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Abstract. We consider in this paper the Full Dispersion Kadomtsev-Petviashvili

Equation (FDKP) introduced in [19] in order to overcome some shortcomings
of the classical KP equation. We investigate its mathematical properties, em-
phasizing the differences with the Kadomtsev-Petviashvili equation and their
relevance to the approximation of water waves. We also present some numerical
simulations.

1. Introduction. We all remember Professor Seiji Ukäı for his fundamental re-
sults in the theory of kinetic equations but he also made major contributions in
other domains of nonlinear equations. In particular he obtained the first significant
result ([30]) on the Cauchy problem associated to the Kadomtsev-Petviashvili (KP)
equations (we have normalized all coefficients to one)

(ut + ux + uux + uxxx)x ± uyy = 0, (1)

or, in the “integrated” form

ut + ux + uux + uxxx ± ∂−1
x uyy = 0, (2)

where the + sign corresponds to the KP II equation and the − sign to the KP I
equation (strong surface tension).

The presence of the nonlocal operator ∂−1
x ∂2

y induces an artificial and unphysical

(with respect to the water waves problem for instance) zero-mass constraint 1 and
a singularity at the x frequency ξ1 = 0 which makes the KP equation a poor
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1This singular operator arises when approximating the dispersion relation ω(ξ1, ξ2) =
√

ξ21 + ξ22

of the linear wave equation in the regime |ξ1| ≪ 1, |ξ2| ≪ 1,
∣

∣

∣

ξ2
ξ1

∣

∣
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≪ 1 by ±

(

ξ1 + 1
2

ξ22
ξ1

)

, see [15].
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2 DAVID LANNES AND JEAN-CLAUDE SAUT

asymptotic model in term of precision (see [20, 21]). It does not allow in particular
to reach the optimal error estimates of the Boussinesq-KdV regime (see [5]).

We refer to [26] for a discussion of the “constraint problem” for the KP type
equations and to [16] for a survey of mathematical results and numerical simulations
on KP type equations.

In order to overcome the shortcomings of the KP equation, a five parameters
family of weakly transverse Boussinesq systems was introduced in the same regime
as the KP one in [21] (see also [24] for a generalization in presence of surface
tension). Those systems do not involve any zero mass constraint and allow to
derive the optimal error estimates with the full water waves system. Furthermore
the dispersion of the linearized system can match well the full water waves system
one by appropriate choices of the parameters.

Another approach was followed by D. Lannes ([19]) who introduced the following
Full Dispersion Kadomtsev-Petviashvili equation (FDKP) for purely gravity surface
waves in the small amplitude, long wave, weakly transverse regime,

∂tu+ cWW (
√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2ux + µ
3

2
uux = 0, (3)

where cWW (
√
µk) is the phase velocity of the linearized water waves system, namely

cWW (
√
µk) =

(
tanh

√
µk

√
µk

)1/2

and

|Dµ| =
√
D2

1 + µD2
2, D1 =

1

i
∂x, D2 =

1

i
∂y.

Denoting by h a typical depth of the fluid layer, a a typical amplitude of the wave,
λx and λy typical wave lengths in x and y respectively, the relevant regime here is
when

µ ∼ a

h
∼

(
λx

λy

)2

∼
(

h

λx

)2

≪ 1.

When adding surface tension effects, one has to replace (3) by

∂tu+ c̃WW (
√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2ux + µ
3

2
uux = 0, (4)

with

c̃WW (
√
µk) = (1 + βµk2)

1
2

(
tanh

√
µk

√
µk

)1/2

,

where β > 0 is a dimensionless coefficient measuring the surface tension effects,

β =
σ

ρgh2
,

where σ is the surface tension coefficient (σ = 7.10−3N · m−1 for the air-water
interface), g the acceleration of gravity, and ρ the density of the fluid.

One advantage of (3) on the classical KP equations is to enlarge the domain of
validity of the model and to lighten the zero-mass constraint in x. Note that the
linear dispersion relation matches exactly the dispersion relation of full the water
waves system (hence the name “full dispersion”); in particular, the FDKP equation
does not suffer of the very bad fit of the KP dispersion with that of the water waves
system for low longitudinal wave numbers (see Figure 1).
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Figure 1. Dispersion relation of the water waves equations (blue)
and of the KP equation (red) in absence of surface tension.

One recovers formally the classical KP II and KP I equations from (3) and (4)
respectively by keeping the first order term in the expansions with respect to µ of
the nonlocal operators occurring in (3) and (4). This will be made precise later on.

Note also that for waves depending only on x, (3) reduces to the so-called
Whitham equation ([33, 34])

∂tu+

(
tanh(

√
µ|D1|)√

µ|D1|

)1/2

ux + µ
3

2
uux = 0, (5)

and (4) reduces to the ”modified” Whitham equation

∂tu+ (1 + βµD2
1)

1/2

(
tanh(

√
µ|D1|)√

µ|D1|

)1/2

ux + µ
3

2
uux = 0. (6)

Remark 1. Equation (6) displays interesting mathematical features. Some of them
concerning the solitary waves and the Cauchy problem will be addressed in Section
5. For small frequencies, it is approximated by the KdV equation

∂tu+ ux +
µ

2
D2

1(β − 1

3
)ux + µ

3

2
uux = 0.

For large frequencies (6) can be seen as a perturbation of

∂tu+ β1/2µ1/4|D1|1/2ux + µ
3

2
uux = 0,

which, up to a rescaling, is the “L2− critical dispersive Burgers equation” (see [22])

∂tu+ |D1|1/2ux + uux = 0.

The aim of the present paper is to investigate some mathematical properties of
the FDKP equation (3) and to make relevant comparisons with the Kadomtsev-
Petviashvili equation, in particular as models for the propagation of water waves.
We also provide numerical simulations to illustrate our results and to suggest further
studies.

1.1. Notations. The norm in L2 based Sobolev space Hs will be denoted ||u||s.
The norm in Lebesgue spaces Lp will be denoted |u|p.
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2. The linearized equation. Let us study first the linearized equation, that is
for purely gravity waves

∂tu+ P(D1, D2)u = 0, (7)

where P = P(D1, D2) is the Fourier multiplier defined as

P(D1, D2) = cWW (
√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2∂x.

The symbol of p(ξ1, ξ2) of P can be written

p(ξ1, ξ2) =
i

µ1/4

(
tanh[

√
µ(ξ21 + µξ22)

1
2 ]
) 1

2

(ξ21 + µξ22)
1
4 sgn ξ1; (8)

since it is real valued, it is clear that the linearized equation defines unitary group
in all Sobolev spaces Hs(R2), s ∈ R.

Although we will not use them in the present paper, the derivation of dispersive
estimates (Strichartz estimates) for the linearized FDKP equations is an interesting
issue. For the KP equations (1) and (2), Strichartz estimates can be derived simply
by an estimate on the oscillatory integral

I(x, y, t) =

∫

R2

e
it

(

ξ31±
ξ2
2

ξ1

)

+i(xξ1+yξ2)
dξ1ξ2

because it can be reduced to a one-dimensional integral (see [28, 26]). This argument
can be generalized if the dispersive term ∂3

x is replaced for instance by ∂x|D1|α,
α > 1/2, by considering the oscillatory integral

I(x, y, t) =

∫

R2

e
it

(

ξ1|ξ1|α)+
ξ2
2

ξ1

)

+i(xξ1+yξ2)
dξ1dξ2.

This reduction to the one-dimensional case does not work for the linearized FDKP
equation (7). Another difficulty comes from the non homogeneity of the symbols,
which forces to treat differently high and low frequencies, as for instance in [14]
where dispersive estimates are derived for a class of wave equations

i∂tu+ φ
(√

−∆
)
u = 0, (9)

under suitable assumptions on the function φ. Note however that the linearized
FDGP equations does not belong to the class (9) due to the presence of the term
sgn ξ1 which makes the symbol not radial and discontinuous.

Another interesting aspect of the linearized FDKP equation is the singularity of
its symbol at ξ1 = 0. Indeed, due to the presence of sgn(ξ1) in (8), the symbol
p(ξ1, ξ2) is not continuous at the origin. It remains however bounded, which is not
the case for the symbol of the linear KP equation2,

pKP (ξ1, ξ2) = i
(
ξ1 +

µ

2

ξ22
ξ1

− µ

6
ξ31

)
,

which grows to infinity as ξ1 → 0 if ξ2 6= 0 (see Figure 1 for a graphical illustration).
As noted in [16], the linear KP cannot preserve strong decay properties3 of the initial

2Contrary to (1) and (2), coefficients have not been rescaled to one here.
3The same property also holds for the nonlinear flow.
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data due to this strong singularity. Solutions to the linear KP equations can indeed
be written under the form

û(ξ1, ξ2, t) = û0(ξ1, ξ2) exp (−itpKP (ξ1, ξ2)) ;

considering for instance a gaussian initial data, one can check that the solution
cannot decay faster than 1/(x2 + y2) at infinity. In fact the Riemann-Lebesgue
theorem implies that u(·, t) /∈ L1(R2) for any t 6= 0. The same conclusion holds
of course even if u0 satisfies the zero-mass constraint, e.g. u0 ∈ ∂xS(R2) and also
for the nonlinear problem as shows the Duhamel representation of the solution, see
[16].

A similar obstruction holds for the linear FDKP equations4. Also, the localized
solitary waves solutions, if they exist (which is not unlikely for capillary waves) can-
not decay fast at infinity. We present in Section 6.3 several numerical computations
suggesting the existence of “lump-like” solitary waves for the FDKP equation with
strong surface tension.

We now look at the asymptotic behavior of the symbols for large and small
frequencies. Since for positive z′s,

tanh z = 1 +R(z), with |R(z)| = | − e−z

cosh z
| ≤ e−z,

one can write p(ξ1, ξ2) as

p(ξ1, ξ2) = i sign ξ1
1

µ1/4
(ξ21 + µξ22)

1/4 +Q(ξ1, ξ2),

where |Q(ξ1, ξ2)| decays fast to zero as |ξ| → +∞, namely, setting ξµ = (ξ1,
√
µξ2),

Q(ξ1, ξ2) =
i sign ξ1
2µ1/4

|ξµ|1/2
[
R(

√
µ|ξµ|) +O(R(

√
µ|ξµ|)2)

]
.

In other words one has

P(D1, D2) =
1

µ1/4
H(−∆µ)1/4 +Q,

where H is the Hilbert transform in x1, ∆
µ = ∂2

x + µ∂2
y , and Q is a smoothing

operator (of order −∞).
On the other hand, P behaves as H(−∆µ)1/2 for small frequencies, which is

obviously different than the high-frequency behavior. It is worth noting that this
low-frequency behavior still contains the “∂−1

x ∂2
y term” typical of the KP I/II equa-

tions. Looking at the symbols, one has indeed

sgn(ξ1)
√
ξ21 + µξ22 = iξ1(1 + µ

ξ22
ξ21

)1/2

= iξ1 + iµ
ξ22
2ξ1

+O(µ2),

4Note however that if the initial condition satisfies the zero mass constraint, say, that it belongs
to ∂xS(Rd) with S(Rd) the Schwartz class, then the Fourier transform of the solution to the
linearized equation belongs to H1 ∩ W 1,∞(R2), while this is not the case for the KP equation.
Similarly, the time derivatives of the solution all belong to S(Rd), which is not the case with the
KP equation.



6 DAVID LANNES AND JEAN-CLAUDE SAUT

so that the “low frequency” linear FDKP equation is formally approximated at first
order in µ by the equation5

∂tu+ ∂xu+ µ
1

2
∂−1
x ∂2

yu = 0. (10)

The “∂−1
x ∂2

y term” term of the KP I/II equations is therefore a generic term in the
sense that it appears in many other contexts, when weakly transverse waves are
considered (see for instance [4, 10]). It is however not the only possible context of
occurrence of such a term; the equation (10) is for instance known as the linear
diffractive pulse equation in optics, where it is used as an alternative model to the
linear Schrödinger equation to describe the evolution of ultra short laser pulses [2].

The equation (10) differs from the linear KP equation because the third order
derivative in x is missing. In order to recover the linear KP equation, one has to
make a formal expansion with respect to µ on the full symbol p(ξ1, ξ2) of the linear
FDKP equation (and not only on its low or high frequency components). One
computes

p(ξ1, ξ2) = i

(
ξ1 +

µ

2

ξ22
ξ1

− µ

6
ξ31

)
+O(µ2)

= pKP (ξ1, ξ2) +O(µ2).

Dropping the O(µ2) terms, the corresponding equation is therefore the linear KP
equation

∂tu+ ∂xu+
µ

2
∂−1
x ∂2

yu+
µ

6
∂3
xu = 0. (11)

Remark 2. In presence of surface tension, the linear FDKP equation becomes

∂tu+ P̃(D1, D2)u = 0, (12)

where the symbol of the Fourier multiplier P̃(D1, D2) is given by

p̃(ξ1, ξ2) =
(
1 + βµ(ξ21 + µξ22)

)1/2
p(ξ1, ξ2).

All the results of this section can easily be extended to this equation. In particular,
one has the formal expansion

p̃(ξ1, ξ2) = i

(
ξ1 +

µ

2

ξ22
ξ1

− µ

6
(1− 3β)ξ31

)
+O(µ2)

and, in presence of surface tension, one recovers instead of (23) the following linear
KP equation

∂tu+ ∂xu+
µ

2
∂−1
x ∂2

yu+
µ

6
(1− 3β)∂3

xu = 0, (13)

which is of KP II type if β < 1/3 (small surface tension), and of KP I type if β > 1/3
(strong surface tension).

Remark 3. The expansion p = pKP + O(µ2) in only formal in the above com-
putations. Due to the singularity in 1/ξ1, it can only be made rigorous when this
singularity is controlled by a cancellation of the solution u at low frequencies in x,
or equivalently, under a zero mass constraint, typically, u ∈ ∂xH

s(R2). Even under
such a condition, the convergence is very poor and this is why the convergence rate
of the KP equation as a model for the propagation of weakly transverse water waves
is very slow: it is of order o(1) as µ → 0, while one has a O(µ2t) convergence rate

5The same analysis on the “high frequency” linear FDKP equation mentioned above leads to

a completely different equation of no specific interest.
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for the KdV approximation for instance [3], which gives O(µ) on the relevant time
scales of order O(µ−1). Weakly transverse Boussinesq models do not require the
asymptotic expansion leading to the 1/ξ1 singularity and have therefore a good con-
vergence rate also [21, 19]. For the same reasons, the FDKP is likely to be a much
more precise approximation than the KP equation to describe weakly transverse
waves.

3. The nonlinear problem. We first observe that, as for the classical KP I/II
equations, the L2 norm is formally conserved by the flow of (3) and so is the
Hamiltonian

Hµ(u) =
1

2

∫

R2

|Hµ(D)u|2 + µ

4

∫

R2

u3, (14)

where

Hµ(D) =

(
tanh(

√
µ|Dµ|)

√
µ|Dµ|

)1/4 (
1 + µ

D2
2

D2
1

)1/4

=

(
tanh(

√
µ|Dµ|)

√
µ

)1/4 |Dµ|1/4
|D1|1/2

;

the conservation of Hµ(u) is indeed a direct consequence of the fact that (3) can be
written under the form

∂tu+ ∂x(δHµ(u)) = 0, (15)

where δHµ(u) denotes the variational derivative of Hµ(u).
Observe that unlike the Cauchy problem, the Hamiltonian for the FDKP equation

requires a zero mass constraint to be well defined. This constraint however is weaker
than for the classical KP equations6 (see §4 for more comments on these aspects).
Namely the “energy space” associated to the FDKP equations is

E = {u ∈ L2(R2) ∩ L3(R2), |Dµ|1/4|D1|−1/2u, |D2|1/2|D1|−1/2u ∈ L2(R2)}.
Again, one finds the standard KP Hamiltonian by expanding formally Hµ(D) in
powers of µ, namely

Hµ(u) = HKP (u) +O(µ)

with

HKP (u) =
1

2

∫

R2

u2 +
µ

4

∫

R2

[|∂y∂−1
x u|2 − 1

3
|∂xu|2 + u3]dxdy.

Replacing Hµ(u) by HKP (u) in (15), the resulting equation is the KP I equation

∂tu+ ∂xu+
µ

2
∂−1
x ∂2

yu+
µ

6
∂3
xu+ µ

3

2
uux = 0. (16)

Remark 4. Both the FDKP equation (3) and the KP equation (16) can be seen
as dispersive and nonlinear perturbations of the transport equation ∂tu + ∂xu = 0
when µ is small. The influence of these perturbations are better seen (especially
in the numerical computations) if we get rid of the transport term and rescale the
time. More precisely, defining u as

u(t, x, y) = u(µt, x− t, y),

the FDKP and KP equations become respectively

∂tu+
1

µ

(
cWW (

√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2 − 1
)
ux +

3

2
uux = 0. (17)

6In the sense that the order of vanishing of the Fourier transform at the frequency ξ1 = 0 is

weaker than the corresponding one for the KP equations.
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and

∂tu+
1

2
∂−1
x ∂2

yu+
1

6
∂3
xu+

3

2
uux = 0. (18)

Our numerical comparisons of the FDKP and KP equations will be made on these
two equations.

Remark 5. In presence of surface tension, the Hamiltonian H̃µ(u) is found by
replacing Hµ(D) in the Hamiltonian Hµ(u) by

H̃µ(D) =

(
(1 + βµ|Dµ|2) tanh(√µ|Dµ|)

√
µ|Dµ|

)1/4 (
1 + µ

D2
2

D2
1

)1/4

=

(
(1 + βµ|Dµ|2) tanh(√µ|Dµ|)

√
µ

)1/4 |Dµ|1/4
|D1|1/2

.

The corresponding energy space is

Ẽ = {u ∈ L2(R2) ∩ L3(R2),

|D1|1/4u, |D2|3/4|D1|−1/2u, |D2|1/2|D1|−1/2 ∈ L2(R2)}
and the KP I (if β > 1/3) or KP II (if β < 1/3) Hamiltonian is found by a formal
expansion with respect to µ,

H̃KP (u) =
1

2

∫

Rd

u2 +
µ

4

∫

R2

[|∂y∂−1
x u|2 + (β − 1

3
)|∂xu|2 + u3]dxdy.

The corresponding evolution equation is

∂tu+ ∂xu+
µ

2
∂−1
x ∂2

yu+
µ

6
(1− 3β)∂3

xu+ µ
3

2
uux = 0.

Since (3) and (4) are skew-adjoint perturbations of the Burgers equation, one
establishes by standard methods the following result which is valid for both gravity
and capillary-gravity waves but of course does not take advantage of the dispersion.

Proposition 1. Let s > 2 and u0 ∈ Hs(R2). There exist T (||u0||s, µ) = O( 1µ )

and a unique solution u ∈ C([0, T (||u0||s, µ)], Hs(R2)) of (3) with initial data u0.
Moreover,

|u(·, t)|2 = |u0|2, t ∈ [0, T (||u0||s, µ)].
Remark 6. It is very unlikely, at least in the case of gravity waves, that one could
lower the exponent s by lack of strong dispersive effects in the FDKP equation7.
We recall that the KP II equation is locally (thus globally) well-posed for data in
L2(R2) ([7]) and even in a larger space ([29]).
On the other hand, a lifespan of order 0( 1µ ) is what is needed to obtain optimal

error estimates with the full water waves system (see [19]).

If u0 satisfies furthermore an appropriate constraint, u(·, t) satisfies the constraint
on [0, T ] and the Hamiltonian is conserved. More precisely,

Proposition 2. Assume that s > 2 and u0 ∈ Hs(R2)∩E (resp. u0 ∈ Hs(R2)∩ Ẽ).

Then the solution u in Proposition 1 remains in E (resp. Ẽ) on [0, T ] and the
Hamiltonian is conserved on [0, T ].

7Contrary to the one-dimensional case, see the final Section.
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Proof. We restrict to the pure gravity waves case. Denoting by SFD(t) the linear
FDKP group (see Section 4), we apply the operator |Dµ|1/4|D1|−1/2 to the Duhamel
representation of u

|Dµ|1/4|D1|−1/2u(t) =SFD(t)|Dµ|1/4|D1|−1/2u0

+
3µ

4
∂x|Dµ|1/4|D1|−1/2

∫ t

0

SFD(t− s)u2(s)ds.

The free term belongs to L2 by assumption. On the other hand, ∂x|Dµ|1/4|D1|−1/2u2 ∈
Hs−3/4(R2) ⊂ L2(R2), and we have persistency of the constraint |Dµ|1/4|D1|−1/2u ∈
L2. One proceeds similarly for the constraint |D2|1/2|D1|−1/2u ∈ L2

In order to prove the conservation of the Hamiltonian we follow the approach of
[28, 25] for the KP equation.

Let Y s = {f ∈ Hs(R2)∩E; |Dµ||D1|−1f ∈ L2(R2)}. A similar argument as above
using the Duhamel formula proves that Y s is invariant by the FDKP flow. We have
furthermore

Lemma 3.1. Y s is dense in Hs(R2) ∩ E.

Proof. Let f ∈ Hs(R2) ∩ E. For δ > 0 we define fδ by its Fourier transform as

f̂δ = χ|ξ1|≥δ f̂ . Clearly fδ ∈ Hs(R2) ∩ E. Moreover
∫

R2

ξ21 + µξ22
|ξ1|2

|f̂δ(ξ1, ξ2)|2dξ ≤ 1

δ2

∫

R2

(ξ21 + µξ22)|f̂δ(ξ1, ξ2)|2dξ ≤ 1

δ2
||f ||21,

proving that fδ ∈ Y s. We now prove that fδ tends to f as δ tends to zero.

||f − fδ||2Hs∩E =

∫

R2

(
(1 + ξ21 + ξ22)

s +
|Dµ|1/2
|ξ1|

+
|ξ2|
|ξ1|

)
|f̂ − f̂δ|2dξ (19)

=

∫ ∫

|ξ1|≤δ

(
(1 + ξ21 + ξ22)

s +
|Dµ|1/2
|ξ1|

+
|ξ2|
|ξ1|

)
|f̂ |2dξ, (20)

and the result follows since the last integral tens to zero by Lebesgue theorem since
the integrand lies in L1(R2).

To prove the conservation of the Hamiltonian, we use a density argument assum-
ing first that u0 ∈ Y s so that the corresponding solution lies in C([0, T ], Y s) by the
above considerations. We now multiply (3) by

µ−1/4(tanh(
√
µ|Dµ|))1/2|Dµ|1/2|D1|−1u+

3µ

4
u2

(which is meaningful for u ∈ Y s), and the conclusion follows readily by integration
by parts. The conservation of Hµ when u0 ∈ Hs(R2) ∩ E results by density.

An interesting question is whether or not a singularity formation by shock forma-
tion or by another phenomenon is possible for (3). A blow-up by shock formation
has been established in [8] for the one-dimensional equation

ut + uux +HDα
xu = 0, (21)

where Dx = (−∂2
x)

1/2, in the range 0 < α < 1. We recall that H is the Hilbert
transform in x1. Note that (3) is a kind of two-dimensional version of (21) when
α = 1

2 , and a blow-up is likely to occur. Actually (3) is a two-dimensional extension
of the Whitham equation (see [33]).
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For initial data depending only on x, one is reduced to proving a finite time blow-up
for solutions of the Cauchy problem to the Whitham equation written as





∂tu+

(
tanh(

√
µ|D1|)|D1|

)1/2

µ1/4
Hu+ µ

3

2
u∂xu = 0

u(·, 0) = u0;

(22)

numerical simulations suggest that such a blow up occur (see Figure 2) but to our
knowledge has not been established yet – though this is a very simple adaptation
of the proof of [8]. One could also adapt the proof of [9].

Proposition 3. There exist initial data u0 ∈ L2(R) ∩ C1+δ(R), with 0 < δ < 1,
and a finite T > 0, depending only on u0, such that the corresponding solution to
(22) satisfies

lim
t→T

||u(·, t)||C1+δ(R) = +∞.

Proof. One reduces to the case of (21) with α = 1
2 considered in [8]. We write (22)

as

∂tu+
|D1|1/2
µ1/4

Hu+Q(D1)u+ µ
3

2
u∂xu = 0,

where Q(D1) =
R(|D1|)|D1|1/2

µ1/4 Hu and

|R(|ξ1|)| =
e−

√
µ|ξ1|

cosh |√µξ1|
≤ e−

√
µ|ξ1|

A close inspection of the proof in [8] reveals that it is stable under a perturbation
of (21) by a term Qu where Q ∈ L(L2(R), L∞(R)). It is clear that Q = Q(D1) as
above satisfies this property.

4. The classical KP limit and the zero mass constraint. We study the limit
of (3) to the classical KP equation in the limit µ → 0, in particular how one recovers
the zero mass constraint in x. This issue occurs already in the linear problem. We
first recall well-known facts on the classical KP I/II equations

∂tu+ ∂3
xu± ∂−1

x ∂2
yu = 0. (23)

The linear evolution is given in Fourier variables by

S±(t)û0(ξ1, ξ2) = û(ξ1, ξ2, t) = exp{it
(
ξ31 ± ξ22

ξ1

)
}û0(ξ1, ξ2),

and of course it makes sense and defines a unitary group in any Sobolev space
Hs(R2), s ≥ 0. On the other hand, even for smooth initial data, say in the Schwartz
class, the relation

uxt = utx

holds true only in a very weak sense, e.g. in S ′(R2), if u0 does not satisfy the
constraint û0(0, ξ2) =

∫∞
−∞ u0(x, y)dx = 0 for any ξ2 ∈ R and y ∈ R. In particular,

even for smooth localized u0, the mapping

û0 7→ ∂tû = i

(
ξ31 ± ξ22

ξ1

)
exp{it

(
ξ31 ± ξ22

ξ1

)
}û0(ξ)

cannot be defined with values in a Sobolev space if u0 does not satisfy the zero mass
constraint. For instance, if u0 is a gaussian, ∂tu is not even in L2.
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Coming back to the linear evolution of the FDKP equation, one has

SFD(t)û0(ξ1, ξ2) = exp{it
(
tanh(

√
µ(ξ21+µξ22))

1/2
)1/2

(ξ21+µξ22)
1/4sign ξ1}û0(ξ1, ξ2),

and the map u0 7→ ∂tS̃(t)u0 is continuous from Hs(R2) to Hs−1/2(R2), for any
s ≥ 0.

Remark 7. For gravity-capillary waves, the linear evolution is given by

S̃FD(t)û0(ξ1, ξ2) = exp
{
it
(
tanh(

√
µ(ξ21 + µξ22))

1/2
)1/2

× (1 + βµ(ξ21 + µξ22))
1/2(ξ21 + µξ22)

1/4sign ξ1

}
û0(ξ1, ξ2),

and the map u0 7→ ∂tS̃(t)u0 is continuous from Hs(R2) to Hs−3/2(R2), for any
s ≥ 0.

Note finally that in both FDKP cases (with or without surface tension), ∂tu ∈
H∞(Rd) if for instance u0 is in the Schwartz space, say a gaussian.

5. Solitary waves. More on the 1D problem. It has been established in [6]
that the classical KP II does not possess localized solitary waves, that is solutions
of type u(x, y, t) = φ(x− ct, y) where φ is localized and c > 0. On the other hand,
KP I possesses ground states solitary waves, minimizing the Hamiltonian at fixed
L2 norm8. It is interesting to consider similar issues for the FDKP equations. Ac-
cording to the just recalled resuls, it seems plausible to conjecture that no localized
solitary waves exist for the FDKP equation when β < 1/3 that corresponds to the
KP II equation.

A natural way of looking for solitary waves solutions of the FDKP equation of
capillary-gravity waves (that is when β > 1/3) would be, similarly to the KP I
equation (see [6]), to look at minimizers of the Hamiltonian with prescribed L2

norm. This does not seem to be straightforward considering the nature of the
hamiltonian and the extension to the FDKP equations of the results in [6] seems
to be an open problem. A possible aproach would be (inspired by the case of the
Whitham equation considered in [12]) to use that for small frequencies the FDKP
equation reduces to KP I when β > 1/3.We will go back to this issue in a subsequent
paper. We give in §6.3 numerical computations suggesting the existence of solitary
waves for the FDKP equation in presence of strong surface tension.

More can be said in the one-dimensional case, both for the existence of solitary
waves and the Cauchy problem. We have already noticed that the one-dimensional
FDKP equation for gravity waves is the Whitham equation for which the existence
and conditional stability of solitary waves has been established in [12]. A crucial
point in [12] is the approximation by the KdV equation in the long wave limit. In
particular [12] uses the ”good” property of the Whitham equation phase velocity

cWh(ξ) =
(

tanh(
√
µ|ξ|)√

µ|ξ|

)1/2

for small frequencies.

On the other hand, one can check using the techniques in the proof of Theorem 4.1
in [22] that the equation (21) which shares the same dispersive properties with the
Whitham equation for large frequencies when α = 1

2 does not possess non trivial

solitary waves in the space L3(R) ∩ L2(R)∩ Ḣ−1/4(R).

8It is conjectured but not yet proven that the explicit lump solution of the KP I equation (see

[23]) is a ground state.
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For capillary-gravity waves, we recall that the one-dimensional FDKP equation
is a perturbation of the L2-critical dispersive Burgers equation. We have seen in

§3 that it could be written as an Hamiltonian flow, ie. ∂tu+ ∂x(δH̃µ(u)) = 0, with
Hamiltonian

H̃µ(u) =
1

2

∫

R2

|H̃µ(D)u|2 + µ

4

∫

R2

u3,

where

H̃µ(D) = (1 + βµD2
1)

1/4

(
tanh(

√
µ|D1|)√

µ|D1|

)1/4

;

the Hamiltonian H̃µ(u) is therefore a formally conserved quantity.
The existence of solitary waves for the L2 critical dispersive Burgers equation (26)

is recalled in [13], the strategy being to apply M. Weinstein’s idea (see [32]) of finding
the best constant is a Gagliardo-Nirenberg inequality by variational methods. This
method cannot be used here (since the symbol is not a pure power) but instead one
should use concentration-compactness arguments as was done in [1, 31] for other
nonlocal problems. This issue will be addressed in a subsequent paper.

Concerning the Cauchy problem for the Whitham equation (5), we have the
following result which, contrary to Proposition 1 uses the dispersion of the equation.

Proposition 4. (i) Let u0 ∈ Hs(R), s > 21
16 . There exists T = T (||U0||s, µ, β) and

a unique u ∈ C([0, T ], Hs(R)) solution of (5) with initial value u0. Moreover Hµ(t)
and |u(·, t)|0 are conserved on [0, T ].
(ii) Let u0 ∈ H1/4(R) such that |u0|2 is small enough. Then (5) possesses a global
weak solution u ∈ L∞(R;H1/4(R)) with initial value u0.

Proof. Part (ii) is obtained by a standard compactness method. We just indicate
how to obtain the key a priori estimate. We recall the Gagliardo-Nirenberg inequal-
ity

|u|3 ≤ C|u|1/32 |D1/4u|2/32 . (24)

Using the elementary inequalities for |ξ| ≥ 1,

(βµ1/2 tanh(
√
µ))1/4|ξ|1/4 ≤ (1 + βµξ2)1/4

(
tanh

√
µ|ξ|

√
µ|ξ|

)1/4

≤ (βµ+ 1)1/4

µ1/8
|ξ|1/4,

one deduces that there exists Ci(µ, β) > 0, i = 1, 2, such that

∀|ξ| ≥ 1, C1|ξ|1/4 ≤ (1 + βµξ2)1/4
(
tanh

√
µ|ξ|

√
µ|ξ|

)1/4

≤ C2|ξ|1/4,

and, using the L2 conservation law, the conservation of Hµ and the Gagliardo-
Nirenberg inequality, one deduces for |u0|2 small enough the a priori estimate

|D1/4u(·, t)|2 ≤ C(||u0||1/4, µ, β), t ≥ 0. (25)

Part (i) of the proposition has been established in [22] for the equation

∂tu+ |D|1/2ux + uux = 0. (26)

One checks easily that for |ξ| ≥ 1

q(ξ) = (1 + βµξ2)1/2
(
tanh

√
µ|ξ|

√
µ|ξ|

)1/2

= β1/2µ1/4|ξ|1/2 +R(|ξ|),
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where

|R(|ξ1|)| ≤
C

|ξ1|2
, |ξ1| ≥ 1,

while q is bounded for low frequencies. This allows to extend the results of [22] to
(5).

Remark 8. The numerical simulations in [17] seem to indicate that solutions to
(26) may blow up in finite time, not by a shock formation as for (22) but rather by
a phenomenon similar to that of the L2 critical generalized KdV equation. This is
also likely to occur for solutions to (5).

6. Numerical simulations. We present here numerical illustrations that point
out several qualitative differences between the usual KP equations and the FDKP
equation. For both equations, we used a second order splitting scheme between the
linear and nonlinear parts of the equation. The linear (dispersive) part is solved
explicitly via spectral methods, while the nonlinear part is integrated via a RK4
scheme. We refer to [16, 17, 18] for instance for more accurate numerical schemes
for the KP equation.

6.1. The Whitham equation. As explained in §3, the Whitham equation is less
dispersive than the KdV equation, and displays finite time singularity formation.
This is illustrated by the numerical simulations presented in Figure 2. As explained
in Remark 4, we write the equations in a moving frame at speed 1 and rescale time
in order to better observe the nonlinear and dispersive dynamics of the equations.
We therefore compare the solutions of

∂tu+
1

µ

(
cWW (

√
µ|D|)− 1

)
ux +

3

2
uux = 0. (27)

and

∂tu+
1

6
∂3
xu+

3

2
uux = 0. (28)

We recall that (28) possesses solitary waves of the form

u(t, x) = u
0(x− ct), with u

0(x) =
α

cosh(K(x− x0))2
, (29)

and where α > 0, K = ( 34α)
1/2 and x0 ∈ R. For an initial condition of this form,

Figure 2 shows that a singularity seems to form at time t ∼ 1.11 when µ = 1. For
smaller values of µ, the behavior of the Whitham equation is of course closer to the
KdV equation, and singularities should appear later (if at all); this is illustrated in
Figure 3.

6.2. The FDKP equation without surface tension. We compare here the
solutions of the FDKP and usual KP II equations in absence of surface tension. As
explained in Remark 4 we actually compare the following two rescaled equations in
order to better capture the nonlinear and dispersive dynamics

∂tu+
1

µ

(
cWW (

√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2 − 1
)
ux +

3

2
uux = 0 (30)

and

∂tu+
1

2
∂−1
x ∂2

yu+
1

6
∂3
xu+

3

2
uux = 0. (31)

We consider here an initial condition that satisfies the zero mass constraint, namely

u(x, y) = −∂x
(
sech2(

√
x2 + y2)

)
(32)
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(a) time t = 0.444 (b) time t = 0.666

(c) time t = 0.888 (d) time t = 1.11

Figure 2. Comparison at different times of the solution to the
KdV equation (28) (dash) and the Whitham equation (27) with
µ = 1. Initial condition is a KdV solitary wave (29) with α = 1.

(a) µ = 1 (b) µ = 0.1 (c) µ = 0.01

Figure 3. Comparison at the same time t = 0.11 of the solution
to the KdV equation (28) (dash) and the Whitham equation (27)
with different values of µ. Initial condition is a KdV solitary wave
(29) with α = 1.
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(see Figure 4). In Figure 5 we represent the evolution of this initial condition by
the KP equation and the FDKP equation in the case µ = 1. The solution looks
qualitatively the same, but a slightly stronger decay is observed for the FDKP
equation. Moreover, the width of the tail at the back of the wave is narrower for
the FDKP equation. This is not a surprise since this tail, with parabolic shape, is
typical of the ∂−1

x ∂2
yu component of the KP equation. Indeed, as remarked in [2],

the equation ∂t∂xu = ∂2
yu is a wave equation rotated 45 degrees in the coordinates

(t, x). The domain of dependance is therefore the intersection of the wave cone
in these rotated coordinates, intersected with the plane {t = 0}, and therefore a
parabola. The influence of the value of µ on the solution is illustrated in Figure 6
where the solution at t = 2 is plotted for the KP equation, and the FDKP equation
with µ = 0.01, µ = 0.1 and µ = 1.

Figure 4. The initial condition (32).

6.3. The FDKP equation with surface tension. We consider FDKP equation
in presence of surface tension; more precisely, we consider the case of strong surface
tension (β > 1/3) where one derives the KP I equation. We compare therefore the
dynamics of the following two equations,

∂tu+
1

µ

(
(1 + βµD2

1)
1/2cWW (

√
µ|Dµ|)(1 + µ

D2
2

D2
1

)1/2 − 1
)
ux +

3

2
uux = 0 (33)

and

∂tu+
1

2
∂−1
x ∂2

yu+
1

6
(1− 3β)∂3

xu+
3

2
uux = 0. (34)

The KP equations is known to possess solitary waves solutions, called lump, of the
form u(t, x, y) = u

0(x− ct, y) with

u
0(x, y) =

16

3a
V

1− V
3 (ax)

2 + V 2

3 (by)2

(1 + V
3 (ax)

2 + V 2

3 (by)2)2
, (35)

with a = −|β|−1/3, b =
√
−2a and c = V/a (see Figure 7). In Figure 8 we represent

the evolution of this initial condition by the KP equation and the FDKP equation
in the case µ = 1. The solution for the KP equation is of course a translation to the
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(a) time t = 0.67 (b) time t = 0.67

(c) time t = 1, 34 (d) time t = 1.34

(e) time t = 2 (f) time t = 2

Figure 5. Comparison at different times of the solution to the
KP equation (31) (left) and the FDKP equation (30) (right) with
µ = 1. Initial condition is (32).

left of the initial condition, but this structure is lost with the FDKP equation for
which we observe the propagation of capillary waves to the right, and an important
amplification of the amplitude of the solution.
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(a) KP (b) FDKP with µ = 0.01

(c) FDKP with µ = 0.1 (d) FDKP with µ = 1

Figure 6. Comparison at time t = 2 of the solution to (31) and
(30) for different values of µ with initial condition (32).

Figure 7. The initial condition (35).
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(a) time t = 1.67 (b) time t = 1.67

(c) time t = 3.34 (d) time t = 3.34

(e) time t = 5 (f) time t = 5

Figure 8. Comparison at different times of the solution to the
KP equation (34) (left) and the FDKP equation (33) (right) with
µ = 1 and β = 2/3. Initial condition is (35) with V = 0.5.

In the 1D case (Whitham equation), we saw in §6.1 that the evolution of the
KdV solitary wave by the Whitham equation leads to the formation of a singularity
in finite time. Based on the simulations of Figure 8 and on the 1D case, it is natural
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to ask wether the evolution of the KP I solitary wave (lump) leads to the formation
of a finite time singularity under the FDKP flow. The amplification mentioned
above and observed in Figure 8 may indeed look like the beginning of a blow-up
mechanism in L∞-norm but computations over a larger time scale (see Figure 9)
show that another mechanism is at stake. This amplification corresponds indeed
to the formation of a “lump-like” solution of larger amplitude (while part of the
waves is lost by capillary radiation at the right of the lump); this structure then
continues its propagation to the left without changing form, which suggests that
this “lump-like” structure is a solitary wave for the FDKP equation.

As in the 1D case, this peculiar behavior is delayed (or even disappears) when
smaller values of µ are taken in the FDKP equation. We refer to Figure 10 for
numerical illustrations of this fact.
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8. A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model,
Nonlinearity, 23 (2010), 2835-2847.

9. A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,

Acta Math., 181 (1998), 229-243.
10. T. Colin, D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics, Duke

Math. J. 107 (2001), 351-419.
11. M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation, Diff. Int. Equa-

tions 22 (11-12) (2009), 1193-1210.
12. M. Ehrnström, M.D. Groves and E. Wahlén, On the existence and stability of solitary-

wave solutions to a class of evolution equations of Whitham type, Nonlinearity 25 (2012),
2903-2936.

13. R.L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of
(−∆)sQ+Q−Qα+1 = 0 in R, arXiv: 1009.4042 (2010).

14. Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct.

Analysis 254 (2008), 1642-1660.
15. B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dis-

persing media, Sov. Phys. Dokl. 15 (1970), 539–541.
16. C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized

Kadomtsev-Petviashvili equations, J. Nonlinear Science, 22, 5, (2012) 763-811.
17. C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations

of the Burgers equation, in preparation.
18. C. Klein, C. Sparber and P. Markowich , Numerical study of oscillatory regimes in the

Kadomtsev-Petviashvili equation, J. Nonl. Sci. 17, no. 5 (2007), 429-470.
19. D. Lannes, The Water Waves problem : Mathematical Theory and Asymptotics. Mathemati-

cal Surveys and Monographs, Volume 188, American Mathematical Society, Providence Rhode

Island, 2013.
20. D. Lannes, Consistency of the KP approximation, Discrete Cont. Dyn. Syst. (2003) Suppl.

517-525.



20 DAVID LANNES AND JEAN-CLAUDE SAUT

(a) time t = 0 (b) time t = 8

(c) time t = 16 (d) time t = 24

(e) time t = 32 (f) time t = 40

Figure 9. Evolution of the KP lump (35) with β = 2/3, V = 0.5
by the FDKP equation (33) with µ = 1.
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(a) KP (b) FDKP with µ = 0.01

(c) FDKP with µ = 0.1 (d) FDKP with µ = 1

Figure 10. Comparison at time t = 5 of the solution to (34) and
(33) for different values of µ with initial condition (35) with β = 2/3
and V = 0.5.
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