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Abstract. In the data mining field many clustering methods have been
proposed, yet standard versions do not take into account uncertain databases.
This paper deals with a new approach to cluster uncertain data by using
a hierarchical clustering defined within the belief function framework.
The main objective of the belief hierarchical clustering is to allow an
object to belong to one or several clusters. To each belonging, a degree
of belief is associated, and clusters are combined based on the pignistic
properties. Experiments with real uncertain data show that our proposed
method can be considered as a propitious tool.
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1 Introduction

Due to the increase of imperfect data, the process of decision making is becoming
harder. In order to face this, the data analysis is being applied in various fields.

Clustering is mostly used in data mining and aims at grouping a set of similar
objects into clusters. In this context, many clustering algorithms exist and are
categorized into two main families:
The first family involves the partitioning methods based on density such as k-
means algorithm [6] that is widely used thanks to its convergence speed. It par-
titions the data into k clusters represented by their centers. The second family
includes the hierarchical clustering methods such as the top-down and the Hi-
erarchical Ascendant Clustering (HAC) [5]. This latter consists on constructing
clusters recursively by partitioning the objects in a bottom-up way. This process
leads to good result visualizations. Nevertheless, it has a non-linear complexity.

All these standard methods deal with certain and precise data. Thus, in
order to facilitate the decision making, it would be more appropriate to handle
uncertain data. Here, we need a soft clustering process that will take into account
the possibility that objects belong to more than one cluster.

In such a case, several methods have been established. Among them, the
Fuzzy C-Means [1] which consists in assigning a membership to each data point
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corresponding to the cluster center, and the weights minimizing the total weighted
mean-square error. This method constantly converges. Patently, Evidential c-
Means (ECM) [3], [7] is deemed to be a very fateful method. It enhances the
FCM and generates a credal partition from attribute data. This method deals
with the clustering of object data. Accordingly, the belief k-Modes method [4] is
a popular method, which builds K groups characterized by uncertain attribute
values and provides a classification of new instances. Schubert has also found a
clustering algorithm [8] which uses the mass on the empty set to build a classifier.

Our objective in this paper is to develop a belief hierarchical clustering
method, in order to ensure the membership of objects in several clusters, and to
handle the uncertainty in data under the belief function framework.

This remainder is organized as follows: in the next section we review the
ascendant hierarchical clustering, its concepts and its characteristics. In section
3, we recall some of the basic concepts of belief function theory. Our method
is described in section 4 and we evaluate its performance on a real data set in
section 5. Finally, Section 6 is a conclusion for the whole paper.

2 Ascendant hierarchical clustering

This method consists on agglomerating the close clusters in order to have finally
one cluster containing all the objects xj (where j = 1, .., N).
Let’s consider PK = {C1, ..., CK} the set of clusters. IfK = N , C1 = x1, ..., CN =
xN . Thereafter, throughout all the steps of clustering, we will move from a par-
tition PK to a partition PK−1. The result generated is described by a hierar-
chical clustering tree (dendrogram), where the nodes represent the successive
fusions and the height of the nodes represents the value of the distance between
two objects which gives a concrete meaning to the level of nodes conscripted
as ”indexed hierarchy”. This latter is usually indexed by the values of the dis-
tances (or dissimilarity) for each aggregation step. The indexed hierarchy can
be seen as a set with an ultrametric distance d which satisfies these properties:
i) x = y ⇐⇒ d(x, y) = 0.
ii) d(x, y) = d(y, x).
iii) d(x, y) ≤ d(x, z) + d(y, z), ∀x, y, z ∈ IR.

The algorithm is as follows:

– Initialisation: the initial clusters are the N-singletons. We compute their
dissimilarity matrix.

– Iterate these two steps until the aggregation turns into a single cluster:
• Combine the two most similar (closest) elements (clusters) from the se-
lected groups according to some distance rules.

• Update the matrix distance by replacing the two grouped elements by
the new one and calculate its distance from each of the other classes.

Once all these steps completed, we do not recover a partition of K clusters,
but a partition of K − 1 clusters. Hence, we had to point out the aggregation
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criterion (distance rules) between two points and between two clusters. We can
use the Euclidian distance between N objects x defined in a space IR. Different
distances can be considered between two clusters: we can consider the minimum
as follows:
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with j, j′ = 1, ..., i. The maximum can also be considered, however, the minimum
and maximum distances create compact clusters but sensitive to ”outliers”. The
average can also be used, but the most used method is Ward’s method, using
Huygens formula to compute this:
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3 Basis on the theory of belief functions

In this Section, we briefly review the main concepts that will be used in our
method that underlies the theory of belief functions [9] as interpreted in the
Transferable Belief Model (TBM) [10]. Let’s suppose that the frame of discern-
ment is Ω = {ω1, ω2, ..., ω3}. Ω is a finite set that reflects a state of partial
knowledge that can be represented by a basis belief assignment defined as:

m : 2Ω → [0, 1]∑
A⊆Ω

m(A) = 1 (4)

The value m(A) is named a basic belief mass (bbm) of A. The subset A ∈ 2Ω is
called focal element if m(A) > 0. One of the important rules in the belief theory
is the conjunctive rule which consists on combining two basic belief assignments
m1 and m2 induced from two distinct and reliable information sources defined
as:

m1 ∩©m2(C) =
∑

A∩B=C

m1(A) ·m2(B), ∀C ⊆ Ω (5)

The Dempster rule is the normalized conjunctive rule:

m1 ⊕m2(C) =
m1 ∩©m2(C)

1−m1 ∩©m2(∅)
, ∀C ⊆ Ω (6)

In order to ensure the decision making, beliefs are transformed into proba-
bility measures recorded BetP, and defined as follows [10]:

BetP(A) =
∑

B⊆Ω

|A ∩B |

| B |

m(B)

(1−m(∅))
, ∀A ∈ Ω (7)
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4 Belief hierarchical clustering

In order to set down a way to develop a belief hierarchical clustering, we choose
to work on different levels: on one hand, the object level, on the other hand, the
cluster level. At the beginning, for N objects we have, the frame of discernment is
Ω = {x1, ..., xN} and for each object belonging to one cluster, a degree of belief
is assigned. Let PN be the partition of N objects. Hence, we define a mass
function for each object xi, inspired from the k-nearest neighbors [2] method
which is defined as follows:

mΩi

i (xj) = αe−γd2(xi,xj)

mΩi

i (Ωi) = 1−
∑

mΩi

i (xj)
(8)

where i 6= j, α and γ are two parameters we can optimize [11], d can be con-
sidered as the Euclidean distance, and the frame of discernment is given by
Ωi = {x1, ..., xN} \ {xi}.

In order to move from the partition of N objects to a partition of N − 1
objects we have to find both nearest objects (xi, xj) to form a cluster. Even-
tually, the partition of N − 1 clusters will be given by PN−1 = {(xi, xj), xk}
where k = 1, ..., N\ {i, j}. The nearest objects are found considering the pignis-
tic probability, defined on the frame Ωi, of each object xi, where we proceed the
comparison by pairs, by computing firstly the pignistic for each object, and then
we continue the process using argmax. The nearest objects are chosen using the
maximum of the pignistic values between pairs of objects, and we will compute
the product pair one by one.

(xi, xj) = argmax
xi,xj∈PN

BetPΩi

i (xj) ∗ BetP
Ωj

j (xi) (9)

Then, this first couple of objects is a cluster. Now consider that we have a
partition PK of K clusters {C1, . . . , CK}. In order to find the best partition
PK−1 of K−1 clusters, we have to find the best couple of clusters to be merged.
First, if we consider one of the classical distances d (single link, complete link,
average, etc), presented in section 2, between the clusters, we delineate a mass
function, defined within the frame Ωi for each cluster Ci ∈ PK with Ci 6= Cj

by:

mΩi

i (Cj) = αe−γd2(Ci,Cj) (10)

mΩi

i (Ωi) = 1−
∑

mΩi

i (Cj) (11)

where Ωi = {C1, . . . , CK} \ {Ci}. Then, both clusters to merge are given by:

(Ci, Cj) = argmax
Ci,Cj∈PK

BetPΩi(Cj) ∗ BetP
Ωj (Ci) (12)

and the partition PK−1 is made from the new cluster (Ci, Cj) and all the other
clusters of PK . The point by doing so is to prove that if we maximize the
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degree of probability we will have the couple of clusters to combine. Of course,
this approach will give exactly the same partitions than the classical ascendant
hierarchical clustering, but the dendrogram can be built from BetP and the best
partition (i.e. the number of clusters) can be preferred to find. The indexed
hierarchy will be indexed by the sum of BetP which will lead to more precise
and specific results according to the dissimilarity between objects and therefore
will facilitate our process.

Hereafter, we define another way to build the partition PK−1. For each initial
object xi to classify, it exists a cluster of PK such as xi ∈ Ck. We consider the
frame of discernment Ωi = {C1, . . . , CK} \ {Ck}, m, which describes the degree
that the two clusters could be merged, can be noted mΩand we define the mass
function:

mΩi

i (Ckj
) =

∏

xj∈Ckj

αe−γd2(xi,xj) (13)

mΩi

i (Ωi) = 1−
∑

xj∈Ckj

mΩi

i (Ckj
) (14)

In order to find a mass function for each cluster Ci of PK , we combine all
the mass functions given by all objects of Ci by a combination rule such as
the Dempster rule of combination given by equation (6). Then, to merge both
clusters we use the equation (12) as before. The sum of the pignisitic probabilities
will be the index of the dendrogram, called BetP index.

5 Experimentations

Experiments were first applied on diamond data set composed of twelve objects
as describe in Figure 1.a and analyzed in [7]. The dendrograms for both classical
and Belief Hierarchical Clustering (BHC) are represented by Figures 1.b and 1.c.
The object 12 is well considered as an outlier with both approaches. With the
belief hierarchical clustering, this object is clearly different, thanks to the pig-
nistic probability. For HAC, the distance between object 12 and other objects
is small, however, for BHC, there is a big gap between object 12 and others.
This points out that our method is better for detecting outliers. If the objects
5 and 6 are associated to 1, 2, 3 and 4 with the classical hierarchical clustering,
with BHC these points are more identified as different. This synthetic data set
is special because of the equidistance of the points and there is no uncertainty.
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a. Diamond data set

b. Hierarchical clustering c. Belief hierarchical clustering

Fig. 1. Clustering results for Diamond data set.

We continue our experiments with a well-known data set, Iris data set, which
is composed of flowers from four types of species of Iris described by sepal length,
sepal width, petal length, and petal width. The data set contains three clusters
known to have a significant overlap.

In order to reduce the complexity and present distinctly the dendrogram, we
first used the k-means method to get initial few clusters for our algorithm. It is
not necessary to apply this method if the number of objects is not high.

Several experiments have been used with several number of clusters. We
present in Figure 2 the obtained dendrograms for 10 and 13 clusters. We notice
different combinations between the nearest clusters for both classical and belief
hierarchical clustering. The best situation for BHC is obtained with the pignistic
equal to 0.5 because it indicates that the data set is composed of three significant
clusters which reflects the real situation. For the classical hierarchical clustering
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a. Kinit = 10 for HAC b. Kinit = 13 for HAC

c. Kinit = 10 for BHC d. Kinit = 13 for BHC

Fig. 2. Clustering results on IRIS data set for both hierarchical (HAC) (Fig. a and b)
and belief hierarchical (BHC) (Fig. c and d) clustering (Kinit is the cluster number by
k-means first).

the results are not so obvious. Indeed, for HAC, it is difficult to decide for the
optimum cluster number because of the use of the euclidean distance and as seen
in Figure 2.c it indistinguishable in terms of the y-value. However, for BHC, it
is more easy to do this due to the use of the pignistic probability.

In order to evaluate the performance of our method, we use some of the most
popular measures: precision, recall and Rand Index (RI). The results for both
BHC and HAC are summarized in Table 1. The first three columns are for BHC,
while the others are for HAC. In fact, we suppose that Fc represents the final
number of clusters and we start with Fc = 2 until Fc = 6. We fixed the value
of kinit at 13. We note that for Fc = 2 the precision is low while the recall is
of high value, and that when we have a high cluster number (Fc = 5 or 6), the
precision will be high but the recall will be relatively low. Thus, we note that for
the same number of final clusters (e.g. Fc = 4), our method is better in terms of
precision, recall and RI.
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Table 1. Evaluation results

BHC HAC
Precision Recall RI Precision Recall RI

Fc = 2 0.5951 1.0000 0.7763 0.5951 1.0000 0.7763
Fc = 3 0.8011 0.8438 0.8797 0.6079 0.9282 0.7795
Fc = 4 0.9506 0.8275 0.9291 0.8183 0.7230 0.8561
Fc = 5 0.8523 0.6063 0.8360 0.8523 0.6063 0.8360
Fc = 6 0.9433 0.5524 0.8419 0.8916 0.5818 0.8392

Tests are also performed to a third data base, Congressional Voting Records
Data Set. The results presented in Figure 3 show that the pignistic probability
value increased at each level, having thereby, a more homogeneous partition.
We notice different combinations, between the nearest clusters, that are not the
same within the two methods compared. For example, cluster 9 is associated to
cluster 10 and then to 6 with HAC, but, with BHC it is associated to cluster 4
and then to 10. Although, throughout the BHC dendrograms shown in Figure 3.c
and Figure 3.d, the best situation indicating the optimum number of clusters can
be clearly obtained. This easy way is due to the use of the pignistic probability.

a. Kinit = 10 for HAC b. Kinit = 13 for HAC

c. Kinit = 10 for BHC d. Kinit = 13 for BHC

Fig. 3. Clustering results on Congressional Voting Records Data Set for both hierar-
chical and belief hierarchical clustering.
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For this data set, we notice that for Fc = 2 and 3, the precision is low while the
recall is high. However, with the increasing of our cluster number, we notice that
BHC provides a better results. In fact, for Fc = 3, 4, 5 and 6 the precision and
RI values relative to BHC are higher then the precision and RI values relative
to HAC, which confirmed the efficiency of our approach which is better in terms
of precision and RI.

Table 2. Evaluation results for Congressional Voting Records Data Set

BHC HAC
Precision Recall RI Precision Recall RI

Fc = 2 0.3873 0.8177 0.5146 0.5951 1.0000 0.7763
Fc = 3 0.7313 0.8190 0.8415 0.6288 0.8759 0.7892
Fc = 4 0.8701 0.6833 0.8623 0.7887 0.7091 0.8419
Fc = 5 0.8670 0.6103 0.8411 0.7551 0.6729 0.8207
Fc = 6 0.9731 0.6005 0.8632 0.8526 0.6014 0.8347

6 Conclusion

Ultimately, we have introduced a new clustering method using the hierarchical
paradigm in order to implement uncertainty in the belief function framework.
This method puts the emphasis on the fact that one object may belong to several
clusters. It seeks to merge clusters based on its pignistic probability. Our method
was proved on data sets and the corresponding results have clearly shown its
efficiency. The algorithm complexity has revealed itself as the usual problem
of the belief function theory. Our future work will be devoted to focus on this
peculiar problem.
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