obtain:

u(ty =u(r), vt = y(1)=y*(t), Vt
That is, the signal u*(#) defines the ideal control trajectory for the
achievement of perfect tracking, in the absence of input constraint,
when the control system inputs (y*,w) are constant. For this
achievement to be preserved in presence of the input constraint, it
is necessary that:

|u*(2)| < um, or equivalently, u* — sat(u*) =0
where sat(.) denotes the saturation function defined by:
sat(z) = min(uy, |z]) sgn(z),z € R Q)

In the light of the above discussion, it turns out that the
achievement of perfect output-reference tracking, for nonminimum
phase systems, is possible in presence of constant constraint-
compatible inputs, i.e., those satisfying [y w u* — sat(u*)] =
[0 0 0]. With arbitrary-shape input signals, the tracking quality is

expected to be dependent on how much do the system inputs deviate
from the ideal shape. For this reason, the vector
[ W u* — sar(u*)]” will be referred to as the output-reference
mismatch error (ORME). The smaller (the norm of) this error vector,
the better the tracking quality is expected to be. This objective is
presently formalized by requiring the mapping,

b u' = sar(u')] ey, (6a)
to be L, -stable. Accordingly [11], it is required that a pair of positive

real constants (a, ff) exists such that one has, for all bounded system
inputs (y*, w) and for any real 7> 0:

<'|':|ey(z) |2dz> 1/2 <a <J.;y*(z)2dt> +o <J.;W(’)2d’> : (6b)

i <J.T(u*(t) - Sal(u*(z)))zdt> 1/2 s

12

0

with || || denoting the Euclidean norm. Each of the two statements

(6a) and (6b) will be referred to as the L, -tracking performance. This
entails the following property:

llev[l, < a( llu" = sar(u)lly + 15" Il + [1ll,) (7a)

whenever y*, w, (u* — sat(u”)) € Ly,

Of course, in the general case of arbitrary-shape and/or not
constraint-compatible inputs, one has y* ¢ L, or w¢ L, or (u* —
sat(u*))¢ L,. Then, (6b) can not be expressed using the L, -norm.
To deal with this more general situation a convenient “norm” must
be used. To this end, it follows dividing both sides of (6b) by 7'
and letting 7— oo:

. 1T 2 172 . LT ., 2 1/2
imsup (1) es0ar) < tmsan (1[) 150

. (7. 2 12 7b
+a thlil;p (Tj.o|w(t)| dt) (7b)

T—oo

li IJ.T * * Zd 1/2
~+a lim sup T O|(u — sat(u*)|"dt

. . . def ..
This motivates the notation, |B4|P  lim sup
T—oo

T 1/2
(% .[o |x(2)| 2dt> . Accordingly, the L, -tracking performance (6b) en-

tails the following property:

lley [y < a( Nl = sat(u) [l + 113 la + 120) (7c)

if y, w, (u" —sat(u")) € Lo

In summary, the control problem at hand consists in de-
signing, for the stable system (1) operating under the constraint
(3) and the disturbance input w, a controller that guarantees the
L, -stability of the performance operator (6a) which entails the
two tracking properties (7a) and (7c).



III. CONTROLLER DESIGN

The control design is an extension of the input-constrained case
of the finite-spectrum assignment (FSA) method [10,12]. Just as in the
standard pole assignment method, the starting point is an arbitrary
choice, by the designer, of a pair of Hurwitz polynomials of the form:

C(s):s”+c,,,1s”71 + ...+ 15+ co, (8)
As) =5" A1 L As + Ao,

As sA(s) and B(s) are coprime on R[s] (ring of polynomials
with real coefficients), they are also coprime on E the ring of
pseudo-polynomials [9,10]. Then, there exists a pair of pseudo-
polynomials R’ (s) and P’ (s) satisfying the Bezout equation:

R'(s)sA(s) + P'(s)B(s)e™" = C(s)A(s) ©)

Following [10,12], one divides P’ (s) by the monic polyno-
mial sA(s) and gets P’ (s)=0(s)sA(s)+ P(s) with deg P(s) <n.
Then, letting R(s)=R’ (s) + Q(s)B(s)e™ *", (9) rewrites:

R(s)sA(s) + P(s)B(s)e™" = C(s)A(s) (10)

As deg(P(s)B(s)e” *") <2n — 1, it follows that deg(R(s)
sA(s))=deg(C(s)A(s)) = 2n which in turn implies that deg(R(s))=
n — 1, because deg(sA(s))=n+ 1. Furthermore, as sA(s) and C(s)A
(s) are monic, R(s) must in turn be monic (i.e. its higher degree
term coefficient equals 1). In the light of the above observa-
tions, it is readily seen that R(s) and P(s) are uniquely
expressed as follows:

n—2
R(s)=5""+ ) Ri(e™)s' + R_y(s), (11)
n =0
P(s) = g Pi(e™)s' + P_i(s)

i=0
where R_ |(s) and P_ (s) belong to G, the set of transfer func-
tions of distributed and punctual delay operators. For i >0, R;
(e %) and Pi(e” *") belong to R[e” '], the set of polynomials
in e *". Unlike the case of non-delayed systems, the (finite-de-
gree) operators R(s) and P(s) are presently pseudo-polynomials
which, like classical polynomials, are analytical functions of s.
Now, let us temporarily suppose that the system (1-2) is not subject

to the constraint (3). Then, the FSA control method suggests the con-
P(s)
SR(s)
featuring a unitary-feedback and integral action. For implementation
robustness, the above regulator is given in the alternative form

i(s) = % i(s) — % éy(s) where the involved transfer func-

tions are asymptotically stable (because A(s) is Hurwitz) and
causal. As the system input is subject to the constraint (3), the
above regulator is modified so that it generates a control action
not exceeding the constraint limits. Specifically, the following sat-
urated controller is considered:

trol law ii(s) = — = é,(s). Clearly, this corresponds to a regulator

D(s) = %m) - %é_\,(s) (12a)
u(t) = sat(v(t)) = sgn(v(r)) min(|v(z)|, up) (12b)

IV. CONTROLLER TRACKING CAPABILITY
ANALYSIS

First, let us show that all signal derivatives are related to the in-
puts’ rate through L, -stable operators. Combining (1) and (12a) so that
e, is eliminated, one gets the following relation between signals rate:

C(s) — A(s)
Als)

@Mm+%%w%wwmm

sv(s) = —
13)
This equation fits the feedback representation of Fig. 1 where:

&@=%%wm—mw> (14)

and y is the mapping: v—it. If the operator y is shown to lie in some
conic sector, absolute stability theorems [11] can be applied to the
feedback of Fig. 1, to get bounding on # and v (see Proposition 1).

Proposition 1 (Signal rate bounding). Let the polynomial C(s)
in (10) be chosen such that:

inf Re(M) >0 (15)

0<w<+oo A(jo)

Then, the feedback of Fig. 1 is L,-stable. Consequently, the
following mappings are all L, -stable:

VA R B R B N B T R
—u, -V, —Uu, -, —ey
w w w w w

Proof. See Appendix A.

Proposition 2 (Saturation error analysis). Consider the control
system composed of the system (1)—(2), subject to the saturation con-
straint (3), in closed-loop with the controller (12a)—(12b) where the
polynomial C(s) in (10) satisfies (15). Then, the mapping
'w u* — sat(u*)]—v — u is L, -stable.

Proof. See Appendix B.
The main result is now stated.

Theorem 1 (L, -tracking performance achievement). Consider the
closed-loop control system described in Proposition 2. Then,
the performance operator (6a), [y w u* —sat(u*)]—ey, is

C(s)— A(s)
_ A(s)

Fig. 1. Nonlinear feedback relating the signals vand it to the inputs’
derivatives y* and w.



actually L, -stable. Consequently, the controller (12a)—(12b) fea-
tures the L, -tracking performance described by (7a)—(7c¢).

Proof. Operating sRA on both sides of (4) gives, using (1):

RAsé(s) = RBe™""sii(s) — RAsy™ () (16)

Similarly, operating ABe™ ** on both sides of (12a) yields:
ABe™V(s) = ABe™*"ii(s) — RBe™*"sit(s) — BPe " é,(s) (17)

Adding (16) and (17) yields, using (10):

ACeéy(s) = ABe ™ (it(s) — v(s)) + RA (sw(s) — sy™(s)) (18)

Recall that the mapping [y* w  u* — sat(u*)]—v —uis L, -
stable (by Proposition 2). Also, both Be™ **/C and RA/AC are L, -

stable. Then, one immediately gets from (18) that the mapping
0w u* — sat(u*)]—ey is L, -stable. Theorem 1 is established.

y'(t) and y(t)

0 10 20 30 40 50
Time (s)
25
2
1.5

u(t) and v(t)
o

10 20 30 40 50
Time (s)

Fig. 2. Tracking performances of the saturated controller (12a-b), in
presence of a constraint-compatible reference, when
condition (15) is satisfied. Top: the system output y(¢) (solid),
reference signal y*(t) (dashed). For comparison purpose, the
system output )(7) obtained with the compensator (20) is also
shown (dotted). Bottom: the computed control v(f) (dashed)
and applied control u(?) (solid).

V. SIMULATION

The system (1)—(2) is simulated with MATLAB/SIMULINK
using the following numerical values:

A(s) = s +1.255 +0.25,B(s) = s + 0.7, (19)
=25, uy =1

Applying the control design of Section III to the example

(19), a controller like (12a)-(12b) is obtained by solving the

Bezout equation (10) using the following Hurwitz polynomials:

C(s) =s*+1.8554+0.71, A(s) = s> +2.25s + 1.125

It is readily checked that condition (15) is satis-
fied. No condition 1is imposed on A(s). Solving
equation (10) one gets P(s)=3.13s°+4.26 s+1.12 and

o~ (5+025)

R(s) = s +2.85 = 3.16e7 + 0233 (1= 1) — 103 (15535 )+
320(=7).

Fig. 2 shows that the tracking performance is quite
satisfactory. To better appreciate the performance of (12a)—(12b),

0.5

y'(t) and y(t)
o

0 10 20 30 40 50
Time (s)

u(t) and v(t)
o

0 10 20 30 40 50
Time (s)

Fig. 3. Tracking performances of the saturated controller (12a-b), in
presence of a constraint-compatible reference, when condition
(15) is not satisfied. Top: the system output y(f) (solid) and
reference signal y*(t) (dashed). Bottom: the computed control
w(#) (dashed) and the applied control u(7) (solid).



the following finite spectrum assignment compensator, not conve-
niently accounting for saturation, is considered:

_ Pl)
T SR(s)

v(s) () =3(s));  u(t) = sar(v(1)) (20)

The corresponding tracking performances are illustrated
by Fig. 2. Clearly, controller (12a)-(12b) performs much better
than (20). To check the importance of condition (15), let us
now take C(s)=s>+2s+100 and keep all remaining controller
parameters unchanged. It is easily checked that condition (15)
is no longer satisfied. The new closed-loop system responses
are plotted in Fig. 3 which shows a clear deterioration of track-
ing performance.

V1. CONCLUSION

Controlling input-delayed nonminimum-phase linear
systems (1)—(2) is considered in the presence of actuator
saturation (3) and output disturbance. The control design is
performed within the ring of pseudo-polynomials, using
(finite-spectrum) pole-placement design. It is formally shown
that the controller (12a)—(12b) enjoys the appealing L,/L,,
tracking features described by (7a)-(7c). This result is quite
powerful as it holds whatever the system inputs (reference,
disturbance) being constraint-compatible or not.

REFERENCES

1. Lu, G, and D. W. C. Ho, “Generalized quadratic
stabilization for discrete-time singular systems with
time-delay and nonlinear perturbation,” 4Asian J. Control,
Vol. 7, No. 3, pp. 211-222 (2005).

2. Li, P, and J. Lam, “Synchronization in networks
of genetics oscillators with delayed coupling,”
Asian J. Control, Vol. 13, No. 5, pp. 713-725
(2011).

3. Zaccarian, L., D. NeSic, and A. R. Teel, “L2 anti-
windup for linear dead-time systems,” Syst. Control
Lett., Vol. 54, pp. 1205-1217 (2005).

4. Ahmed, A., M. U. Khan, M. Rehan, and N. Igbal,
“Two-Controller Anti-Windup Design for Enlarging
Domain of Stability of Actuator Constrained State-
Delay Systems,” Asian J. Control, Vol. 15, No. 6,
pp- 1821-1832 (2013).

5. Fu, Y. M,, B. Zhou, and G. R. Duan, “Regional Stability
and Stabilization of Time-Delay Systems with Actuator
Saturation and Delay,” Asian J. Control, Vol. 16, No. 3,
pp. 845-855 (2013).

6. Zuo, Z., Y. Wang, and G. Zhang, “Stability analysis and
controller design for linear time delay systems with
actuator saturation,” Amer. Control Conf., New York
City, USA, pp. 5840-5844 (2007).

7. Zvuo, Z., D. W. C. Ho, Y. Wang, and C. Yang, “A new
approach for estimating the domain of attraction for

linear systems with time-varying delay and saturating
actuators,” Asian Control Conf., Hong Kong, China,
pp. 274-279 (2009).

8. Zhou, B., H. Gao, Z. Lin, and G. R. Duan, “Stabiliza-
tion of linear systems with distributed input delay and
input saturation,” Automatica, Vol. 48, No. 5, pp.
712-724 (2012).

9. Van Assche, V, J. F. Lafay, and J. J. Loiseau, “Feedback
realization of non-singular precompensators for linear
systems over a polynomial ring,” Int. J. Syst. Sci., Vol.
34, Issues 8 & 9, pp. 523528 (2003).

10. Loiseau, J. J. “Algebraic tools for the control and
stabilization of time-delay systems,” Ann. Rev. Control,
Vol. 24, pp. 135-149 (2000).

11. Khalil, H., Nonlinear Systems, Prentice Hall, Upper
Saddle River, NJ, USA (2003).

12. Gir, F, F. Z. Chaoui, E. Chater, and D. Ghani, “SISO
linear system control via saturating actuator: L2 track-
ing performance in presence of arbitrary shape inputs,”
Int. J. Control, Vol. 85, Issue 11, pp. 1694-1707
(2012).

13. Giri, F, V. Van Assche, A. Mahjoub, and F. Z. Chaoui,
“Output reference tracking of input-delayed systems in
presence of actuator saturation,” [FAC Symp. Syst.
Struct. Control, Ancona, Italy, pp. 261-266 (2010).

VII. APPENDIX A
7.1 Proof of Proposition 1

Let us show that the mapping y, in Fig. 1, belongs to the
sector [0 1], denoted S[0,1]. By definition, one has sat(x)=
sgn(x) min(|x|, uy,). Then, it is readily seen that:

d sat
0<% ) <1, weR (A)
dx

On the other hand, one gets from (12b):

i) = T2 (o)) i) (A2)

Multiplying both sides of (A2) by v(¢) gives, vxi =
dsat (y) v?. This, together with (Al), implies that 0 < vxir <
(»)* which proves that y € S[0,1]. Then, it follows applying
the circle criterion [11] that the feedback of Fig. 1 is L, -stable
provided that O<i(£1<f+ooRe((C(ja))fA(ja)))/A(ja))) > —1

which is nothing other than (15). Then, it follows from Fig. 1 that
the two mappings ; —V and d; — it are L, -stable. As S(s)/A(s) is as-
ymptotically stable, one has from (14) that, the mapping [y* w|—d,
is also L, -stable. Combining the above results, one gets that
[* w]—v and [y* w]|—u are both L, -stable. The rest of the proof
follows similar arguments.



VIII. APPENDIX B
8.1 Proof of Proposition 2

Using (4), one gets from (12a):

. . R . P
v(s)—u(s):—xsu(s)—xe\(s)
_i’o_bo i —ﬁ(s))+52(s)+53(s)+54(5)
0do

with 3a(s) = (”— - 5-:) P () + 2 (s), d3(s) = — Rsia(s)—
(Pif‘(/)\)feﬂ‘ (s[l (S) _ Sﬁ*(s)) , 34 _ (Av”i:“ B j::_z::) (ﬁ*(s) _ ﬁ(s)) In
the time domain, one gets:

v(t) —u() = Z—O (sar(u (1)) — u(1)) + do(1) (B1)

0

with s = ;—g (sat(u*) —u*) and d¢=0,+3J3+d4+Js, Where we
have used the fact that po=P(0) and pyby=4¢cy (obtained letting
s=0 in (10)). One can demonstrate that all mappings u — J;
(i=2...5) are L, -stable where:

1 5wt — sat(u')] (B2)

The detailed proof is presently provided for the mapping
1 — 0,. The result for the remaining mappings follows similarly.
By definition one has:

3a(s) = (3—3-5) Pl ity = 2 P i) 3

with  D(s)=bo(s" ™ "+a,_ 15" " *+...ta)) —aplb,_1s" " *+...+
by), where we have used the fact that:

bo(s” Fa, s +a1s+a0)
—ao(b,,,ls”’l + ...+ bis+ bo) = D(s)xs

In view of (2), it is checked that D(s)/apA(s) is strictly proper
and asymptotically stable (because A(s) is Hurwitz). Similarly, it is
checked that Pe™ *“/A is asymptotically stable. Then, it follows
from (B3) that the mapping i*—J, is L, -stable. We know by
Proposition 1 that the mapping [* w]”—ii* is L, -stable. Then,
one gets that u — J, is L, -stable. The rest of the proof consists
in showing that:

[v(t) — u(e)| < |65(0)], forall ¢ (B4)

It is clear that (B4) holds when |v(f)| <uy, because one
then has w(f) —u(t)=0, due to (12b). So let us prove that
(B4) holds in the case where [v(f)|>u,,. As A and C are
Hurwitz, their coefficients ay and ¢, are positive (by Routh-
Hurwitz criterion). Furthermore, as |v(f)| > u,, one has from
(12b) that [u(#)| = uprsgn(v(f)) which implies that [u(f)| > |sat(u*(?))|.
Then, multiplying both sides of (B1) by sgn((¢)) and using the fact
that sgn(v(¢)) = sgn(u(?)), one gets for all #

[v(e) = (t)| = =2 (sar(u’ (1)) sgn(v(r)) — |u(2)])

ag
+36 (1) sgn(v(r)) < d6(r) sgn(v(r))

This implies, on one hand, that d¢(¢)sgn(v(¢)) is nonnegative
and, on the other hand, that [v(7) — u(?)| < |ds(f)|. Hence, inequality
(B4) does hold which proves Proposition 2.
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