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WELL-POSEDNESS AND SHALLOW-WATER STABILITY FOR A

NEW HAMILTONIAN FORMULATION OF THE WATER WAVES

EQUATIONS WITH VORTICITY

ANGEL CASTRO AND DAVID LANNES

Abstract. In this paper we derive a new formulation of the water waves equa-
tions with vorticity that generalizes the well-known Zakharov-Craig-Sulem for-

mulation used in the irrotational case. We prove the local well-posedness of

this formulation, and show that it is formally Hamiltonian. This new formu-
lation is cast in Eulerian variables, and in finite depth; we show that it can

be used to provide uniform bounds on the lifespan and on the norms of the

solutions in the singular shallow water regime. As an application to these re-
sults, we derive and provide the first rigorous justification of a shallow water

model for water waves in presence of vorticity; we show in particular that a

third equation must be added to the standard model to recover the velocity
at the surface from the averaged velocity. The estimates of the present paper

also justify the formal computations of [15] where higher order shallow water
models with vorticity (of Green-Naghdi type) are derived.

1. Introduction

1.1. General setting. The equations governing the motion of the surface of a
homogeneous, inviscid fluid of density ρ under the influence of gravity (assumed
to be constant and vertical, g = −gez, g > 0) are known as the water waves
equations, or free surface Euler equations. In the case where the surface of the
fluid is delimited above by the graph of a function ζ(t,X) over its rest state z = 0
(with t the time variable, X ∈ Rd the horizontal space variables, and z the vertical
variable), and below by a flat bottom z = −H0, and denoting by U and P the
velocity and pressure fields, these equations can be written

∂tU + U · ∇X,zU = −1

ρ
∇X,zP − gez,(1)

∇X,z ·U = 0,(2)

in the fluid domain Ωt = {(X, z) ∈ Rd+1,−H0 < z < ζ(t,X)}; they are comple-
mented with the boundary conditions

∂tζ −U|surf
·N = 0 (with N = (−∇ζT , 1)T ),(3)

P|surf
= constant(4)

at the surface, and

(5) U|bott
·Nb = 0 (with Nb = ez)

at the bottom. In many physical situations, the motion of the fluid is in addition
irrotational, and another equation can be added to (1)-(5), namely

curl U = 0 in Ω.
1
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This additional assumption yields considerable simplifications since all the relevant
information to describe the fluid motion is then concentrated on the interface. This
can be exploited in many ways. See for instance [45, 55, 56, 20, 9, 52, 19] for local
well-posedness results, [57, 58] for global well-posedness, and [19, 12, 13, 21] for the
existence of turning waves and splash singularities. Let us describe briefly here the
approach initiated by Zakharov [59] and Craig-Sulem [24] which is one of the most
seminal and the starting point for the present paper.
From the irrotationality assumption, one can infer the existence of a velocity po-
tential Φ such that U = ∇X,zΦ; the incompressibility conditions implies that Φ be
harmonic, and the bottom boundary condition that its normal derivative vanishes
at the bottom. It follows that Φ is fully determined by its trace at the surface
Φ|surf

= ψ. Zakharov noticed that the irrotational equation could be reduced to the
Hamiltonian equation

∂t

(
ζ
ψ

)
= Jgradζ,ψH, with J =

(
0 1
−1 0

)
,

and where H is the total energy H = 1
2

∫
Rd gζ

2 + 1
2

∫
Ω
|U|2. Introducing the

Dirichlet-Neumann operator G[ζ]ψ =
√

1 + |∇ζ|2∂nΦ|surf , Craig and Sulem rewrote
these equations as a closed set of two evolution equations on ζ and ψ,

∂tζ − G[ζ]ψ = 0,

∂tψ + gζ +
1

2

∣∣∇ψ∣∣2 − (G[ζ]ψ +∇ζ · ∇ψ
)2

2(1 + |∇ζ|2)
= 0.

This is a convenient formulation for well-posedness issues (see for instance [38]
for local well-posedness, [1, 2, 4, 48] for low regularity solutions, [28, 34, 5] for
global existence, etc.). It has also been used for numerical computations [24, 29],
weak turbulence modeling [60], analysis of periodic wave patterns or solitary waves
[35, 6, 50], etc. More relevant to our present motivations, it is probably the most
commonly used approach to derive and justify asymptotic models describing the
solutions to the water waves equations in various physical regimes (e.g. shallow
water or deep water). The derivation of such models follows directly from an
asymptotic expansion of the Dirichlet-Neumann operators (e.g. [25, 23, 10, 16,
33, 42, 49]), while the key point for their justification is a local well posedness
theorem for a dimensionless version of the equations, and over a time scale whose
dependance on the various dimensionless parameters is controlled; in the shallow
water regime – of great importance for applications in oceanography – this induces
an extra difficulty because the shallow water limit is singular; the relevant existence
results have been shown in [8, 32] (see also [22, 51, 31, 44, 53] for the justification
of various asymptotic models using other approaches). We refer to the book [39]
for a more comprehensive description of these aspects.

However, a limitation of the Zakharov-Craig-Sulem approach is that it is re-
stricted to irrotational flows. This is a relevant framework for most applications in
oceanography, but several important phenomena such as rip currents for instance
can only be understood by taking into account vorticity effects. Rip currents are
only one particular example of wave-currents interactions; the understanding of
the energy exchanges at stake in such interactions is an important challenge in
oceanography, and vorticity is one of the key mechanisms involved. Several as-
ymptotic models have been derived in the physics literature to take into account
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vorticity effects in shallow water models; however, these derivations rely on assump-
tions on the structure of the flow (e.g. columnar motion) that are in general not
satisfied, or only at a very low order of precision. In particular, there does not exist
to our knowledge any good description of the nonlinear dynamics of the vorticity in
the shallow water regime; it is for instance not known whether horizontal vorticity
may be created from vertical vorticity.
From a mathematical viewpoint, various authors considered the local well-posedness
theory for the water waves problem in presence of vorticity [45, 20, 52, 61, 47]; these
results are however not adapted to answer the above preoccupations because they
consider different physical configurations (drop of fluid, infinite depth, etc.) and use
mathematical techniques that make the singular shallow water limit very delicate
to handle (see for instance the comments of [41] on the incompatibility of standard
symbolic analysis and of the shallow water limit); moreover, the influence of vor-
ticity on the flow is generally treated implicitly. The rigorous qualitative analysis
of water waves seems to have essentially been restricted, when vorticity is present,
to one dimensional surfaces, and to periodic or standing waves; we refer to the
recent book [18] for an extensive review and more references on these aspects. The
motivation for the present work is therefore twofolds:

(1) Find a formulation of the water waves equations allowing for the presence
of vorticity, adapted to the physical configurations we have in mind for
applications to oceanography, and making the influence of the vorticity on
the flow as explicit as possible.

(2) Show the well-posedness of this formulation, and control the life span and
the size of the solution in the so called shallow water limit, in order to pave
the way for the derivation of shallow water models in presence of vorticity.

These goals are achieved by deriving first a generalization of the above classi-
cal Zakharov-Craig-Sulem formulation, as a set of three evolution equations on
(ζ, ψ,ω), where ω = curl U is the vorticity. Of course, ψ cannot be defined as
in the irrotational case as the trace at the surface of the velocity potential Φ; in-
stead, we define ∇ψ as the projection onto gradient vector fields of the horizontal
component of the tangential velocity U‖ at the surface. The equations then read

∂tζ + V · ∇ζ − w = 0,

∂tψ + gζ +
1

2

∣∣U‖∣∣2 − 1

2
(1 + |∇ζ|2)w2 − ∇

⊥

∆
·
(
ω ·NV

)
= 0,

∂tω + U · ∇X,zω = ω · ∇X,zU

where V and w denote the horizontal and vertical components of the velocity at
the interface, and ω = ω|surf

. In the irrotational case (ω = 0), these equations co-
incide exactly with the ones derived by Zakharov-Craig-Sulem. We show that it is
a closed set of equations and establish local well-posedness. We also show that this
new formulation is formally Hamiltonian (with a non-canonical Poisson bracket).
As the classical irrotational Zakharov-Craig-Sulem formulation, but contrary to
the aforementioned works in the rotational case, our equations are cast in Euler-
ian variables, in a configuration which is relevant to applications in oceanography
(finite depth), and can easily be used to derive asymptotic models. We consider in
particular the shallow water regime, which is of great importance in oceanography.
We first rewrite the equation in dimensionless form, and prove the existence time
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is of order T
ε , with T independent of ε, µ ∈ (0, 1), where

ε =
typical amplitude of the wave

depth
and µ =

( depth

typical horizontal length

)2

;

this estimate on the lifespan of solutions goes with uniform bounds on the solutions,
which make possible the derivation of asymptotic models. As an illustration, we
provide the first rigorous derivation and justification of the nonlinear shallow water
equations with vorticity, which is an approximation of order O(µ) of the water
waves equations when ε = O(1). The more technical derivation of a O(µ2) model
of Green-Naghdi type is done in the companion paper [15]; let us just mention
that the shallow water nonlinear dynamics of the vorticity studied here allow us
to exhibit a so far unknown mechanism of generation of horizontal vorticity from
purely vertical rotational effects. More generally, the asymptotic bounds derived in
this paper justify the assumptions made in [15] to derive various asymptotic shallow
water models in presence of vorticity.

The paper is organized as follows. Section 2 is devoted to the derivation of our
new formulation of the water waves problem with vorticity (see above). The fact
that this formulation is a closed set of equations follows from the resolution of a
div-curl problem allowing to reconstruct the velocity U in the fluid domain from
ζ, ψ and ω. This div-curl problem is studied in full details in Section 3. The local
well-posedness is then addressed in Section 4: the equations are “quasilinearized”
and a priori estimates are derived. Using these estimates, a solution is then con-
structed by an iterative scheme (which is non trivial due to the fact the the vorticity
is defined on a domain that depends on the surface elevation). The main result is
then given in Theorem 4.7.
The proof of Theorem 4.7 has been tailored to allow its implementation in the
shallow water setting. However, handling the shallow water limit induces some
difficulties that are not relevant for a standard local well-posedness result such as
Theorem 4.7 (the control of the bottom vorticity for instance). For the readers
who are not interested in the shallow water analysis, we have therefore opted to
treat this aspect separately. This is done in Section 5. The first step is to write a
dimensionless version of the equations; the associated well-posedness result is then
given in Theorem 5.1. Note that the non dimensionalization of the vorticity is not
obvious, but that this theorem justifies a posteriori the choice we have made. As
an application of this result, we derive and justify in §5.7 a first order nonlinear
shallow water model in presence of vorticity.
Finally, we investigate in Section 6 the Hamiltonian structure of our new formula-
tion of the water waves equations with vorticity.

1.2. Notations. - X = (x, y) ∈ R2 denotes the horizontal variables. We also
denote by z the vertical variable.
- ∇ is the gradient with respect to the horizontal variables; ∇X,z is the full three
dimensional gradient operator. The curl and divergence operators are defined as

curl A = ∇X,z ×A and div A = ∇X,z ·A.

- We denote by d = 1, 2 the horizontal dimension. When d = 1, we often identify
functions on R as functions on R2 independent of the y variable. In particular,
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when d = 1, the gradient, divergence and curl operators take the form

∇X,zf =

 ∂xf
0
∂zf

 , curl A =

 −∂zA2

∂zA1 − ∂xA3

∂xA2

 , div A = ∂xA1 + ∂zA3.

- S is the flat strip Rd × (−H0, 0).
- We denote by (X, ζ(t,X)) a parametrization of the free surface at time t and by
Ωt the fluid domain delimited at time t by this free surface and a flat bottom at
depth z = −H0,

Ωt = {(X, z) ∈ R3,−H0 < z < ζ(t,X)};

when the dependence on time is not important, we just write Ω instead of Ωt.
- When d = 1, Ω is invariant along the y axis, and we identify it with a two-
dimensional domain; in particular,

‖f‖L2(Ω) =

∫
R

∫ ζ(x)

−H0

|f(x, z)|2dzdx if d = 1,

‖f‖L2(Ω) =

∫
R2

∫ ζ(x,y)

−H0

|f(x, y, z)|2dzdxdy if d = 2.

- We write U the velocity field; its horizontal component is written V, and its
vertical component w.
- For a vector A ∈ R3 we often denote by Ah its horizontal component and by Av

its vertical component.
- If A is a vector field defined on Ωt, we write A the function

A(t,X) = A|surf(t,X) = A(t,X, ζ(t,X));

consistently, if A is defined on the flat strip S then A(t,X) = A(t,X, 0). We also
denote by Ab its trace at the bottom

Ab(t,X) = A|bott
(t,X) = A(t,X,−H0).

- n is the unit upward normal vector at the surface, n = N/|N |, with N =
(−∇ζT , 1)T .
- nb is the upward normal vector at the (flat) bottom, nb = Nb = ez.
- If V ∈ R2, we write V⊥ = (−V2,V1)⊥.
- For all vector field A defined on Ω and with values in R3, let us define A‖ ∈ R2

as the horizontal component of the tangential part of A at the surface,

(6) A‖ = Ah +Av∇ζ,

so that A×N =

(
−A⊥‖
−A⊥‖ · ∇ζ

)
.

- We always use simple bars to denote functional norms on Rd and double bars to
denote functional norms on the d+ 1 dimensional domains Ω and S; for instance

|f |p = |f |Lp(Rd), |f |Hs = |f |Hs(Rd), ‖f‖p = ‖f‖Lp(Ω) (or ‖f‖Lp(S)), etc.

- We use the Fourier multiplier notation

f(D)u = F−1(ξ 7→ f(ξ)û(ξ))
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and denote by Λ = (1−∆)1/2 = (1 + |D|2)1/2 the fractional derivative operator.
-We define, for all s ∈ R, k ∈ N the space Hs,k = Hs,k(S) by

(7) Hs,k =

k⋂
j=0

Hj((−H0, 0);Hs−j(Rd)), with ‖u‖Hs,k =

k∑
j=0

‖Λs−j∂jzu‖2.

- We shall have to handle functions whose gradient are in some Sobolev space, but
which are not in L2(Rd). We therefore introduce the Beppo-Levi spaces [27]

∀s ≥ 0, Ḣs(Rd) = {f ∈ L2
loc(Rd),∇f ∈ Hs−1(Rd)2};

similarly, for functions defined on the fluid domain Ω, we write

∀k ∈ N∗, Ḣk(Ω) = {f ∈ L2
loc(Ω),∇X,zf ∈ Hk−1(Ω)3}.

- The “dual spaces” are Hs
0(Rd) defined as

(8) Hs
0(Rd) = {u ∈ Hs(Rd) : ∃v ∈ Hs+1(Rd), u = |D|v},

and we write |u|Hs0 = | 1
|D|u|Hs+1 .

- We write s ∨ t = max{s, t}.
- We generically denote by C(·) some positive function that has a nondecreasing
dependance on its arguments.
- We write [∂α, f, g] for the symmetric commutator [∂α, f, g] = ∂α(fg) − ∂αfg −
f∂αg.

2. A new formulation for the equations

2.1. A first reduction. Taking the trace of (1) at the free surface and then tak-
ing the vectorial product of the resulting equation with N , one obtains, with the
notation (6),

−∂tU⊥‖ − g∇
⊥ζ − 1

2
∇⊥|U‖|2 +

1

2
∇⊥
(
(1 + |∇ζ|2)w2

)
+ ω ·NV = 0,

where we also used the notations

ω = curl U, ω = ω|surf ;

one gets therefore

(9) ∂tU‖ + g∇ζ +
1

2
∇|U‖|2 −

1

2
∇
(
(1 + |∇ζ|2)w2

)
+ ω ·NV ⊥ = 0.

Denoting by Π the projector onto gradient vector fields, and Π⊥ the projector onto
orthogonal gradient vector fields,

Π =
∇∇T

∆
, Π⊥ =

∇⊥(∇⊥)T

∆
,

we can decompose U‖ under the form

U‖ = ΠU‖ + Π⊥U‖

= ∇ψ +∇⊥ψ̃,

for some scalar functions ψ and ψ̃, and similarly

ω ·NV ⊥ = Π
(
ω ·NV ⊥

)
+ Π⊥

(
ω ·NV ⊥

)
= ∇

[∇
∆
·
(
ω ·NV ⊥

)]
+ Π⊥

(
ω ·NV ⊥

)
.
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Applying Π to the equation on U‖ one therefore finds the following equation on ψ,

(10) ∂tψ + gζ +
1

2
|U‖|2 −

1

2

(
(1 + |∇ζ|2)w2

)
+
∇
∆
·
(
ω ·NV ⊥

)
= 0.

There is no need to derive an equation on Π⊥U‖ = ∇⊥ψ̃ since this component of
U‖ is fully determined by the knowledge of ω and ζ; indeed, using the differential
identity

(∇×A)|surf ·N = ∇⊥ ·A‖,(11)

one computes easily that
ω ·N = ∇⊥ · U‖,

and therefore
Π⊥U‖ = ∇⊥ψ̃,

where ψ̃ is the unique solution1 in the Beppo-Levi space Ḣ3/2(Rd) of

∆ψ̃ = ω ·N.
Taking now the curl of (1) we classically obtain the vorticity equation

(12) ∂tω + U · ∇X,zω = ω · ∇X,zU in Ωt,

with ω = curl U.

Our claim is that the kinematic equation (3), together with (10) and (12), forms
a closed system of equations on (ζ, ψ,ω). We have therefore to prove that these
quantities fully determine the velocity field in the whole fluid domain. This is done
in the next subsection.

Remark 1. Applying Π⊥ to the equation on U‖ does not bring any further infor-
mation; this leads to

∂tΠ⊥U‖ + Π⊥
(
ω ·NV ⊥) = 0,

and therefore
∂t(∇⊥ · U‖) +∇ ·

(
ω ·NV ) = 0.

Evaluating the vorticity equation at the surface, we also get

∂tω + V · ∇ω = ω · ∇U + ω ·N∂zU|surf ,
from which one readily deduces that

∂t(ω ·N) +∇ · (ω ·NV ) = 0.

We therefore get
∂t(ω ·N −∇⊥ · U‖) = 0,

which is always true since, as seen above, ω ·N = ∇⊥ · U‖.

Remark 2. We have an analogous equation to (11) at the bottom, which yields the
following relation for the bottom vorticity,

ω|bott
·Nb = ∇⊥ · V|bott

;

in particular, if V ∈ H1(Ω)2 then ωb ·Nb ∈ H
− 1

2
0 (Rd) with H

− 1
2

0 (Rd) as defined in
(8).

1We assume here that ω ∈ L2(Ω) and divergence free; see Lemma 3.7 for the existence and

uniqueness of ψ̃.
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2.2. A div-curl problem. Let ζ ∈ W 2,∞(Rd) and denote by Ω the associated
fluid domain,

(13) Ω = {(X, z) ∈ Rd+1,−H0 < z < ζ(X)};

we assume that the fluid domain is strictly connected in the sense that

(14) ∃hmin, ∀X ∈ Rd, H0 + ζ(X) ≥ hmin.

From the discussion of the previous section, one has

Π⊥U‖ = ∇⊥ψ̃ = ∇⊥∆−1(ω ·N)

and is therefore fully determined by the knowledge of (the normal component at
the surface of) the vorticity ω. The following theorem shows that it is possible to
reconstruct the whole velocity field U in the fluid domain in terms of ω, ΠU‖ = ∇ψ
and ζ; more precisely, there is a unique solution U ∈ H1(Ω)3 to the boundary value
problem

(15)


curl U = ω in Ω
div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω ·N) at the surface
Ub ·Nb = 0 at the bottom,

where we recall that U‖ is defined in (6), that ω stands for the trace of ω at
the surface, and that Ub is the trace of U at the bottom. In the statement of
the theorem, we use the following definition to denote divergence free vector fields
defined on the fluid domain Ω. The second point of the definition is motivated by

Remark 2 (where the space H
−1/2
0 is also introduced).

Definition 2.1. Let ζ ∈ W 2,∞(Rd) be such that (14) is satisfied and Ω be as in
(13).
i. We define the subspace of L2(Ω)3 of divergence free vector fields as

H(div0,Ω) = {B ∈ L2(Ω)3,div B = 0}.

ii. The set of such functions satisfying Bb ·Nb ∈ H−1/2
0 (Rd) is denoted

Hb(div0,Ω) = {B ∈ H(div0,Ω), Bb ·Nb ∈ H−1/2
0 (Rd)},

which we equip with the norm

‖B‖2,b = ‖B‖2 + |Bb ·Nb|H−1/2
0

.

For the sake of clarity, the proof of the following theorem is postponed to §3.1.

Theorem 2.2. Let ζ ∈ W 2,∞(Rd) be such that (14) is satisfied and Ω be as in

(13). Let also ω ∈ Hb(div0,Ω)3 and ψ ∈ Ḣ3/2(Rd).
There exists a unique solution U ∈ H1(Ω)3 to the boundary value problem (15),
and one has U = curl A +∇X,zΦ with A ∈ H2(Ω)3 solving

(16)



curl curl A = ω in Ω,
div A = 0 in Ω,

Nb ×Ab = 0
N ·A = 0

(curl A)‖ = ∇⊥∆−1(ω ·N),
Nb · (curl A)|bott

= 0,
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while Φ ∈ Ḣ2(Ω) solves

(17)

{
∆X,zΦ = 0 in Ω,
Φ|surf = ψ, ∂nΦ|bott

= 0.

Moreover, one has

‖U‖2 + ‖∇X,zU‖2 ≤ C(
1

hmin
, H0, |ζ|W 2,∞)

(
‖ω‖2,b + |∇ψ|H1/2

)
.

The theorem furnishes a Hodge-Weyl decomposition2 of the velocity field, U =
∇X,zΦ+curl A, the first component of which is the irrotational part of the velocity
field, and the second one its rotational part. More precisely, the theorem allows us
to give the following definition.

Definition 2.3. Let ζ ∈W 2,∞(Rd) satisfy (14) and Ω be given by (13).
(1) We define the linear mapping A[ζ] as follows

A[ζ] :
Hb(div0,Ω) → H2(Ω)3,
ω 7→ A,

where A is the solution to (16) provided by Theorem 2.2.
(2) We define the linear mappings UI [ζ] and UII [ζ] by

UI [ζ] :
Ḣ3/2(Rd) → H1(Ω)3

ψ 7→ ∇X,zΦ
and UII [ζ] :

Hb(div0,Ω) → H1(Ω)3,
ω 7→ curl (A[ζ]ω)

,

where Φ solves (17).
(3) The linear mapping U[ζ] is

U[ζ] :
Ḣ3/2(Rd)×Hb(div0,Ω) → H1(Ω)3,
(ψ,ω) 7→ UI [ζ]ψ + UII [ζ]ω

.

2.3. The generalized Zakharov-Craig-Sulem formulation. We use here the
results of §2.2 to derive a closed system of equations on ζ, ψ and ω, from which all
the other physical quantities can be deduced.
According to Definition 2.3, the kinematic equation (3) can be written

∂tζ − U[ζ](ψ,ω)|surf ·N = 0.

Proceeding similarly with the equation (10) for ψ, and the vorticity equation (12),
and introducing the mappings3

(18)
V[ζ](ψ,ω) = V[ζ](ψ,ω)|surf ,
w[ζ](ψ,ω) = w[ζ](ψ,ω)|surf ,
U‖[ζ](ψ,ω) = V[ζ](ψ,ω) + w[ζ](ψ,ω)∇ζ

2Note that this decomposition is not orthogonal for the L2(Ω) scalar product. The standard

(orthogonal) Hodge-Weyl decomposition would be

U = U] +∇X,zΦ],

with U] divergence free and tangential to the boundaries of Ω. This decomposition does not

isolate the vorticity effects in the sense that they are present in both terms of the decomposition,
while they are absent in the potential part of the decomposition we use here.

3Note that according to (15), one has

U‖[ζ](ψ,ω) = ∇ψ +
∇⊥

∆
(ω ·N).
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we derive the following generalization of the Zakharov-Craig-Sulem formulation of
the water-waves equations in presence of a nonzero vorticity field,

(19)



∂tζ − U[ζ](ψ,ω) ·N = 0,

∂tψ + gζ +
1

2

∣∣U‖[ζ](ψ,ω)
∣∣2 − 1

2
(1 + |∇ζ|2)w[ζ](ψ,ω)2

−∇
⊥

∆
·
(
ω ·NV[ζ](ψ,ω)

)
= 0,

∂tω + U[ζ](ψ,ω) · ∇X,zω = ω · ∇X,zU[ζ](ψ,ω)

(with ω = ω|surf
). Note that the divergence free constraint on the vorticity

(20) div ω = 0 in Ωt

should be added to these equation; we omit it however since it is propagated by
the vorticity equation if it is initially satisfied.

Remark 2.4. For ζ ∈W 2,∞(Rd) satisfying (14) one can define a generalized Dirichlet-
Neumann operator Ggen[ζ] as

Ggen[ζ] :
Ḣ3/2(Rd)×Hb(div0,Ω) → H1/2(Rd),
(ψ,ω) 7→ U[ζ](ψ,ω)|surf ·N ;

the standard Dirichlet-Neumann operator used in the irrotational case for the
Zakharov-Craig-Sulem formulation of the water waves corresponds to G[ζ]ψ =
Ggen[ζ](ψ, 0). Remarking that

w[ζ](ψ,ω) =
Ggen[ζ](ψ, ω) +∇ζ · U‖[ζ](ψ, ω)

1 + |∇ζ|2
,

the equations (19) can be written under the form

∂tζ − Ggen[ζ](ψ,ω) = 0,

∂tψ + gζ +
1

2

∣∣U‖[ζ](ψ,ω)
∣∣2 − (Ggen[ζ](ψ,ω) +∇ζ · U‖[ζ](ψ,ω)

)2
2(1 + |∇ζ|2)

−∇
⊥

∆
·
(
ω ·NV[ζ](ψ,ω)

)
= 0,

∂tω + U[ζ](ψ,ω) · ∇X,zω = ω · ∇X,zU[ζ](ψ,ω).

In the irrotational case, one has ω = 0 and U‖[ζ](ψ,ω) = ∇ψ; denoting further
G[ζ]ψ = Ggen[ζ](ψ, 0), these equations then simplify into

(21)


∂tζ − G[ζ]ψ = 0,

∂tψ + gζ +
1

2

∣∣∇ψ∣∣2 − (G[ζ]ψ +∇ζ · ∇ψ
)2

2(1 + |∇ζ|2)
= 0,

which is the standard Zakharov-Craig-Sulem formulation.

Remark 2.5. Contrary to the irrotational case where the water waves equations (21)
are cast on the fixed domain Rd, our formulation (19) of the water waves equations
with vorticity are partly cast on the moving – and unknown – fluid domain Ωt
parametrized at time t by the free surface ζ(t, ·) through (13). The functional
setting for the study of the vorticity ω is therefore less straightforward than for ζ
and ψ. A convenient way to deal with this difficulty4 is to fix the domain by using

4Even in the irrotational case, this problem arises if one wants to give a rigorous meaning to
the original water waves equations (1), (2), (3) (plus an irrotationality condition). One of the ad-

vantages of the Zakharov-Craig-Sulem formulation (21) is that such difficulties have disappeared.
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a diffeomorphism Σ(t, ·) mapping at each time the flat strip S = Rd×(−H0, 0) onto
the fluid domain Ωt. The equation on the vorticity ω in (19) is then replaced by
an equation on the straightened vorticity ω = ω ◦Σ, which is defined on the (fixed)
strip S.

3. The div-curl problem

The resolution of the div-curl problem (15) is necessary to prove that the for-
mulation (19) of the water waves equations with vorticity forms a closed set of
equations. The well-posedness of this boundary value problem was stated in Theo-
rem 2.2; its proof is given below in §3.1. A consequence of Theorem 2.2 is that the
curl operator can be “inverted”, as explained in §3.2.
The analysis of the evolution equations (19) shall require additional properties on
the velocity field provided by Theorem 2.2. After transforming the fluid domain
into a flat strip in §3.3, we provide in §3.4 higher order estimates on the solution.
The control of time derivatives requires a specific treatment, and is performed in
§3.5. Finally, crucial properties of the so called “good unknowns” are provided in
§3.6.

3.1. Proof of Theorem 2.2. We prove in this section Theorem 2.2, that is, we
solve the following div-curl problem in the fluid domain Ω,

(22)


curl U = ω in Ω
div U = 0 in Ω

U‖ = ∇ψ +∇⊥ψ̃, at the surface
Ub ·Nb = 0 at the bottom.

with ψ̃ ∈ Ḣ3/2(Rd) such that ∆ψ̃ = ω ·N (see Lemma 3.7 below for the existence

of ψ̃).
In order for the boundary conditions to make sense, some minimal regularity is
needed on U; let us recall the definitions

H(div ,Ω) = {U ∈ L2(Ω)3,div U ∈ L2(Ω)}(23)

H(curl ,Ω) = {U ∈ L2(Ω)3, curl U ∈ L2(Ω)3};(24)

it is classical (see for instance Chapter 9 of [26]) that normal traces (resp. tangential
traces) at the boundary are well defined in H(div ,Ω) (resp. H(curl ,Ω)). It follows
that if ω ∈ L2(Ω)3 and U solves the first two equations of (22), one can take normal
and tangential traces at the boundaries, so that it makes sense to impose the two
boundary conditions of (22).

The first remark to do, is that it is easy to reduce (22) to the case ψ = 0. Indeed,

let Φ ∈ Ḣ2(Ω) solve the boundary value problem

(25)

{
∆X,zΦ = 0 in Ω,
Φ|surf = ψ, ∂nΦ|bott

= 0

They must however be handled to prove rigorously that the free surface Euler equations are indeed
equivalent to (21). This very careful analysis has been performed only recently in [3].
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(see for instance Chapter 2 of [39] for the existence and uniqueness of such a Φ);

defining Ũ = U−∇X,zΦ, one readily computes that

(26)


curl Ũ = ω in Ω

div Ũ = 0 in Ω

Ũ‖ = ∇⊥ψ̃, at the surface

Ũb ·Nb = 0 at the bottom,

which is the same problem as (22) with ψ = 0.

We look for a solution to (26) under the form Ũ = curl A, where the potential
vector A satisfies the system

(27)


curl curl A = ω
Nb ×Ab = 0
N ·A = 0

(curl A)‖ = ∇⊥ψ̃.

It is important to notice that

Nb ×Ab = 0 =⇒ Nb · (∇×A)|bott
= 0,

which corresponds to the last boundary condition of (26).
Before proving the existence of such a potential vector A in H1(Ω), we need a

series of preliminary lemmas. The first one is a Poincaré inequality for vector fields
whose normal component vanishes at the surface, and whose tangential components
vanish at the bottom.

Lemma 3.1. Assume that ζ ∈ W 1,∞(Rd) satisfies the non vanishing depth condi-
tion (14). Let also A ∈ H(div ,Ω) ∩H(curl ,Ω) be such that

Ab ×Nb = 0, and A ·N = 0.

Then one has

‖A‖2 ≤ C(H0, |ζ|W 1,∞)‖∂zA‖2.

Proof. Let ΠI(X) : R3 → R3 be the projection onto RN(X) parallel to N⊥b , and
ΠII(X) : R3 → R3 be the projection onto the horizontal plane N⊥b parallel to N(X).
One can decompose A under the form

A = AI + AII with AI = ΠIA, AII = ΠIIA.

Since AI vanishes at the surface and AII vanishes at the bottom, we can use the
standard Poincaré inequality to get

‖A‖2 ≤ ‖AI‖2 + ‖AII‖2
≤ |H0 + ζ|∞(‖∂zAI‖2 + ‖∂zAII‖2).

Since the projectors Pj (j = I, II) do not depend on z and have operator norm
bounded by C(|ζ|W 1,∞), we easily deduce that

‖A‖2 ≤ C(|ζ|W 1,∞ , H0)‖∂zA‖2.

�

The second lemma shows that all the derivatives of A can be controlled in terms
of curl A, div A and the trace of A at the surface and bottom.
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Lemma 3.2. Let ζ ∈W 2,∞(Rd) satisfy (14) and let A ∈ H(div ,Ω) ∩H(curl ,Ω)
be such that

Ab ×Nb = 0, and A ·N = 0.

Then one has

‖∇X,zA‖22 ≤ ‖curl A‖22 + ‖div A‖22 + C|ζ|W 2,∞ |A|22,
for some numerical constant C.

Proof. The proof is a small variant of classical estimates (see for instance Chapter
9 in [26]). With the convention of summation of repeated indices, and with the
notation (∂1, ∂2, ∂3)T = ∇X,z, one has∫

Ω

|∂jAi|2 =

∫
Ω

∂jAi(∂jAi − ∂iAj) +

∫
Ω

∂jAi∂iAj

= ‖curl A‖22 +

∫
Ω

∂jAi∂iAj ,

and one can rewrite the second term of the right-hand-side as∫
Ω

∂jAi∂iAj =

∫
Γ

−→n jAi∂iAj −
∫

Ω

Ai∂i∂jAj

=

∫
Γ

(−→n iAj∂jAi −−→n jAj∂iAi

)
+

∫
Ω

∂iAi∂jAj

where −→n is the outward unit normal vector to the boundary Γ of Ω (i.e. the bottom
and the surface); we have therefore obtained

(28) ‖∇X,zA‖22 = ‖curl A‖22 + ‖div A‖22 +

∫
Γ

(−→n iAj∂jAi − (−→n ·A)div A
)
.

Let us now evaluate the surface and bottom contributions of the boundary integral
in the right-hand-side:
- Bottom contribution. Since A is a normal vector field at the bottom, one has

(−→n ·A)(div A)|bott
= 2|A|2Hb + A · ∂−→nA,

where Hb is the mean curvature of the bottom. Remarking that∫
bott

−→n iAj∂jAi =

∫
bott

2(−→n ×A) · curl A + A · ∂−→nA

=

∫
bott

A · ∂−→nA

(since A is normal to the bottom), we get the following expression for the contri-
bution of the bottom to the boundary integral in (28),

(29)

∫
bott

(−→n iAj∂jAi − (−→n ·A)div A
)

= −2

∫
bott

Hb|Ab|2,

which vanishes since the bottom is flat.
- Surface contribution. Since A · −→n = 0 at the surface, the contribution of the
surface to the boundary integral in (28) is of the form∫

surf

−→n iAj∂jAi =

∫
surf

(A · ∇X,z)(A · −→n )−A · (A · ∇X,z)−→n ,

where we still denote by −→n a local extension of −→n inside Ω. Since A is tangent
to the surface, the operator A · ∇X,z is tangential, and the first component of the
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right-hand-side vanishes. Since moreover, the extension of −→n can be chosen such
that ‖−→n ‖W 1,∞ ≤ C|ζ|W 2,∞ , we deduce that

(30)

∫
surf

(−→n iAj∂jAi − (−→n ·A)div A
)
≤ C|ζ|W 2,∞ |A|22.

�

The Lemmas 3.1 and 3.2 imply a useful equivalence property for the H1 norm
of A with the L2 norms of div A and curl A.

Lemma 3.3. Let ζ ∈W 2,∞(Rd) satisfy (14) and let A ∈ H(div ,Ω) ∩H(curl ,Ω)
be such that

Ab ×Nb = 0, and A ·N = 0.

Then one has

‖A‖22 + ‖∇X,zA‖22 ≤ C(|ζ|W 2,∞ , H0)
(
‖div A‖22 + ‖curl A‖22

)
.

Proof. Recalling that Ah and Av stand for the horizontal and vertical components
of A, we deduce from the assumption that A is tangential at the surface that
Av = ∇ζ ·Ah and therefore,

|A|2 ≤ C(|∇ζ|∞)|Ah|2,

and we therefore turn to estimate the L2-norm of Ah. Using the fact that Ah|bott
=

0 by assumption, we can write∫
Rd
|Ah|2 =

∫
Rd

∫ ζ

−H0

∂z|Ah|2 = 2

∫
Ω

Ah · ∂zAh.

Remarking that ∂zAh = −(curl A)⊥h +∇Av, we have that∫
Rd
|Ah|2 = −2

∫
Ω

Ah · (curl A)
⊥
h + 2

∫
Ω

Ah · ∇Av

= −2

∫
Ω

Ah · (curl A)
⊥
h − 2

∫
Ω

(∇ ·Ah)Av − 2

∫
Rd
∇ζ ·AhAv

= −2

∫
Ω

Ah · (curl A)
⊥
h − 2

∫
Ω

(div A)Av + 2

∫
Ω

∂zAvAv

+ 2

∫
Rd
−∇ζ ·AhAv

Remarking that the third term is equal to |Av|2 − |(Av)|bott
|2, and recalling that

Av = ∇ζ ·Ah, we deduce∫
Rd
|Ah|2 = −2

∫
Ω

Ah · (curl A)
⊥
h − 2

∫
Ω

(div A)Av −
∫

R2

Av
2
|bott
−
∫

R2

A2
v.

We can now deduce from the above that

|A|22 ≤ C(|∇ζ|∞)‖A‖2
(
‖div A‖2 + ‖curl A‖2

)
≤ C(|ζ|W 1,∞ , H0)‖∇X,zA‖2

(
‖div A‖2 + ‖curl A‖2

)
,

where we used the Poincaré inequality provided by Lemma 3.1 to obtain the second
inequality. Using Young’s inequality 2ab ≤ ε2a2 + ε−2b2 with ε small enough and
the estimate furnished by Lemma 3.2, we get the result. �
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We can now proceed to construct a solution to (27); we also impose that A be
divergence free. We are therefore concerned with the problem

(31)

{
curl curl A = ω

div A = 0,
in Ω,

with the boundary conditions

(32)


A ·N = 0

Nb ×Ab = 0

(curl A)‖ = ∇⊥ψ̃,

with ψ̃ ∈ Ḣ1/2(Rd). The first step is to construct a variational solution in the
following sense.

Definition 3.4.
(1) We denote by X the closed subspace of H1(Ω)3 defined as

X = {A ∈ H1(Ω)3, div A = 0, A ·N = 0, Nb ×Ab = 0}.

(2) Let ω ∈ L2(Ω)3 and ψ̃ ∈ Ḣ1/2(Rd). Then the vector field A ∈ X is a variational
solution of the system (31)-(32) if and only if

∀C ∈ X,

∫
Ω

curl A · curl C =

∫
Ω

ω ·C +

∫
Rd
∇ψ̃ · C‖,(33)

where we recall the notation C‖ = Ch +∇ζCv.
The following lemma shows the existence and uniqueness of such a variational

solution.

Lemma 3.5. Let ζ ∈ W 2,∞(Rd) satisfy (14), and let ω ∈ L2(Ω)3 and ψ̃ ∈
Ḣ1/2(Rd). Then there exists a unique variational solution A ∈ X to (31)-(32)
in the sense of Definition 3.4. One has moreover

(34) ‖curl A‖2 ≤ C(H0, |ζ|W 2,∞)
(
‖ω‖2 + |∇ψ̃|H−1/2

)
.

Proof. The bilinear form

a(A,C) =

∫
Ω

curl A · curl C

is obviously continuous on X × X; Lemma 3.3 also shows that it is coercive. The
linear form

L(A) =

∫
Ω

ω ·A +

∫
R2

∇ψ̃ ·A‖

also satisfies

L(A) ≤ ‖ω‖2‖A‖2 + |∇ψ̃|
H−

1
2
|A‖|H 1

2

≤ ‖ω‖2‖A‖2 + C(|ζ|W 2,∞)|∇ψ̃|
H−

1
2
‖A‖H1 ,

where we used the trace lemma5 to derive the second inequality; is is therefore
continuous on X and we can apply Lax-Milgram’s theorem to obtain the existence

5By invoking the “trace lemma”, we refer throughout this article to the continuity of the

trace operators at the surface and at the bottom, as operators defined on H1(Ω) with values in

H1/2(Rd),

∀A ∈ H1(Ω), |A| ≤ C(|ζ|W1,∞ )‖A‖H1 and |Ab| ≤ C‖A‖H1 .
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and uniqueness of the variational solution.
Taking C = A in (33) and using the above estimate on L(·), we get

‖curl A‖22 ≤ C(|ζ|W 2,∞)
(
‖ω‖2 + |∇ψ̃|H−1/2

)
‖A‖H1 ,

and the estimate of the lemma therefore follows directly from Lemma 3.3 since
div A = 0. �

Because of the divergence free condition, the space X used as the space of test
functions in Definition 3.4 is too small to ensure that the variational solution pro-
vided by Lemma 3.5 satisfies the first equation of (31) in the sense of distributions.
We therefore want to take a larger space of test functions by removing the diver-
gence free condition in the definition of X, namely, by working with test functions
in the space

H1
b.c.(Ω) = {A ∈ H1(Ω)3, A ·N = 0, Nb ×Ab = 0}.

For all C ∈ H1
b.c.(Ω), we define ϕ by

∆ϕ =div C

∂nϕ|surf =0

ϕ|bott
=0,

so that C−∇X,zϕ ∈ X and therefore∫
Ω

curl A · curl C =

∫
Ω

ω · (C−∇X,zϕ) +

∫
Rd
∇ψ̃ · (C‖ − (∇X,zϕ)‖).

But, if div ω = 0, ∫
Ω

ω · ∇X,zϕ =

∫
Rd
ω ·Nϕ∫

Rd
∇ψ̃ · (∇X,zϕ)‖ =−

∫
Rd

∆ψ̃ϕ.

Thus, if ∆ψ̃ = ω ·N we learn that∫
Ω

curl A · curl C =

∫
Ω

ω ·C +

∫
Rd
∇ψ̃ · C‖(35)

for all C ∈ H1
b.c.(Ω).

It is now easy to deduce that the variational solution furnished by Lemma 3.5 is
a strong solution of (31)-(32).

Lemma 3.6. Let ζ ∈ W 2,∞(Rd) satisfy (14), and let ω ∈ L2(Ω)3 and ψ̃ ∈
Ḣ1/2(Rd). If moreover div ω = 0 and ∆ψ̃ = ω · N , then the variational solu-
tion A ∈ H1(Ω)3 furnished by Lemma 3.5 solves (31) with boundary conditions
(32).

Proof. By construction, div A = 0. The fact that curl curl A = ω stems from (35)
with all C ∈ D(Ω) ⊂ H1

b.c.(Ω) as test functions. It follows that curl A belongs to
H(div ,Ω) ∩H(curl ,Ω) and therefore that the traces of curl A at the surface and
bottom make sense. The fact that these traces satisfy the last condition in (32)
is also a consequence of (35). The first two conditions of (32) are automatically
satisfied since A ∈ H1

b.c.(Ω). �
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Now we have all the ingredients to finish the proof of the theorem. With div ω =

0 and ∆ψ̃ = ω · N , we denote by A ∈ X the variational solution furnished by

Lemma 3.5 and set Ũ = curl A. We get directly from Lemma 3.6 that Ũ ∈
H(div ,Ω) ∩H(curl ,Ω) solves (26). We also get from (34) that

‖Ũ‖2 ≤ C(H0, |ζ|W 2,∞)
(
‖ω‖2 + |∇ψ̃|H−1/2

)
≤ C(H0,

1

hmin
, |ζ|W 2,∞)‖ω‖2,b.(36)

where we used the following lemma to derive the second inequality (we recall that

H
−1/2
0 is defined in Remark 2 and that Hb(div0,Ω) and ‖ω‖2,b are defined in Defi-

nition 2.1).

Lemma 3.7. Let ζ ∈ W 1,∞(Rd) satisfy (14) and ω ∈ Hb(div0,Ω). Then there

exists a unique solution ψ̃ ∈ Ḣ3/2(Rd) to the equation ∆ψ̃ = ω ·N , and one has

|∇ψ̃|H1/2 ≤ C(
1

hmin
, |ζ|W 1,∞)‖ω‖2,b.

Proof. The bilinear form a(u, v) = ∇u·∇v is continuous and coercive on the Hilbert

space Ḣ1(Rd). Let us now define the linear l(·) form on Ḣ1(Rd) by

∀v ∈ Ḣ1(Rd), l(v) :=

∫
Rd
ω ·Nv.

If we can prove that l is continuous, then the existence and uniqueness of a vari-

ational solution ψ̃ ∈ Ḣ1(Rd) to ∆ψ̃ = ω · N will be a direct consequence of Lax-
Milgram’s theorem. We therefore show this continuity property.
Note now that Σ(X, z + σ(X, z)), with σ = 1

H0
(H0 + z)ζ, is a diffeomorphism

mapping the flat strip S to the fluid domain Ω, and denote ω = ω ◦ Σ. Writing
∇σX,z = (J−1

Σ )T∇X,z (with JΣ = dX,zΣ the Jacobian matrix), we can integrate by
parts in the above formula to find

l(v) =

∫
Rd
ωb ·Nbvext

b +

∫
S

(1 + ∂zσ)vext∇σX,z · ω +

∫
S

(1 + ∂zσ)∇σX,zvext · ω

=

∫
Rd

(ωb ·Nb)vext
b +

∫
S

(1 + ∂zσ)∇σX,zvext · ω

where for all v ∈ Ḣ1(Rd), vext is the solution of the boundary value problem{
∆X,zv

ext = 0 in S,
vext
|z=0

= v, (∂zv
ext)|z=−H0

= 0,

i.e. vext =
cosh((z +H0)|D|)

cosh(H0|D|)
v (note that we use the Fourier multiplier notation

even though v belongs to Ḣ1(Rd) which is not a space of tempered distributions;
we refer to Notation 2.28 of [39] to see that this makes sense). One has therefore

l(v) . |ωb ·Nb|H−1/2
0
|vext
b |Ḣ1/2 + C(|ζ|W 1,∞)‖ω‖2‖∇σX,zvext‖2

where for the first term, we used the fact that H
−1/2
0 (Rd) is the dual space of

Ḣ1/2(Rd) (see [11] for a proof). Using the explicit expression of vext, one readily
deduces that

l(v) . C(|ζ|W 1,∞ ,
1

hmin
)‖ω‖2,b|∇v|2,
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which implies the desired continuity property, and therefore the existence and

uniqueness of a variational solution ψ̃ ∈ Ḣ1(Rd) to ∆ψ̃ = ω · N . We also directly
get from the above that

|∇ψ̃|2 ≤ C(|ζ|W 1,∞ ,
1

hmin
)‖ω‖2,b.

In order to obtain an H1/2 estimate of ∇ψ̃, let us take the L2-scalar product of the
equation ∆ψ̃ = ω ·N with Λψ̃ (with Λ = (1−∆)1/2). Integrating by parts, we then
proceed as above to get

|∇ψ̃|2H1/2 = −
∫

Rd
Λψ̃ω ·N

= −
∫

Rd
Λψ̃ext

b ωb ·Nb −
∫
S

(1 + ∂zσ)∇σX,zΛψ̃ext · ω.

One readily deduces from the Cauchy-Schwarz inequality that

|∇ψ̃|2H1/2 ≤ |ωb ·Nb|H−1/2
0
|Λψ̃ext

|bott
|Ḣ1/2 + C(|ζ|W 1,∞)‖ω‖2‖∇σX,zΛψ̃ext‖2

≤ C(|ζ|W 1,∞ ,
1

hmin
)‖ω‖2,b‖Λ∇X,zψ̃ext‖2,

Since ‖Λ∇X,zψ̃ext‖2 . |∇ψ̃|H1/2 (this is a standard smoothing property, see for
instance Lemma 2.20 of [39]), one deduces that

|∇ψ̃|H1/2 ≤ C(|ζ|W 1,∞ ,
1

hmin
)‖ω‖2,b,

which concludes the proof of the lemma. �

The following lemma complements this L2-estimate on Ũ provided by (36) by
an H1-estimate.

Lemma 3.8. Let ζ ∈ W 2,∞(Rd) satisfy (14) and ω ∈ Hb(div0,Ω), and ψ̃ ∈
Ḣ3/2(Rd) be the solution to the equation ∆ψ̃ = ω · N furnished by Lemma 3.7.

If Ũ ∈ L2(Ω)3 solves (26) then Ũ ∈ H1(Ω)3 and one has

‖Ũ‖2 + ‖∇X,zŨ‖2 ≤ C
(
|ζ|W 2,∞ , H0,

1

hmin

)
‖ω‖2,b.

Proof. Let us first remark that the fact that div Ũ = 0 implies

curl curl Ũ = −∆X,zŨ = curl ω

and therefore

−
∫

Ω

∆X,zŨ · Ũ =

∫
Ω

curl ω · Ũ

so that, after integrating by parts we have that∫
Ω

|∇X,zŨ|2 =

∫
∂Ω

(
∂−→n Ũ +−→n × ω

)
· Ũ +

∫
Ω

ω · curl Ũ

=

∫
∂Ω

(
∂−→n Ũ +−→n × curl Ũ

)
· Ũ +

∫
Ω

|ω|2,

where −→n is the outward unit normal vector to the boundary Γ of Ω. At the bottom
−→n = −Nb and wb = 0; since moreover

∂−→n Ũ|bott
= −∂zŨ|bott

and (curl Ũ)h|bott
= ∂zṼ

⊥
|bott

,



WATER WAVES WITH VORTICITY 19

one easily gets that
(
∂−→n Ũ +−→n × curl Ũ

)
|bott

= 0 and therefore∫
Ω

|∇X,zŨ|2 =

∫
surf

(
∂nŨ + n× curl Ũ

)
· Ũ +

∫
Ω

|ω|2

=

∫
Rd

(
N · ∇X,zŨ +N × curl Ũ

)
|surf
· Ũ +

∫
Ω

|ω|2.(37)

In order to evaluate the boundary integral, let us remark that

(N · ∇X,zŨ)|surf
=

(
−∇ζ · ∇Ṽ + (1 + |∇ζ|2)∂zṼ|surf
−∇ζ · (∇w̃)|surf + ∂zw̃|surf

)
and

(
N × curl Ũ

)
|surf

=

 −∂zṼ|surf +∇w̃ −∇ζ∂zw̃|surf
−∇ · Ṽ

⊥
∇⊥ζ +∇ζ · ∂zṼ⊥∇⊥ζ

−∇ζ · ∂zṼ|surf +∇ζ · (∇w̃)|surf

 ,

and use the identity

|∇ζ|2∂zṼ|surf
= (∇ζ · ∂zṼ|surf)∇ζ + (∇ζ⊥ · ∂zṼ|surf)∇ζ

⊥

to obtain(
N · ∇X,zŨ +N × curl Ũ

)
|surf

=
(
N · ∂zŨ|surf)N

+

(
∇w̃ − (∇ζ · ∇)Ṽ −∇ · Ṽ

⊥
∇⊥ζ

0

)
.

Using the fact that div Ũ = 0 we now remark that(
N · ∂zŨ|surf

) = −∂zṼ|surf · ∇ζ + ∂zw̃|surf

= −∂zṼ|surf · ∇ζ − (∇ · Ṽ)|surf

= −∇ · Ṽ ,

and we can then deduce the following expression(
N · ∇X,zŨ +N × curl Ũ

)
|surf

=

(
∇w̃ − (∇⊥ζ · ∇)Ṽ

⊥

−∇ · Ṽ

)
:= F.(38)

Going back to (37), this gives∫
Ω

|∇X,zŨ|2 =

∫
Rd
F · Ũ +

∫
Ω

|ω|2(39)

=

∫
Rd

2Ṽ · ∇w̃ − (∇⊥ζ · ∇)Ṽ
⊥
· Ṽ +

∫
Ω

|ω|2.(40)

Noting that Ṽ = ∇⊥ψ̃− w̃∇ζ and integrating by parts if necessary, all the compo-
nents of the integrand of the first term can be put under the form

P (ζ)∂i∇⊥ψ̃Ũj , Q(ζ)(∇ψ̃)iŨj or Q(ζ)w̃2 (1 ≤ i, j ≤ d),
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with P (ζ) (resp. Q(ζ)) a generic notation for a polynomial in the first (resp. and
second) order derivatives of ζ. We deduce therefore by standard product estimates
that

‖∇X,zŨ‖22 ≤ C(|ζ|W 2,∞)
(
|∇ψ̃|H1/2 |Ũ |H1/2 + |∇ψ̃|2|Ũ |2 + |w̃|22

)
+ ‖ω‖22

≤ C(|ζ|W 2,∞)
(
|∇ψ̃|H1/2 |Ũ |H1/2 + |w̃|22

)
+ ‖ω‖22.(41)

Remarking now that

|w̃|22 = 2

∫
Ω

w̃∂zw̃

≤ C(H0, |ζ|∞)‖w̃‖2‖∂zw̃‖2

and recalling that the trace lemma and Lemma 3.1 yield

|Ũ |H1/2 ≤ C(|ζ|W 1,∞)‖Ũ‖H1 ,

we easily deduce from (41) and Young’s inequality that

‖Ũ‖2H1 ≤ C(H0, |ζ|W 2,∞)
(
|∇ψ̃|2H1/2 + ‖Ũ‖22 + ‖ω‖22

)
.

Using the upper bound on ‖Ũ‖2 provided by (36), we get

‖Ũ‖2 + ‖∇X,zŨ‖2 ≤ C
(
|ζ|W 2,∞ , H0,

1

hmin

)(
‖ω‖2,b + |∇ψ̃|H1/2),

and the H1-estimate of the lemma follows from Lemma 3.7. �

Letting

U = Ũ +∇X,zΦ,

with Φ solving (25), we have therefore constructed a solution to (15). Uniqueness
of this solution follows from Lemma 3.8, while the estimate given in the statement
of the theorem follows from Lemma 3.8 and the estimate

‖∇X,zΦ‖H1 ≤ C(
1

hmin
, |ζ|W 2,∞)|∇ψ|H1/2 ,

which is a well known estimate from the study of irrotational water waves (see for
instance Corollary 2.40 of [39]).

3.2. Inverting the curl operator. Theorem 2.2 can be used to construct an
inverse of the curl operator on the space of divergence free vector fields.

Corollary 3.9. Let ζ ∈ W 2,∞(Rd) be such that (14) is satisfied and Ω be as in
(13). Let also C ∈ H(div0,Ω) be such that Cb ·Nb = 0. Then there exists a unique
solution B ∈ H1(Ω)3 to the boundary value problem

curl B = C in Ω
div B = 0 in Ω
B‖ = ∇⊥∆−1(C ·N) at the surface
Bb = 0 at the bottom

;

we denote this solution B = curl−1C.
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Proof of the corollary. A direct application of Theorem 2.2 (with ψ = 0) provides
existence and uniqueness of a solution to the same boundary problem as in the
statement of the corollary, but with the bottom boundary condition replaced by
Bb ·Nb = 0. The fact that Bb ×Nb = 0 comes from the observation that

(Bb ×Nb)⊥ = ∇⊥∆−1(Cb ·Nb),
which is equal to zero since Cb ·Nb = 0 by assumption. �

3.3. The straightened div-curl problem. We know from Theorem 2.2 that
there exists a unique solution U ∈ H1(Ω)3 of the problem

curl U = ω in Ω
div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω ·N) at the surface
Ub ·Nb = 0 at the bottom.

The study of the regularity properties of this solution is made easier by working
with a transformed equivalent div-curl problem on the flat strip S = Rd× (−H0, 0).
We therefore introduce the diffeomorphism Σ : S → Ω mapping the flat strip S
onto the fluid domain and defined as

Σ(t, ·) :
S → Ω
(X, z) 7→ Σ(t,X, z) = (X, z + σ(t,X, z)),

where σ is the scalar function

σ(X, z) =
1

H0
(z +H0)ζ.

Defining

U =

(
V
w

)
= U ◦ Σ, ω = ω ◦ Σ,

one readily gets that U ∈ H1(Ω)3 is the unique solution to the above div-curl
problem if and only if U ∈ H1(S)3 is the unique solution to the transformed div-
curl problem

(42)


curlσU = ω in S
divσU = 0 in S
U‖ = ∇ψ +∇⊥∆−1(ω ·N) at the surface
Ub ·Nb = 0 at the bottom,

where we use the notations

(43) curlσU = (curl U) ◦ Σ = ∇σX,z × U, divσU = (div U) ◦ Σ = ∇σX,z · U,
with ∇σX,z given by

(44) ∇σX,z = (J−1
Σ )T∇X,z, with (J−1

Σ )T =

(
Idd×d

−∇σ
1+∂zσ

0 1
1+∂zσ

)
(JΣ = dX,zΣ is the Jacobian matrix of the diffeomorphism Σ). More generally, if
F = F ◦ Σ, we define using the convenient notations of [47]

(45) ∂σi F = ∂σi F ◦ Σ (i = t, x, y, z)

and therefore

(46) ∂σi = ∂i −
∂iσ

1 + ∂zσ
∂z (i = t, x, y) and ∂σz =

1

1 + ∂zσ
∂z.
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Notation 3.10. We denote by Uσ[ζ](ψ, ω) the solution to the straightened div-curl
problem (42). According to Definition 2.3, one has

Uσ[ζ](ψ, ω) = U[ζ](ψ,ω) ◦ Σ,

and we have the decomposition

(47) Uσ[ζ](ψ, ω) = UσI [ζ]ψ + UσII [ζ]ω,

with UσI [ζ]ψ = UI [ζ]ψ ◦ Σ and UσII [ζ]ω = UII [ζ]ω ◦ Σ.

Remark 3.11. Straightening the boundary value problems (16) and (25), UσI [ζ]ψ
and UσII [ζ]ω can be alternatively defined as

UσI [ζ]ψ = ∇σX,zφ and UσII [ζ]ω = curlσA

with

(48)

{
∇X,z · P (Σ)∇X,zφ = 0 in S
φ|z=0

= ψ, ez · P (Σ)∇X,zφ|z=−H0
= 0,

where P (Σ) = (1 + ∂zσ)J−1
Σ (J−1

Σ )T , and

(49)



curlσcurlσA = ω in S
divσA = 0 in S

Nb ×Ab = 0
N ·A = 0

(curlσA)‖ = ∇⊥∆−1ω ·N
Nb · curlσAb = 0.

3.4. Higher order estimates. All the properties that can be established for U
have of course a counterpart on the straightened velocity field U = Uσ[ζ](ψ, ω)
introduced in the previous section. For instance, proceeding as for (39), we know
that

∀C ∈ H1(Ω),

∫
Ω

∇X,zU · ∇X,zC =

∫
Ω

ω · curl C +

∫
Rd
F · C,

with C = C|surf
and F as in (38). Working on the straightened domain S, this is

equivalent to saying that

(50) ∀C ∈ H1(S),

∫
S
∇X,zU ·P (Σ)∇X,zC =

∫
S

(1 + ∂zσ)ω · curlσC +

∫
Rd
F ·C,

with P (Σ) = (1 + ∂zσ)J−1
Σ (J−1

Σ )T and

∇X,zU · P (Σ)∇X,zC :=
∑
i,j,k

∂jU
iP (Σ)jk∂kC

i.

The H1-estimate on U given in Theorem 2.2 yields the following H1-estimate on
U ,

(51) ‖U‖2 + ‖∇X,zU‖2 ≤ C(
1

hmin
, H0, |ζ|W 2,∞)

(
‖ω‖2,b + |∇ψ|H1/2

)
;

the theorem below provides higher order estimates on U , that is, estimates on
‖Λk∇X,zU‖ for k ∈ N. It is important to remark that this control is not given in
terms of |Λk∇ψ|H1/2 but in terms of |Pψ(α)|2 (0 < |α| ≤ k + 1), where

(52) P =
|D|

(1 + |D|)1/2
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(so that |Pψ(α)|2 ∼ |∇ψ(α)|H−1/2), while the good unknowns ψ(α) are defined as

(53) ψ(α) = ∂αψ − w∂αζ

(for α = 0, we take ψ(α) = ψ). We also recall that the spaces Hs,k have been
defined in (7): the norm ‖ · ‖Hs,k controls a total number of s derivatives, including
at most k vertical ones. Note also that, with the convention that a summation over
an empty set is equal to zero, the estimate of the proposition coincides of course
with the estimate of Theorem 2.2 when k = 0.

Proposition 3.12. Let N ∈ N, N ≥ 5 and ζ ∈ HN (Rd) be such that (14) is
satisfied. Under the assumptions of Theorem 2.2, there is a unique solution U ∈
H1(S) to (42); if moreover 0 ≤ k ≤ N − 1 and Λkω ∈ L2(S) then the following
higher order estimates hold

‖U‖Hk+1,1 ≤MN

(
|Pψ|H1 +

∑
α∈Nd,1<|α|≤k+1

|Pψ(α)|2 + ‖Λkω‖2,b
)
,

with MN = C(
1

hmin
, H0, |ζ|HN ).

Proof. In order to study the regularity of U we take6 C = ∂2βU (with β ∈ Nd and
k = |β| ≤ N − 1) in (50),∫

S

∇X,zU · P (Σ)∇X,z∂2βU =

∫
S

(1 + ∂zσ)ω · curlσ∂2βU +

∫
Rd
F · ∂2βU.

Integrating by parts and denoting Λ = (1−∆)1/2, we get∫
S
∇X,z∂βU · P (Σ)∇X,z∂βU =

∫
S
∇X,z∂βU · [∂β , P (Σ)]∇X,zU

+

∫
S

Λkω · Λ−k
(
(1 + ∂zσ)curlσ∂2βU

)
+

∫
Rd
∂βF · ∂βU

= I1 + I2 + I3.

Since P (Σ) is coercive in the sense that

(54) ∀Θ ∈ Rd+1, |Θ|2 ≤ C(
1

hmin
, |ζ|W 1,∞)Θ · P (Σ)Θ

(see Lemma 2.27 of [39] or Lemma 2.5 in [38]), we have that

(55) ‖∂β∇X,zU‖22 ≤ C(
1

hmin
, |ζ|W 1,∞)

(
I1 + I2 + I3),

and we therefore need upper bounds on Ii (1 ≤ i ≤ 3).
- Upper bound for I1. Denoting Q(Σ) = P (Σ) − Id, we deduce from the standard
commutator estimate

∀f ∈ H(t0+1) ∩Hk(Rd), ∀g ∈ Hk−1(Rd), |[∂β , f ]g|2 . |f |H(t0+1)∨k |g|Hk−1 ,

6Of course, this is not correct since ∂2βU has not the H1-regularity of the test functions C in
(50). One should instead consider a regularization of ∂2βU , such as, for instance χ(δ|D|)∂2βU ,
where δ > 0 and χ is a smooth, compactly supported function, which is equal to one in a neigh-

borhood of the origin. One should prove all the estimates for this regularized version and then
deduce the result by letting δ → 0. We omit this technical step, and refer to the proof of Lemma
2.39 in [39] where the details are provided in a similar context.
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(with t0 > d/2) that

|I1| ≤ ‖∂β∇X,zU‖2‖Q(Σ)‖L∞H(t0+1)∨k‖Λk−1∇X,zU‖2
≤MN‖∂β∇X,zU‖2‖Λk−1∇X,zU‖2,(56)

where we used the fact that N ≥ t0 + 2 (if t0 > d/2 is chosen close enough to d/2).
- Upper bound for I2. We can write the operator Λ−k

(
(1 + ∂zσ)curlσ∂2β · as a sum

of vectorial operators with coordinates of the form

Λ−k∂2β∂j2 ·, Λ−k(∂j1σ)l∂2β∂j2 ·, j1, j2 = x, y, z, l = 1, 2.

We can therefore use the product estimate (see [30], p. 240)

(57) ∀f ∈ Hr1(Rd), g ∈ Hr2(Rd), |fg|Hr . |f |Hr1 |g|Hr2 ,

for all r, r1, r2 ∈ R such that r1 + r2 ≥ 0, r ≤ rj (j = 1, 2) and r < r1 + r2 − d/2 to
deduce (taking r = −k, r1 = k ∨ t0, r2 = −k) that

‖Λ−k
(
(1 + ∂zσ)curlσ∂2βU

)
‖2 ≤ C(

1

hmin
, |∇X,zσ|L∞Hk∨t0 )‖∂β∇X,zU‖2.

Using a simple Cauchy-Schwarz inequality we then get that

(58) |I2| ≤MN‖Λkω‖2‖∂β∇X,zU‖2.

- Upper bound for I3. Proceeding as for (40), we get

I3 =

∫
Rd

2∂βV · ∇∂βw − (∇⊥ζ · ∇)∂βV ⊥ · ∂βV − [∂β ,∇⊥ζ] · ∇V ⊥ · ∂βV

:=I31 + I32 + I33,

and we now turn to give upper bounds on the three components of the right-hand-
side. Substituting

∂βV = ∂βU‖ − ∂β(w∇ζ)

= ∂β(∇ψ +∇⊥ψ̃)− (∂βw)∇ζ − w∇∂βζ − [∂β , w,∇ζ]

= ∇∂βψ − w∂β∇ζ − (∂βw)∇ζ + ∂β∇⊥ψ̃ − [∂β , w,∇ζ]

one gets

I31 = 2

∫
Rd

(∇∂βψ − w∇∂βζ) · ∇∂βw + 2

∫
Rd

(
− ∂βw∇ζ − [∂β , w,∇ζ]

)
· ∇∂βw

(note that the term involving ∇⊥ψ̃ vanishes). Using the product estimate

(59) ∀f, g ∈ H1/2(Rd),
∫

Rd
f∂jg ≤ |Pf |2|g|H1/2 (1 ≤ j ≤ d)

to control the first term, and integrating by parts in the second one, we obtain

|I31| ≤2|P
(
∇∂βψ − w∇∂βζ

)
|2|∂βw|H1/2

+ |∆ζ|∞|∂βw|22 + |∇[∂β , w,∇ζ]|2|∂βw|2
.|P

(
∇∂βψ − w∇∂βζ

)
|2‖∂βw‖H1 + |ζ|HN |Λkw|22,

where the last inequality stems from the trace lemma, the assumption that N ≥ 5
and standard product estimates; we also have ‖∂βw‖H1 . ‖∇X,z∂βw‖ by Poincaré’s
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inequality. For the second term of the right-hand-side, we also use the fact that
Λkw vanishes at the bottom to write

|Λkw|22 = 2

∫
S

Λkw∂zΛ
kw ≤ 2‖Λkw‖2‖∂zΛkw‖2.

We therefore get

|I31| ≤MN

(
|P
(
∇∂βψ − w∇∂βζ

)
|2 + ‖Λk−1∇X,zU‖2

)
‖Λk∇X,zU‖2.

For I32, we make the same substitution for ∂βV as above to obtain

I32 =

∫
Rd
∇⊥ζ · ∇

[(
∂β∇ψ − w∇∂βζ

)
+ ∂β∇⊥ψ̃ − [∂β , w,∇ζ]

]
· (∂βV − ∂βw∇ζ)⊥

+

∫
Rd

(
(∇⊥ζ · ∇)∇ζ · ∇⊥ζ

)
|∂βw|2;

proceeding as for I31 we therefore obtain

|I32| .MN

(
(|P
(
∇∂βψ − w∇∂βζ

)
|2 + |P∂β∇⊥ψ̃|2 + |PΛk−1w|2)|∂βU |H1/2 + |∂βw|22

)
≤MN

(
|P
(
∇∂βψ − w∇∂βζ

)
|2 + |P∂β∇⊥ψ̃|2 + ‖Λk−1∇X,zU‖2

)
‖Λk∇X,zU‖2.

We therefore need the following lemma.

Lemma 3.13. Under the assumptions of the proposition, the solution ψ̃ to the

equation ∆ψ̃ = ω ·N furnished by Lemma 3.7 satisfies the estimate

|Λk∇ψ̃|H1/2 ≤MN‖Λkω‖2,b.

Proof. Proceeding as in the proof of Lemma 3.7 and using the same notations, we

take the L2-scalar product of the equation ∆ψ̃ = ω ·N with Λ2k+1ψ̃ to obtain

|Λk∇ψ̃|H1/2 =−
∫

Rd
Λ2k+1ψ̃ext

b ωb ·Nb −
∫
S

(1 + ∂zσ)∇σX,zΛ2k+1ψ̃ext · ω

=−
∫

Rd
Λ2k+1ψ̃ext

b ωb ·Nb −
∫
S

(1 + ∂zσ)(J−1
Σ )T∇X,zΛk+1ψ̃ext · Λkω

−
∫
S
∇X,zΛk+1ψ̃ext · [Λk, (1 + ∂zσ)J−1

Σ ]ω.

One readily deduces that

|Λk∇ψ̃|H1/2 . |Λkψ̃ext
b |Ḣ1/2 |Λkωb ·Nb|H−1/2

0
+MN‖∇X,zΛk+1ψ̃ext‖2‖Λkω‖2,

and the result follows from the fact that

|Λkψ̃ext
b |Ḣ1/2 + ‖Λk+1∇X,zψ̃ext‖2 . |Λk∇ψ̃|H1/2 .

�

Using this lemma we obtain the following bound on I32,

|I32| ≤MN

(
|P
(
∇∂βψ − w∇∂βζ

)
|2 + ‖Λkω‖2,b + ‖Λk−1∇X,zU‖2

)
‖Λk∇X,zU‖2.

For I33 we use again the product estimates (57) and (59), and the trace lemma to
get

|I33| ≤ MN |Λk−3/2∇U |2|Λ1/2∂βU |2
≤ MN‖Λk−1∇X,zU‖2‖Λk∇X,zU‖2.
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Gathering the estimates on I31, I32 and I32, we finally get

(60) |I3| ≤MN

(
|P
(
∇∂βψ−w∇∂βζ

)
|2+‖Λkω‖2,b)+‖Λk−1∇X,zU‖2

)
‖Λk∇X,zU‖2.

We can then deduce from (55) and (56), (58) and (60) that for all 0 < k ≤ N −1
and all β ∈ Nd\{0} such that |β| ≤ k, one has

‖∂β∇X,zU‖22 ≤MN

( ∑
1<|α|≤k+1

|Pψ(α)|2 + ‖Λkω‖2,b + ‖Λk−1∇X,zU‖2
)
‖Λk∇X,zU‖2.

Summing these inequalities for all 0 < |β| ≤ k, this yields a control on ‖Λk∇X,zU‖2,
and using the H1-estimate furnished by Theorem 2.2 for the case β = 0, the result
follows by a finite induction on k. �

Theorem 3.12 provides an Hk+1,1-estimate of U . We now deduce a more general
Hk+1,l+1 estimate of U .

Corollary 3.14. Let N ∈ N, N ≥ 5 and ζ ∈ HN (Rd). Under the assumptions of
Theorem 2.2, there is a unique solution U ∈ H1(S) to (42); if moreover 0 ≤ l ≤
k ≤ N − 1 and ω ∈ Hk,l(S) then

‖U‖Hk+1,l+1 ≤MN

(
|Pψ|H1 +

∑
1<|α|≤k+1

|Pψ(α)|2 + ‖ω‖Hk,l + |Λk(ωb ·Nb)|H−1/2
0

)
,

with ωb = ω|z=−H0
and MN as in Theorem 3.12.

Proof. We can rewrite the first two equations of (42) under the form[( ∇
0

)
+ Ñ∂σz

]
× U = ω and

[( ∇
0

)
+ Ñ∂σz

]
· U = 0,

with Ñ = (−∇σT , 1)T , and therefore

Ñ · ∂σz U = −∇ · V and Ñ × ∂σz U = ω +

(
∇⊥w
−∇⊥ · V

)
.

From the identity

∂σz U =
1

1 + |∇σ|2
(
Ñ · ∂σz UÑ + (Ñ × ∂σz U)× Ñ

)
,

we deduce

(61) ∂zU =
1 + ∂zσ

1 + |∇σ|2
(
− (∇ · V )Ñ + ω × Ñ −

(
∇w + (∇⊥ · V )∇⊥σ

∇σ · ∇w

))
.

This identity will be used to trade one vertical derivative of U with one horizontal
one, using the product estimate provided by the following lemma.

Lemma 3.15. Let N ∈ N, N ≥ 5, and 1 ≤ k ≤ N − 1. Then for f ∈ HN−1(S)
and g ∈ Hk(S), one has

∀0 ≤ l ≤ k, ‖Λk−l∂lz(fg)‖2 . ‖f‖HN−1‖g‖Hk,l .
Proof of the lemma. One can decompose Λk−l∂lz(fg) as a sum of terms of the form

Λk−l(∂l
′

z f∂
l−l′
z g), 0 ≤ l′ ≤ l.

Choosing t0 > d/2 such that N > 2t0 + 3/2, these terms can then be bounded from
above using the product estimate (57),

|Λk−l(∂l
′

z f∂
l−l′
z g)(z)|2 . |∂l

′

z f(z)|A|∂l−l
′

z g(z)|B +
〈
|∂l
′

z f(z)|B |∂l−l
′

z g(z)|A
〉
k−l>t0

,
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where the term between brackets should be removed from the r.h.s. when k−l ≤ t0,
and where (A,B) = (Ht0 , Hk−l) or (A,B) = (Hk−l, Ht0). Integrating in z, we
easily deduce

‖Λk−l(∂l
′

z f∂
l−l′
z g)‖2 . ‖∂l

′

z f(z)‖LaA|∂l−l
′

z g(z)|LbB
+
〈
|∂l
′

z f(z)|LcB |∂l−l
′

z g(z)|LdA
〉
k−l>t0

,

with (a, b) and (c, d) being equal to (2,∞) or (∞, 2). The choice of A, B and a, b,
c and d depends on several cases

(1) If t0+l′+1/2 ≤ N−1 and k−l+l′+1/2 ≤ N−1 then (A,B) = (Ht0 , Hk−l)
and (a, b) = (c, d) = (∞, 2).

(2) If t0 + l′+1/2 ≤ N−1 and k− l+ l′+1/2 > N−1 (and therefore k = N−1,
l = l′), then (A,B) = (Ht0 , Hk−l) and (a, b) = (∞, 2), (c, d) = (2,∞).

(3) If t0+l′+1/2 > N−1 and k−l+l′+1/2 ≤ N−1 then (A,B) = (Hk−l, Ht0)
and (a, b) = (∞, 2) (there is no need to specify (c, d) since one then has
k − l < t0).

(4) If t0+l′+1/2 > N−1 and k−l+l′+1/2 > N−1 then (A,B) = (Hk−l, Ht0)
and (a, b) = (c, d) = (2,∞).

The results then follows from the continuous embedding L∞Hr ≤ Hr+1/2,1 (s ∈ R,
see for instance Proposition 2.13 of [39]). For instance, in the first case, this yields

‖Λk−l(∂l
′

z f∂
l−l′
z g)‖2 . ‖f‖Ht0+l′+1/2,l′+1‖g‖Hk−l′,l−l′

+
〈
‖f‖Hk−l+l′+1/2,l′+1‖g‖Hl−l′+t0,l−l′+1

〉
k−l>t0

. ‖f‖HN−1‖g‖Hk,l ,

where we used the assumptions corresponding to the first case. The other cases are
treated similarly. �

Let 1 ≤ l ≤ k; taking the Hk,l norm of (61), we obtain with the help of the
lemma that

‖∂zU‖Hk,l ≤ C(‖σ‖HN )
(
‖U‖Hk+1,l + ‖ω‖Hk,l

)
and therefore

‖U‖Hk+1,l+1 ≤ C(‖σ‖HN )
(
‖U‖Hk+1,l + ‖ω‖Hk,l

)
.

By a finite induction on l, we readily obtain

‖U‖Hk+1,l+1 ≤ C(‖σ‖HN )
(
‖U‖Hk+1,1 + ‖ω‖Hk,l

)
,

and the result then follows from Theorem 3.12. �

3.5. Time derivatives. For the analysis of our formulation (19) of the water waves
equations with vorticity, we shall need to control time derivatives of the solution
U = Uσ[ζ](ψ, ω) to (42). Such a control cannot be obtained with the same methods
as the control on space derivatives obtained in the previous section (i.e. by taking
time derivatives of U as test functions in (50)). We deal with this issue in this
section. We first need the following notation.

Notation 3.16. We say that ζ ∈ C([0, T ];W 1,∞(Rd)) satisfy (14)T if (14) is uni-
formly satisfied by all ζ(t, ·) with t ∈ [0, T ].
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Proposition 3.17. Let T > 0 and ζ ∈ C1([0, T ];W 2,∞(Rd)) satisfy (14)T . Let also

ψ ∈ C1([0, T ]; Ḣ3/2(Rd)) and ω ∈ C1([0, T ];L2(S)d+1) be such that
(
∇σX,z ·ω

)
(t) = 0

for all t ∈ [0, T ] and ωb ·Nb ∈ C1([0, T ];H
−1/2
0 (Rd)). Then one has

∂t
(
Uσ[·](ψ, ω)

)
= Uσ[ζ]

(
∂tψ − w∂tζ +

∇
∆
· (ω⊥h ∂tζ), ∂σt ω

)
+ ∂tσ∂

σ
z Uσ[ζ](ψ, ω),

where (V T , w)T = Uσ[ζ](ψ, ω)|z=0
.

Proof. The main ingredient in the proof is the following identity

(62) δ(∂σj f) = ∂σj (δf − δσ∂σz f) + δσ∂σz ∂
σ
j f (j = x, y, z),

where δ can be any linearization operator (δ = ∂t here). The quantity δf−δσ∂σz f is
called Alinhac’s good unknown after [7]. Its role in the water waves equations was
noticed in [38] but it was in [6] that its interpretation as Alinhac’s good unknown
was understood (see also the discussion in [47]).
Decomposing Uσ[ζ](ψ, ω) as in Remark 3.11, we are led to compute the time deriva-
tives of UσI [ζ]ψ and UσII [ζ]ω:
- Computation of ∂tUI [ζ]ψ. Recalling UσI [ζ]ψ = ∇σX,zφ with φ solving (48), we

have, according to (62),

∂tU
σ
I [·]ψ = ∇σX,z(∂tφ− ∂tσ∂σz φ) + ∂tσ∂

σ
z∇σX,zφ.

On the other hand, and after remarking that

(1 + ∂zσ)∇σX,z · ∇σX,z = ∇X,z · P (Σ)∇X,z,

we can differentiate (48) with respect to time to obtain{
∇X,z · P (Σ)∇X,z(∂tφ− ∂tσ∂σz φ) = 0 in S
(∂tφ− ∂tσ∂σz φ)|z=0

= (∂tφ− ∂tζ∂σz φ)|z=0
, ∂z(∂tφ− ∂tσ∂σz φ)|z=−H0

= 0,

where P (Σ) = (1 + ∂zσ)J−1
Σ (J−1

Σ )T , and where we used the fact that ∂tσ|z=0
= ∂tζ

and ∂tσ|z=−H0
= 0. It follows that

(63) ∂tU
σ
I [·]ψ = UσI [ζ](∂tψ − wI∂tζ) + ∂tσ∂

σ
z UσI [ζ]ψ,

where wI is the vertical component of UσI [ζ]ψ evaluated at the surface.
- Computation of ∂tUII [ζ]ω. Recalling that UσII [ζ]ω = curlσA with A solving (49),
we have, according to (62),

∂tU
σ
II [·]ω = curlσ(∂tA− ∂tσ∂σzA) + ∂tσ∂

σ
z curlσA.

Differentiating (49) with respect to time, we also have{
curlσcurlσ(∂tA− ∂tσ∂σzA) = ∂tω − ∂tσ∂σz ω

divσ(∂tA− ∂tσ∂σzA) = 0,

inside the flat strip S, together with the boundary conditions (with the notation
UII = (V TII , wII)

T := curlσA)
Nb × (∂tA− ∂tσ∂σzA)|z=−H0

= 0

N · (∂tA− ∂tσ∂σzA)|z=0
= ∇∂tζ ·Ah − ∂tσN · ∂σzA|z=0(

curlσ(∂tA− ∂tσ∂σzA)|z=0

)
‖ = ∇⊥∂tψ̃ − ∂tζ(∂zUII)‖ − wII∇∂tζ

Nb · curlσ(∂tA− ∂tσ∂σzA)|z=−H0
= 0.
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In order to simplify the boundary conditions, let us observe that when evaluated
at the surface, the equations divσA = 0 and curlσUII = ω give

N · ∂σzA|z=0
= −∇ ·Ah and − (∂σz UII)‖ = −∇wII + ω⊥h

and that

∆∂tψ̃ = ∂tω ·N − ωh · ∇∂tζ
= (∂tω − ∂tσ∂σz ω|z=0

) ·N + (∂σz ω)|z=0
·N∂tζ − ωh · ∇∂tζ

= (∂tω − ∂tσ∂σz ω|z=0
) ·N −∇ · (ωh∂tζ),

where we used the fact that divσω = 0 to derive the last equation. It follows that

∇⊥∂tψ̃ =
∇⊥

∆

(
(∂tω − ∂tσ∂σz ω|z=0

) ·N
)
−Π⊥(ω⊥h ∂tζ),

where we recall that Π = ∇∇T
∆ and Π⊥ = ∇⊥(∇⊥)T

∆ are respectively the orthog-
onal projectors onto gradient and orthogonal gradient vector fields. These three
identities imply that the boundary conditions simplify into

Nb × (∂tA− ∂tσ∂σzA)|z=−H0
= 0

N · (∂tA− ∂tσ∂σzA)|z=0
= ∇ · (∂tζ ·Ah)(

curlσ(∂tA− ∂tσ∂σzA)|z=0

)
‖ = Π(ω⊥h ∂tζ)−∇(wII∂tζ) + ∇⊥

∆

(
∂σt ω|surf ·N

)
Nb · curlσ(∂tA− ∂tσ∂σzA)|z=−H0

= 0.

Let us now decompose (∂tA− ∂tσ∂σzA) into

(∂tA− ∂tσ∂σzA) = B +∇σX,zϕ,
where ϕ solves{

∇X,z · P (Σ)∇X,zϕ = 0 in S,
N · ∇σX,z |z=0

ϕ = ∇ · (∂tζ ·Ah), Nb · ∇σX,z |z=−H0
ϕ = 0;

and B solves therefore the same equations as ∂tA− ∂tσ∂σzA but where the second
boundary condition is now homogeneous. It follows that

curlσ(∂tA− ∂tσ∂σzA) = curlσB

= Uσ[ζ]
(∇

∆
· (ω⊥h ∂tζ)− wII∂tζ, ∂σt ω

)
and therefore

(64) ∂tU
σ
II [·]ω = Uσ[ζ]

(∇
∆
· (ω⊥h ∂tζ)− wII∂tζ, ∂σt ω

)
+ ∂tσ∂

σ
z UσII [ζ]ω.

The proposition is then a direct consequence of (47), (63) and (64). �

The proposition also allows us to derive the following HN−1 control on ∂tU .

Corollary 3.18. Let the assumptions of Proposition 3.17 be satisfied and let N ∈
N, N ≥ 5. Then one has

‖∂tU‖HN−1,1 ≤ C(MN , |∂tζ|HN−1)

×
(
|∇∂tψ|H1/2 +

∑
1<|α|≤N−1

|P∂tψ(α)|2 + ‖ΛN−2∂tω‖2,b

+ |∇ψ|H1/2 +
∑

1<|α|≤N

|Pψ(α)|2 + ‖ω‖HN−1,1 + |ωb ·Nb|H−1/2
0

)
.
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Proof. Introducing the notations

ψt = ∂tψ − w∂tζ +
∇
∆
· (ω⊥h ∂tζ) and ψt(α) = ∂αψt − wσ[ζ](ψt, ∂σt ω)|z=0

∂αζ

(with α ∈ Nd and wσ[ζ] is the vertical component of the mapping Uσ[ζ] defined in
Notation 3.10), we get from Proposition 3.17 that

∂tU = Uσ[ζ](ψt, ∂σt ω) + ∂tσ∂
σ
z U

= A+B,(65)

we therefore turn to control A and B:
- Control of A. Using Proposition 3.12,

(66) ‖A‖HN−1,1 ≤MN

(
|∇ψt|H1/2 +

∑
1<|α|≤N−1

|Pψt(α)|2 + ‖ΛN−2∂σt ω‖2,b
)
.

We now make the following observations,

|∇ψt|H1/2 ≤ |∇∂tψ|H1/2 + C(|∂tζ|W 2,∞)
(
|w|H3/2 + |ωh|H1/2

)
≤ |∇∂tψ|H1/2 + C(|∂tζ|W 2,∞)

(
‖U‖H2,1 + ‖ω‖H1,1

)
(67)

(the second inequality stemming from the trace lemma), and, for all α ∈ Nd, |α| ≤
N − 1,

ψt(α) = ∂tψ(α) +
(
∂tw − wσ[ζ](ψt, ∂σt ω)|z=0

)
∂αζ − [∂α, w]∂tζ + ∂α

∇
∆
· (ω⊥h ∂tζ)

= ∂tψ(α) +
(
∂tζ∂

σ
zw|z=0

)
∂αζ − [∂α, w]∂tζ + ∂α

∇
∆
· (ω⊥h ∂tζ),

where the formula of Proposition 3.17 has been used to derive the last identity. By
standard product estimates and the trace lemma, this yields

|Pψt(α)|2 ≤ |P∂tψ(α)|2
+C(|ζ|HN , |∂tζ|HN−3/2)

(
|∂σzw|z=0

|H3/2 + |w|HN−1/2 + |ω⊥h |HN−3/2

)
≤ |P∂tψ(α)|2 + C(|ζ|HN , |∂tζ|HN−3/2)

(
‖U‖HN,1 + ‖ω‖HN−1,1

)
.(68)

Using Proposition 3.12 to control ‖U‖HN,1 , we obtain from (66), (67) and (68) that

‖A‖HN−1,1 ≤MN

(
|∇∂tψ|H1/2 +

∑
1<|α|≤N−1

|P∂tψ(α)|2 + ‖ΛN−2∂σt ω‖2,b
)

+ C(|ζ|HN , |∂tζ|HN− 3
2

)
(
|∇ψ|

H
1
2

+
∑

1<|α|≤N

|Pψ(α)|2 + ‖ω‖HN−1,1 + |ωb ·Nb|
H
− 1

2
0

)
.

- Control of B. We get from the product estimates of Lemma 3.15 that

‖B‖HN−1,1 ≤ ‖∂tσ‖HN−1,1‖∂σz U‖HN−1,1

≤ C(MN , |∂tζ|HN−1)
(
|∇ψ|H1/2 +

∑
1<|α|≤N

|Pψ(α)|2 + ‖ω‖HN−1,1 + |ωb ·Nb|H−1/2
0

)
,

where we used Corollary 3.14 to derive the second inequality.



WATER WAVES WITH VORTICITY 31

The estimate of the corollary is then a consequence of these two controls and of
the observation that

‖ΛN−2∂σt ω‖2,b ≤ ‖ΛN−2∂tω‖2,b + C(MN , |∂tζ|HN−3/2)‖ω‖HN−1,1 .

�

Another corollary of Proposition 3.17 is that Uσ[ζ](ψ, ω) has a Lipschitz depen-
dence on its coefficients.

Corollary 3.19. Let N ∈ N, N ≥ 5. Let also (ζj , ψj , ωj) ∈ HN (Rd)× ḢN (Rd)×
HN−2(S) be such that ∇σjX,z · ωj = 0 for j = 1, 2. Then one has

‖Uσ2 [ζ2](ψ2, ω2)− Uσ1 [ζ1](ψ1, ω1)‖HN−2 ≤ C(|ζ|HN , |ψ|ḢN , ‖ω‖HN−2)

×
(
|ζ2 − ζ1|HN + |ψ2 − ψ1|ḢN + ‖ω2 − ω1‖HN−2

)
.

Proof. Let us define time dependent functions on [0, 1] as

∀t ∈ [0, 1], ζ(t) = ζ1 + t(ζ2 − ζ1), ψ(t) = ψ1 + t(ψ2 − ψ1).

For every value of ζ(t), one can define an explicit diffeomorphism Σ(t) as in §3.3;
we then define

ω(t) =
(
ω1 + t(ω2 − ω1)

)
◦ Σ(t) with ωj = ωj ◦ Σ−1

j (j = 1, 2);

by construction, one has ∇σ(t)

X,z · ω(t) = 0. We can therefore write

Uσ2 [ζ](ψ2, ω2)− Uσ1 [ζ1](ψ1, ω1) =

∫ 1

0

∂t
(
U(σ(t))[ζ(t)](ψ(t), ω(t))dt

and use Proposition 3.17 to express the integrand in terms of the time derivatives
of ζ(t), ψ(t) and ω(t). The desired estimate is then a direct consequence of Corollary
3.14. �

3.6. Almost incompressibility of the good unknown. We have already men-
tioned in the proof of Proposition 3.17 the role of Alinhac’s good unknown. As we
shall see later, it shall also play an important role in the energy estimates where
we shall typically have to control terms of the form

(ϕ, (∂αU) ·N) =

∫
S
ϕ†(∇σX,z · ∂αU)(1 + ∂zσ) +

∫
S
∇X,zϕ† · ∂αU(1 + ∂zσ),

where ϕ† is defined in S and satisfies ϕ†|z=0
= ϕ, and with U = Uϕ[ζ](ψ, ω). When

α = 0, the first term in the right-hand-side vanishes since U is incompressible by
construction. When α 6= 0, this is no longer true and this component cannot be
controlled by the L2(S)-norm of |α| derivatives of U . It is however possible to get
rid of this difficulty by working with the good unknown U(α) instead of ∂αU (and
this is actually what we do in §4.3 below), with

(69) ∀α ∈ Nd\{0}, U(α) = ∂αU − ∂ασ∂σz U

while for α = 0 we simply take U(0) = U . Indeed, the good unknown is almost
incompressible, as remarked in [47] and stated in the proposition below. We also
give an estimate on the curl of the good unknown.
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Proposition 3.20. Let N ∈ N, N ≥ 5 and ζ ∈ HN (Rd). Under the assumptions of
Theorem 2.2 and denoting by U = U[ζ](ψ,ω) the solution to (15) and by U = U◦Σ
its straightened version, one has, for all α ∈ Nd, 0 < |α| ≤ N ,

‖∇σX,z · U(α)‖2 + ‖∇σX,z × U(α) − ∂αω‖2

≤MN

(
|∇ψ|H1/2 +

∑
1<|α′|≤|α|

|Pψ(α′)|2 + ‖ω‖H|α|−1 + |ωb ·Nb|H−1/2
0

)
,

with MN , ψα, U(α) as in Theorem 2.2, (53) and (69) respectively.

Proof. For the estimate on the divergence, we reproduce here the proof of [47],
which is based on the following identity, with i = x, y, z,

∂α∂σi f = ∂σi ∂
αf − ∂σz f∂σi ∂ασ + Ci(f),

and where

Ci(f) = −[∂α,
∂iσ

1 + ∂zσ
, ∂zf ]− [∂α, ∂iσ,

1

1 + ∂zσ
]∂zf

−∂iσ[∂α(
1

1 + ∂zσ
) +

∂z∂
ασ

(1 + ∂zσ)2
]∂zf.

It follows that

0 = ∂α∇σX,z · U
= ∇X,z · U(α) + C(U),

with C(U) = C1(V1) + C2(V2) + C3(w). Using the product estimates of Lemma
3.15, we have in particular

‖C(U)‖2 ≤ C(‖σ‖HN , ‖U‖HN ),

and the result is therefore a consequence of Corollary 3.14. The estimate on the
vorticity is obtained along the same lines. �

We can deduce the following property that, together with its proof, will play an
important role in the derivation of the energy estimates in §4.3 below.

Corollary 3.21. Under the assumptions of Proposition 3.20, one has, for all ϕ ∈
H1/2(Rd), and for all k = x, y, |β| ≤ N − 1 and α such that ∂α = ∂k∂

β,

(ϕ,∂kU (β) ·N)

≤MN

(
|∇ψ|H1/2 +

∑
1<|α′|≤|α|

|Pψ(α)|2 + ‖ω‖H|α|−1 + |ωb ·Nb|H−1/2
0

)
|ϕ|H1/2 .

Proof. Remarking that, when β 6= 0,

∂kU(β) = U(α) − ∂βσ∂k∂σz U

(the adaptations to the case β = 0 are straightforward), it is enough to prove the
estimate of the corollary on (ϕ,U (α) ·N). Let us first give the following integration
by parts formula that will be used several times in the sequel,

(70)

∫
S

(∇σX,zf) · gh = −
∫
S
f∇σX,z · gh+

∫
z=0

fg ·N −
∫
z=−1

fg ·Nb,
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where h = 1 + ζ (just remark that h = 1 + ζ = 1 +∂zσ is the Jacobian determinant
of the diffeomorphism Σ : S → Ω so that this formula is just the pullback in S of
the standard integration by parts formula in Ω). It follows from this formula that

(ϕ,U (α) ·N) =

∫
S

(1 + ∂zσ)ϕ†∇σX,z · U(α) +

∫
S

(1 + ∂zσ)∇σX,zϕ† · U(α),

with ϕ† is the extension of ϕ to S given by ϕ† = χ(z|D|)ϕ, with χ a smooth,
compactly supported and even function equal to 1 in a neighborhood of the origin.
Consequently,

(ϕ,U (α) ·N) ≤ C(
1

hmin
, |ζ|W 1,∞)‖ϕ†‖H1

(
‖U(α)‖2 + ‖∇σX,z · U(α)‖2

)
;

since ‖ϕ†‖H1 . |ϕ|H1/2 , the result follows from Propositions 3.12 and 3.20. �

In §4.3 below, we shall derive a priori estimates on ω and on ‖∂kUβ‖2 (k = x, y,
|β| ≤ N−1); the corollary below shall play a crucial role to deduce a priori estimates
on the quantities |Pψ(α)|2 (|α| ≤ N) more closely related to the formulation (19)
of the water waves equations with vorticity.

Corollary 3.22. Under the assumptions of Proposition 3.20, one has

|Pψ(α)|2 ≤MN

(
|Pψ|H3 +

∑
k=x,y,1≤|β|≤|α|−1

‖∂kU(β)‖2 + ‖ω‖HN−1 + |ωb ·Nb|H−1/2
0

)
.

Proof. Since |Pψ(α)|2 ≤ |Pψ(β)|H1 + |ζ|HN |w|W 1,∞ , we first need an upper bound

for |Pψ(β)|H1 . Let us remark that for all β ∈ Nd, |β| ≤ N − 1,

U(β)‖ = (∂βU)‖ − ∂βζ(∂σz U)‖

= ∂βU‖ − w∇∂βζ − [∂β , w,∇ζ]− ∂βζ(∂σz U)‖

and therefore, substituting U‖ = ∇ψ +∇⊥ψ̃,

(71) U(β)‖ = ∇ψ(β) +∇⊥∂βψ̃ +∇w∂βζ − [∂β , w,∇ζ]− ∂βζ(∂σz U)‖,

from which we get

|Pψ(β)|H1 ≤ |P∇
∆
· U(β)‖|H1 + |∇w∂βζ − [∂β , w,∇ζ]− ∂βζ(∂σz U)‖|H1/2

≤ |P∇
∆
· U(β)‖|H1 +MN‖U‖H|β| ,

the last line being a consequence of the product estimates (57) and the trace lemma.
Owing to Corollary 3.14, we then get

|Pψ(β)|H1 ≤ |P∇
∆
· U(β)‖|H1

+MN

(
|Pψ|H1 +

∑
1<|β′|≤|β|

|Pψ(β′)|2 + ‖ω‖H|β|−1 + |ωb ·Nb|H−1/2
0

)
.(72)

By the trace lemma, one gets a control of |P∇∆ · U(β)‖|H1 in terms of the H1-norm
of U(β). The lemma below shall be used together with Proposition 3.20 to get a
control involving only horizontal derivatives of U(β) and therefore more adapted to
the energy estimates of §4.3.
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Lemma 3.23. Let ζ ∈ W 2,∞(Rd) satisfy (14). Let also U ∈ H1(S)3. Then one
has

|P∇
∆
· U‖|H1 ≤ C(

1

hmin
, H0, |ζ|W 2,∞)

(
‖ΛU‖2 + ‖∇σX,z · U‖2 + ‖curlσU‖2,b

)
.

Proof. Let us denote by u the solution to the boundary problem

(73)

{
∇X,z · P (Σ)∇X,zu = (1 + ∂zσ)∇σX,z · U,
u|z=0

= 0, ez · P (Σ)∇X,zu|z=−H0
= 0;

recalling that (1 + ∂zσ)∇σX,z · ∇σX,z = ∇X,z · P (Σ)∇X,zσ, the quantity

(74) Ũ = U −∇σX,zu
solves the div-curl problem

∇σX,z × Ũ = ∇σX,z × U,
∇σX,z · Ũ = 0,

Ũ‖ = ∇(
∇
∆
· U‖) +∇⊥(

∇⊥

∆
· U‖),

Ũ|z=−H0
·Nb = 0,

and therefore,

Ũ = Uσ[ζ](
∇
∆
· U‖,∇σX,z × U)

= UσI [ζ]
∇
∆
· U‖ + UσII [ζ]∇σX,z × U

:= ŨI + ŨII

(using the notations of §3.3). One also gets from the irrotational theory (e.g.
Proposition 3.19 in [39]) that

|P∇
∆
· U‖|H1 ≤ C(

1

hmin
, |ζ|W 2,∞)‖ΛŨI‖2;

and therefore

|P∇
∆
· U‖|H1 ≤ C(

1

hmin
, |ζ|W 2,∞)

(
‖ΛŨ‖2 + ‖ΛŨII‖2

)
≤ C(

1

hmin
, |ζ|W 2,∞)

(
‖ΛU‖2 + ‖Λ∇σX,zu‖2 + ‖ΛŨII‖2

)
,

the last line stemming from (74). The result follows therefore from the estimates

‖Λ∇σX,zu‖2 ≤ C(
1

hmin
, |ζ|W 2,∞)‖∇σX,z · U‖2,

which stems from a standard elliptic estimate on (73), and

‖ΛŨII‖2 ≤ C(
1

hmin
, H0, |ζ|W 2,∞)‖curlσU‖2,b,

which is a direct consequence of Theorem 2.2. �

Using the lemma with U = U(β), we get that

|P∇
∆
· U(β)‖|H1 ≤ C(

1

hmin
, |ζ|W 2,∞)

(
‖ΛU(β)‖2 + ‖∇σX,z · U(β)‖2 + ‖curlσU(β)‖2,b

)
≤ MN

(
‖ΛU(β)‖2 + |∇ψ|H1/2 +

∑
1<|β′|≤|β|

|Pψ(β′)|2 + ‖ω‖H|β| + |ωb ·Nb|H−1/2
0

)
,
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where Proposition 3.20 has been used to derive the second inequality (without the
cancellations obtained by working with the good unknown, the sum in the right-
hand-side would be over all 1 ≤ |β′| ≤ |β|+1 and the induction strategy used below
could not be implemented); owing to (72), the same control holds on |Pψ(β)|H1 . In

order to get the result stated in the corollary, notice that for all α ∈ Nd, α 6= 0, one
can write ∂α = ∂k∂

β for some k = x, y and |β| = |α| − 1 so that

ψ(α) = ∂kψ(β) + ∂βζ∂kw,

and therefore

|Pψ(α)|2 ≤ |Pψ(β)|H1 + |ζ|HN |w|W 2,∞

≤MN

(
‖ΛU(β)‖2 + |Pψ|H3 +

∑
1<|β′|≤|β|

|Pψ(β′)|2 + ‖ω‖HN−1 + |ωb ·Nb|H−1/2
0

)
,

where we also used Proposition 3.12 and the Sobolev embeddingHN (S) ⊂W 2,∞(S)
to derive the second line. Since for all |β| ≥ 2, one can write U(β) = ∂k′U(β′) +

∂k′∂
σ
z U∂

β′ζ, for some k′ = x, y, and β′ ∈ Nd, one has

‖ΛU(β)‖2 ≤
∑

k=x,y,1≤|β′|≤|β|

‖∂kU(β′)‖2 +MN‖U‖H|β|

≤MN

( ∑
k=x,y,1≤|β′|≤|β|

‖∂kU(β′)‖2 +
∑

1<|β′|≤|β|

|Pψ(β′)|2 + ‖ω‖HN−1 + |ωb ·Nb|H−1/2
0

)
,

the last line stemming from Corollary 3.14. We finally deduce that

|Pψ(α)|2 ≤MN

(
|Pψ|H3 +

∑
k=x,y,1≤|β′|≤|β|

‖∂kU(β′)‖2

+
∑

1<|β′|≤|β|

|Pψ(β′)|2 + ‖ω‖HN−1 + |ωb ·Nb|H−1/2
0

)
.

It follows from a finite induction that

|Pψ(α)|2 ≤MN

(
|Pψ|H3 +

∑
k=x,y,1≤|β′|≤|β|

‖∂kU(β′)‖2 + ‖ω‖HN−1 + |ωb ·Nb|H−1/2
0

)
,

which is the desired result.
�

4. Well-posedness of the Hamiltonian water waves equations (19)

We prove in this section the local well-posedness of the water waves equations
(19). Let us introduce here the energy that shall be used to obtain this result,

EN (ζ, ψ, ω) :=
1

2
|ζ|2HN +

1

2
|Pψ|2H3 +

1

2

∑
α∈Nd,0<|α|≤N

|Pψ(α)|22

+
1

2
‖ω‖2HN−1 +

1

2
|ωb ·Nb|H−1/2

0
,(75)

where we recall that ψ(α) = ∂αψ−w∂αζ, that P is defined in (52), and H
−1/2
0 (Rd)

in (8). To this energy, we associate the functional space ENT defined for all T ≥ 0
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as

ENT = {(ζ, ψ, ω) ∈ C
(
[0, T ];H2(Rd)× Ḣ2(Rd)×H2(S)3

)
,

EN ((ζ, ψ, ω)(·)) ∈ L∞([0, T ])}.(76)

We also denote by mN (ζ, ψ, ω) any constant of the form

(77) mN (ζ, ψ, ω) = C
( 1

hmin
, H0, EN (ζ, ψ, ω)

)
.

4.1. A priory energy estimates for the vorticity. We recall that the equation
for the vorticity ω is given by

∂tω + (U · ∇X,z)ω = (ω · ∇X,z)U in Ωt,

with U = U[ζ](ψ,ω) and U[ζ](ψ,ω) as in Definition 2.3. As explained in Remark
2.5, the vorticity ω is studied through the straightened vorticity ω = ω ◦ Σ, where
Σ : S → Ωt is the diffeomorphism introduced in §3.3. Written in terms of ω rather
than ω, using the notations (45) and recalling the notation Uσ[ζ](ψ, ω) = U ◦ Σ,
the vorticity equation becomes,

(78) ∂σt ω + Uσ[ζ](ψ, ω) · ∇σX,zω = ω · ∇σX,zUσ[ζ](ψ, ω) in S.
Solving this equation on a domain with boundaries like the flat strip S requires in
general boundary conditions on the vorticity. We show below that such boundary
conditions are not needed to derive a priori estimates7 if the kinematic equation
holds.

Proposition 4.1. Let N ∈ N, N ≥ 5, T > 0 and (ζ, ψ, ω) ∈ ENT be such that
(14)T and (78) hold on [0, T ]. If moreover ∂tζ − Uσ[ζ](ψ, ω)|z=0

·N = 0 on [0, T ],
then the following estimate holds

d

dt

(
‖ω‖2Hk + |ωb ·Nb|H−1/2

0

)
≤ mN (ζ, ψ, ω),

with mN (ζ, ψ, ω) as defined in (77) and H
−1/2
0 (Rd) given by (8).

Proof. The first step is to rewrite (78) under the form

(79) ∂tω + Vσ[ζ](ψ, ω) · ∇ω + a[ζ](ψ, ω)∂zω = ω · ∇σX,zUσ[ζ](ψ, ω)

with, denoting Ñ = (−∇σT , 1)T (so that Ñ|z=0
= N),

a[ζ](ψ, ω) =
1

1 + ∂zσ

(
Uσ[ζ](ψ, ω) · Ñ − ∂tσ

)
=

1

1 + ∂zσ

(
Uσ[ζ](ψ, ω) · Ñ − z +H0

H0
Uσ[ζ](ψ, ω)|z=0

·N
)

where we used the definition of σ (see §3.3) and the fact that the kinematic equation
is satisfied to derive the second equality. Denoting U = Uσ[ζ](ψ, ω), a = a[ζ](ψ, ω)
etc., the first step is to perform an L2 a priori estimate on the equation

(80) ∂tω + V · ∇ω + a∂zω = f,

with f ∈ L2(S). Taking the L2 scalar product of this equation with ω, we get

1

2
∂t‖ω‖2L2 −

1

2

∫
S

(∇ · V + ∂za)|ω|2 =

∫
S
f · ω,

7The issue of constructing a solution is a bit more complex than the derivation of a priori
estimates; this aspect will be addressed in the proof of Theorem 4.7.
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where we used the fact that a vanishes at the bottom and at the surface. We deduce
that

∂t‖ω‖22 . ‖U‖W 1,∞‖ω‖22 + ‖ω‖2‖f‖2.(81)

In order to get an L2 a priori estimate for (78) we must take f = ω · ∇σX,zU , and
therefore

‖f‖L2 ≤ C(|ζ|W 1,∞)‖ω‖2‖U‖W 1,∞

and we can therefore deduce from (81) and Proposition 3.12 that

d

dt
‖ω‖22 ≤ mN (ζ, ψ, ω).

We now prove higher order a priori estimates. For all j ∈ N and β ∈ Nd with
|β|+ j ≤ N − 1, we get after applying ∂β∂jz to (79),

∂t∂
β∂jzω + V · ∇∂β∂jzω + a∂z∂

β∂jzω = fβ,j ,

with
fβ,j = −[∂β∂jz , V ]∂zω − [∂β∂jz , a]∂zω + ∂β∂jz

(
ω · ∇σX,zU

)
.

This equation is of the form (80) and we therefore get from (81) that

(82) ∂t‖∂β∂jzω‖2L2
σ
. ‖U‖W 1,∞‖ω‖22 + ‖∂β∂jzω‖2‖fβ,j‖2;

with product estimates similar to those of Lemma 3.15, we also get

‖fβ,j‖L2
σ
≤ C

(
|ζ|HN , ‖U‖HN , ‖ω‖HN−1

)
and therefore

∂t‖∂β∂jzω‖2L2
σ
≤ mN (ζ, ψ, ω),

which provides the Hk-estimate on ω of the proposition.
Evaluating the vorticity equation at the bottom, one gets as in Remark 1 that

(83) ∂t(ωb ·Nb) +∇ · (ωb ·NbVb) = 0,

and therefore

∂t|ωb ·Nb|2H−1/2
0

≤ |(ωb ·Nb)Vb|H1/2 |ωb ·Nb|H−1/2
0

;

as a consequence of the trace lemma and Corollary 3.14, we deduce finally

(84) ∂t|ωb ·Nb|2H−1/2
0

≤ mN (ζ, ψ, ω),

and the proof is complete. �

4.2. Quasilinearization of the equations. The following proposition gives the
structure of the equations solved by the derivatives of the solutions to the water
waves equations (19). Note that for the equations on ψ, it is crucial to work with
Alinhac’s good unknown. We also recall that the condition (14)T is defined in
Notation 3.16, while the function space ENT is introduced in (76).

Proposition 4.2. Let N ≥ 5, T > 0 and (ζ, ψ, ω) ∈ ENT be a solution to the water
waves equations (19) on the time interval [0, T ]. If (14)T is satisfied then for all
k = x, y, and β ∈ Nd, |β| ≤ N − 1, one has, with α ∈ Nd such that ∂α = ∂β∂k.

(∂t + V · ∇)∂αζ − ∂kU (β) ·N = R1
α,

(∂t + V · ∇)(U(β)‖ · ek) + a∂αζ = R2
α,

(∂σt + U · ∇σX,z)∂βω = R3
β ,
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with a = g + (∂t + V · ∇)w and where

|R1
α|2 + |R2

α|2 + |PR2
α|2 + ‖R3

β‖2 ≤ mN (ζ, ψ, ω),

with mN (ζ, ψ, ω) as in (77).

Proof. Let us consider the first equation of (19). We use the notation

f ∼ 0 iff |f |2 ≤ mN (ζ, ψ, ω).

Applying ∂α to the first equation of (19), we get

∂t∂
αζ − ∂αU ·N − U · ∂αN = [∂α, U,N ].

One also has

[∂α, U,N ] =
∑

0<β<α

∗β∂α−βU · ∂βN,

where ∗β are scalar coefficients of no importance. We deduce easily from the product
estimate (57) and the assumption N ≥ 5 that

|[∂α, U,N ]|2 ≤ C(|U |HN−1 , |ζ|HN ),

and therefore, owing to the trace lemma and Proposition 3.12, [∂α, U,N ] ∼ 0. This
yields

∂t∂
αζ − ∂αU ·N − U · ∂αN ∼ 0.

Since U · ∂αN = −V · ∇∂αζ and ∂αU · N ∼ ∂kU (β) · N , one readily deduces the
first estimate of the proposition.
We now consider the second equation of (19). Remarking that

w =
U ·N +∇ζ · U‖

1 + |∇ζ|2
,

we can write the second equation of (19) under the form

∂tψ + gζ +
1

2
|U‖|2 −

1

2
(1 + |∇ζ|2)w2 − ∇

⊥

∆
· (ω ·NV ) = 0.

After applying ∂k we obtain that

∂t∂kψ + g∂kζ + V · (∂kU‖ − w∇∂kζ)− w∂k(U ·N)− ∂k
∇⊥

∆
· (ω ·NV ) = 0,

or equivalently, after substituting U‖ = ∇ψ +∇⊥ψ̃,

∂t∂kψ+g∂kζ+V ·
(
(∂k∇ψ−w∇∂kζ)+∂k∇⊥ψ̃

)
−w∂k(U ·N)−∂k

∇⊥

∆
·(ω ·NV ) = 0.

Before differentiating β times this equation, it is convenient to introduce the nota-
tion

f ≈ g ⇐⇒ |f − g|2 + |P(f − g)|2 ≤ mN (ζ, ψ, ω)

and to state the following lemma.

Lemma 4.3. The following identities hold,

[∂β , V ] ·
(
(∇∂kψ − w∇∂kζ) +∇⊥∂kψ̃

)
≈ 0,

−
[
∂β , w

]
∂k(U ·N)− V · [∂β , w]∇∂kζ ≈ 0.
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Proof of the lemma. Let us first observe that

|U |HN−1/2 ≤ mN (ζ, ψ, ω),

|[P, f ]g|2 . |∇f |Ht0 |g|2,
|[∂β , f ]g|H1/2 . |f |HN−1/2 |g|HN−3/2 ;

the first estimate is a direct consequence of the trace lemma and Proposition 3.12,
while the second and third ones follow from the general commutator estimates of
Theorem 3 in [40]. These identities allow us to write

|P[∂β , V ] · (∇∂kψ +∇⊥∂kψ̃ − w∇∂kζ)|2 ≤ mN (ζ, ψ, ω)(1 + |∇ψ̃|HN−1/2)

≤ mN (ζ, ψ, ω),

the last line being a consequence of Lemma 3.13; this yields the first assertion of
the lemma. For the second one, we proceed along the same lines (it is important
to note the most singular terms in ζ of both terms cancel one each other). �

Applying ∂β (with β 6= 0) to the equation on ∂kψ we therefore get, using the
lemma,

∂t∂
αψ+g∂αζ+V ·

(
(∂α∇ψ−w∇∂αζ)+∂α∇⊥ψ̃

)
−w∂α(U ·N)−∂α∇

⊥

∆
·(ω ·NV ) ≈ 0.

Using the evolution equation on ζ, we can substitute ∂α(U ·N) = ∂t∂
αζ to obtain

∂tψ(α) + a∂αζ + V · ∇ψ(α) ≈ ∂α
∇⊥

∆
· (ω ·NV )− V · ∇⊥∂αψ̃

= [
∂α∇⊥

∆
, V ](ω ·N).

Now, a general commutator estimate (Theorem 3 in [40]) implies that

|[∂
α∇⊥

∆
, V ](ω ·N)|H1/2 . |V |HN−1/2 |ω ·N |HN−3/2

. ‖V ‖HN,1‖ω‖HN−1,1

. mN (ζ, ψ, ω),

where we used the trace lemma to derive the second inequality, and Proposition
3.12 to get the third one. It follows that

(85) ∂tψ(α) + a∂αζ + V · ∇ψ(α) ≈ 0.

We now have to relate ψ(α) to the quantity U(β)‖ · ek used in the statement of the
proposition. Proceeding as for (71), we get

(86) U(β)‖ · ek = ψ(α) + ek · ∇⊥∂βψ̃ − [∂β , w, ∂kζ]− ∂βζ(∂σz U)‖ · eκ.

We now need the following lemma.

Lemma 4.4. Let f1, f2 and f3 be defined as

f1 = ek · ∇⊥∂βψ̃, f2 = [∂β , w, ∂kζ], f3 = ∂βζ(∂σz U)‖ · ek;

then one has

(∂t + V · ∇)fj ≈ 0 (j = 1, 2, 3).



40 ANGEL CASTRO AND DAVID LANNES

Proof of the lemma. Let us first prove the lemma for f1. We recall that ∆ψ̃ = ω ·N
and that we get from the vorticity equation evaluated at the surface that

(∂t + V · ∇)(ω ·N) + ω ·N∇ · V = 0

(see Remark 1). Applying ek · ∇⊥∂β∆−1 to this equation, we get therefore

(∂t + V · ∇)f1 = −ek · ∇⊥∂β∆−1
(
ω ·N∇ · V

)
≈ 0,

the second identity stemming from standard commutator estimates, the trace lemma,
and Proposition 3.12. To treat the case of f2, it is sufficient to prove that

(i) (∂t + V · ∇)∂β
′
w ≈ 0 and (ii) (∂t + V · ∇)∂β

′
∂kζ ≈ 0,

for all 0 < β′ < β. For (i), the space derivative is controlled through Proposition
3.12, while the time derivative is controlled by Corollary 3.18 in terms of mN and
|P∂tψα′ |2, with |α′| ≤ N − 1. Now, (85) gives a control of this last quantity in

terms of mN since a∂α
′
ζ ≈ 0 when |α′| ≤ N −1; the identity (i) is therefore proved.

For (ii), we just have to remark that U (α′) ·N ∼ 0 when |α′| ≤ N − 1 (which is the

case if we take ∂α
′

= ∂β
′
∂k) and to use the first identity given in the statement of

the proposition and proved above.
We finally turn to f3, which is a direct consequence of Proposition 3.12, Corollary
3.18 and (ii) above. �

Owing to this lemma and (86), we can replace ψ(α) by U(β)‖ · ek in (85), and the
second assertion of the proposition is proved. The third and last assertion of the
proposition is a simple byproduct of the proof of Proposition 4.1. �

4.3. A priori estimates on the full equations. We recall that the energy
EN (ζ, ψ, ω) is defined in (75),

EN (ζ, ψ, ω) :=
1

2
|ζ|2HN +

1

2
|Pψ|2H3 +

1

2

∑
0<|α|≤N

|Pψ(α)|22 +
1

2
‖ω‖2HN−1 +

1

2
|ωb ·Nb|2.

The following proposition gives an a priori estimate for this energy provided that
the Rayleigh-Taylor criterion is uniformly satisfied (i.e. a remains strictly positive
on the time interval considered) and that the water depth does not vanish.

Proposition 4.5. Let N ≥ 5, T > 0 and (ζ, ψ, ω) ∈ ENT be a solution to the water
waves equations (19) on the time interval [0, T ]. If (14)T is satisfied and if

∃a0 > 0, ∀t ∈ [0, T ], a(t) ≥ a0,

with a as defined in Proposition 4.2, then

∀0 ≤ t ≤ T, EN (ζ, ψ, ω)(t) ≤ C(T,
1

a0
,

1

hmin
, H0, EN (ζ0, ψ0, ω0)).

Proof. Energy estimates are classically obtained by controlling the time derivative
of this expression. This has already partially been done in Proposition 4.1 for the
vorticity. We deal here with the other components of the energy.
Step 1. Control of the low order terms in (ζ, ψ). Computing the time derivative
of these terms, one gets

1

2

d

dt

(
|ζ|22 + |Pψ|2H3

)
= (ζ, ∂tζ) + (Λ3Pψ,Λ3P∂tψ)

≤ |ζ|2|∂tζ|2 + |Pψ|H3 |P∂tψ|H3 .
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Replacing ∂tζ by U ·N according to the first equation of (19) and replacing similarly
∂tψ using the second equation of (19), we get by standard product estimates and
the trace lemma that

|∂tζ|2 + |P∂tψ|H3 ≤ C(|ζ|HN , |U |H7/2 , |ω|H5/2)

≤ C(|ζ|HN , ‖U‖H4,1 , ‖ω‖H3).

We then easily deduce with the help of Proposition 3.12 that

(87)
1

2

d

dt

(
|ζ|22 + |Pψ|2H3

)
≤ mN (ζ, ψ, ω).

Step 2. Control of the higher order terms in (ζ, U). We do not directly give a
control of the components of the energy that involve ∂αζ and ψ(α), for all α 6= 0.
The control of ψ(α) will indeed be obtained indirectly (through Corollary 3.22) from
the control of ∂kU(β) (in the flat strip) derived here. We do not for this purpose
directly use (19) as above, but rather the system exhibited in Proposition 4.2,
namely,

(88)

{
(∂t + V · ∇)∂αζ − ∂kU (β) ·N = R1

α,

(∂t + V · ∇)(U(β)‖ · ek) + a∂αζ = R2
α,

where ∂α = ∂k∂β , with k = x, y and 0 ≤ |β| ≤ N − 1. The nondiagonal terms in
(88) can be cancelled out in the energy estimates by multiplying the first equation
by a∂αζ, and the second one by ∂kU (β) · N . More precisely, multiplying the first

equation of (88) by a∂αζ and integrating over Rd, we get

1

2
∂t(a∂

αζ, ∂αζ)− (∂kU (β) ·N, a∂αζ) = (R1
α, a∂

αζ)− 1

2
(∂ta∂

αζ, ∂αζ)

−(V · ∇∂αζ, a∂αζ)

≤ mN (ζ, ψ, ω),

the last line being a consequence of Proposition 4.2 and Corrollay 3.18 (and a
simple integration by parts for the last term of the right-hand-side). Multiplying
the second equation of (88) by ∂kU (β) ·N and integrating over Rd, we also get(
∂t(U(β)‖ · ek), ∂kU (β) ·N

)
+
(
a∂αζ, ∂kU (β) ·N

)
+
(
V · ∇(U(β)‖ · ek), ∂kU (β) ·N

)
=
(
R2
α, ∂kU (β) ·N)

≤ mN (ζ, ψ, ω),

the last line stemming from Proposition 4.2 and Corollary 3.20. Summing up these
two identities, we get

(89)
1

2
∂t(a∂

αζ, ∂αζ) +
(
(∂t + V · ∇)(U(β)‖ · ek), ∂kU (β) ·N

)
≤ mN (ζ, ψ, ω).

Let us denote by U [(β)‖ the following extension of U(β)‖,

U [(β)‖ = V(β) + w(β)∇σ;

focusing our attention on the second term of the left-hand-side of (89), and remark-
ing that the kinematic equation implies

(90) (∂t + V · ∇)(U(β)‖ · ek) = (∂σt + U · ∇σX,z)(U [(β)‖ · ek)
|z=0

,
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we can deduce from Green’s identity that(
(∂t + V · ∇)(U(β)‖ · ek), ∂kU (β) ·N

)
=

∫
S

(1 + ∂zσ)(∂σt + U · ∇σX,z)(U [(β)‖ · ek)∇σX,z · (∂kU(β))

+

∫
S

(1 + ∂zσ)∇σX,z
[
(∂σt + U · ∇σX,z)(U [(β)‖ · ek)

]
· ∂kU(β).

The first term of the right-hand-side is controlled by mN (ζ, ψ, ω) by a simple appli-
cation of Cauchy-Schwarz inequality and Propositions 3.17 and 3.20. We can also re-
mark that it is possible to commute the operators∇σX,z and (∂σt +U ·∇σX,z)(U [(β)‖·ek)

in the second term of the right-hand-side, up to terms that can similarly be con-
trolled by mN (ζ, U, ω). We therefore have(

(∂t + V · ∇)(U(β)‖ · ek), ∂kU (β) ·N
)

=

∫
S

(1 + ∂zσ)
[
(∂σt + U · ∇σX,z)∇σX,z(U [(β)‖ · ek)

]
· ∂kU(β) + l.o.t.(91)

where l.o.t. stands for lower order terms that can be controlled by mN (ζ, ψ, ω). We
now need the following lemma to relate the quantity ∇σX,z(U [(β)‖ · ek) to ∂kU(β).

Lemma 4.6. Denoting tk = ek + ∂kσez, one has

∇σX,z(U [(β)‖ · ek) = ∂kU(β) + tk × ∂βω + rα,

with

rα = (
(
∇σX,z × U(β)

)
− ∂βω) + w(β)∇σX,z∂kσ;

in particular,

‖(∂σt + U · ∇σX,z)rα‖2 ≤ mN (ζ, ψ, ω).

Proof. Remarking that

∇σX,z(U(β) · ej) = ∂σj U(β) + ej ×
(
∇σX,z × U(β)

)
(j = x, y, z),

one computes

∇σX,z(U [(β)‖ · ek) = ∂σkU(β) + ek ×
(
∇σX,z × U(β)

)
+ ∂σz U(β)∂kσ

+ez ×
(
∇σX,z × U(β)

)
∂kσ + w(β)∇σX,z∂kσ

= ∂kU(β) + tκ ×
(
∇σX,z × U(β)

)
+ w(β)∇σX,z∂kσ,

and the result follows from Proposition 3.20 and Corollary 3.18. �

A direct consequence of (91) and the Lemma is that(
(∂t + V · ∇)(U(β)‖ · ek), ∂kU (β) ·N

)
=

∫
S

(1 + ∂zσ)
[
(∂σt + U · ∇σX,z)∂kU(β)

]
· ∂kU(β)

+

∫
S

(1 + ∂zσ)
[
tk × (∂σt + U · ∇σX,z)∂βω

]
· ∂kU(β) + l.o.t.

= A+B

(with the same meaning as above for l.o.t.). We now turn to analyze A and B.



WATER WAVES WITH VORTICITY 43

• Analysis of A. Using the integration by part formula (70) together with
the identity

∂t

∫
S

(1 + ∂zσ)fg =

∫
S

(1 + ∂zσ)∂σt f g +

∫
S

(1 + ∂zσ)f∂σt g +

∫
z=0

fg∂tζ,

we can write

A =
1

2
∂t

∫
S

(1 + ∂zσ)|∂kU(β)|2 −
1

2

∫
S

(∇σX,z · U)|∂kU(β)|22

−1

2

∫
z=0

|∂kU (β)|2(∂tζ − U ·N)

=
1

2
∂t

∫
S

(1 + ∂zσ)|∂kU(β)|2,(92)

where we used that fact that ∇σX,z ·U = 0 and ∂tζ −U ·N = 0 by the first

equation of (19).
• Analysis of B. By Cauchy-Schwarz inequality, we have

B ≤ C(|ζ|W 1,∞)‖(∂σt + U · ∇σX,z)∂βω‖2‖∂kU(β)‖2
≤ mN (ζ, ψ, ω),(93)

the last line stemming from the third assertion of Proposition 4.2 and
Proposition 3.12.

We deduce from this analysis that(
(∂t + V · ∇)(U(β)‖ · ek), ∂kU (β) ·N

)
=

1

2
∂t

∫
S

(1 + ∂zσ)|∂kU(β)|22 + l.o.t.

so that (89) yields

(94) ∂t

{
(a∂αζ, ∂αζ) +

∫
S

(1 + ∂zσ)|∂kU(β)|22
}
≤ mN (ζ, ψ, ω).

Step 4. Energy estimate on the modified energy. Let us define the modified energy
ẼN = ẼN (ζ, ψ, ω) as

ẼN = |ζ|22 + |Pψ|2H3

+
∑

k=x,y,0<|β|≤N−1

[
(∂k∂

βζ, a∂k∂
βζ) +

∫
S

(1 + ∂zσ)|∂kU(β)|22
]

+ ‖ω‖2HN−1 .

It follows directly from Steps 1, 2 and 3, and the vorticity estimates of Proposition
4.1 that

d

dt
ẼN (ζ, ψ, ω) ≤ mN (ζ, ψ, ω).

Under the assumption made on a, one can write, for all α 6= 0,

|∂αζ|22 ≤
2

a0
(a∂αζ, ∂αζ)

so that, with the help of Corollary 3.22 we have

mN (ζ, ψ, ω) ≤ C
( 1

a0
, ẼN (ζ, ψ, ω)

)
and therefore

(95)
d

dt
ẼN (ζ, ψ, ω) ≤ C

( 1

a0
, ẼN (ζ, ψ, ω)

)
.
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We classically deduce from this differential inequality that for all 0 ≤ t ≤ T ,

(96) ẼN (ζ, ψ, ω)(t) ≤ C(T,
1

a0
,

1

hmin
, H0, ẼN (ζ0, ψ0, ω0)).

Step 5. Conclusion. Corollary 3.22 implies that

EN (ζ, ψ, ω) ≤ C(
1

a0
,

1

hmin
, ẼN (ζ, ψ, ω))

while we get from Proposition 3.12 that

ẼN (ζ0, ψ0, ω0) ≤ C(
1

hmin
, EN (ζ0, ψ0, ω0)).

These two inequalities, together with (96) imply that for all 0 ≤ t ≤ T , one has

EN (ζ, ψ, ω)(t) ≤ C(T,
1

a0
,

1

hmin
, H0, EN (ζ0, ψ0, ω0));

this is exactly the result stated in the proposition. �

4.4. Main result. As explained in Remark 2.5, it is easier to give a functional
framework for our well-posedness result if we replace the equation on the vorticity
ω by an equation on the straightened vorticity ω = ω ◦ Σ in the water waves
equations (19), where we recall that

(97) Σ(t,X, z) = (X, z + σ(t,X, z)) and σ(t,X, z) =
1

H0
(z +H0)ζ(t,X).

Recalling that according to Notation 3.10, we have Uσ[ζ](ψ, ω) = U[ζ](ψ, ω) ◦ Σ,
with horizontal and vertical components Vσ[ζ](ψ, ω) and wσ[ζ](ψ, ω), we also denote

Uσ‖ [ζ](ψ, ω) :=Vσ[ζ](ψ, ω) + wσ[ζ](ψ, ω)∇ζ = U‖[ζ](ψ,ω)

(as usual, quantities evaluated at the surface z = 0 are underlined). Owing to
(78), instead of the set of evolution equations (19) on (ζ, ψ,ω), we are therefore
concerned with the following set of evolution equations on (ζ, ψ, ω),

(98)



∂tζ − Uσ[ζ](ψ, ω) ·N = 0,

∂tψ + gζ +
1

2

∣∣Uσ‖ [ζ](ψ, ω)
∣∣2 − 1

2
(1 + |∇ζ|2)wσ[ζ](ψ, ω)2

−∇
⊥

∆
·
(
ω ·NVσ[ζ](ψ, ω)

)
= 0,

∂σt ω + Uσ[ζ](ψ, ω) · ∇σX,zω = ω · ∇σX,zUσ[ζ](ψ, ω).

Note that as for (19)-(20), these equations make sense if ω is divergence free in the
sense that

(99) divσω = 0 in S,
but that we omit this constraint since it is propagated by the equation on ω if is
initially satisfied.
We also recall the definition (75) of the energy

EN (ζ, ψ, ω) :=
1

2
|ζ|2HN+

1

2
|Pψ|2H3+

1

2

∑
0<|α|≤N

|Pψ(α)|22+
1

2
‖ω‖2HN−1+

1

2
|ωb·Nb|2H−1/2

0

and of the associated functional space ENT defined in (76) for all T ≥ 0 as

ENT = {(ζ, ψ, ω) ∈ C
(
[0, T ];H2(Rd)× Ḣ2(Rd)×H2(S)

)
,

EN ((ζ, ψ, ω)(·)) ∈ L∞([0, T ])};
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we also denote by EN0 the set of (ζ, ψ, ω) ∈ H2(Rd) × Ḣ2(Rd) × H2(S)3 of finite
energy. We recall finally that the Rayleigh-Taylor coefficient a is defined8 as

a = a(ζ, ψ, ω) = g + (∂t + Vσ[ζ](ψ, ω))wσ[ζ](ψ, ω).

Theorem 4.7. Let N ≥ 5 and Θ0 = (ζ0, ψ0, ω0) ∈ EN0 be such that ω0 satisfies
the divergence free condition (99). Assume moreover that

∃hmin > 0,∃a0 > 0, H0 + ζ0 > hmin, a(ζ0, ψ0, ω0) > a0.

Then there exists T > 0 and a unique solution Θ ∈ ENT to (98) satisfying the
divergence free constraint (99), and with initial condition Θ0. Moreover,

1

T
= c1 and sup

t∈[0,T ]

EN (Θ(t)) = c2

with cj = C(EN (Θ0),
1

hmin
, H0,

1

a0
) for j = 1, 2.

Proof. The strategy of the proof is the following. In Step 1, we give an equivalent
formulation of the water waves equations (100); in view of regularizing these equa-
tion, we define and study in Step 2 mollifiers in the horizontal and vertical variables.
Since the divergence free constraint (99) is a consequence of the particular struc-
ture of the vorticity equation in (100), it may not hold with regularized equations;
this would be an obstruction to solving the div-curl problem studied in §2.2, which
requires that the vorticity be divergence free. We therefore explain in Step 3 how to
project any vector field in H1(S)d+1 on its divergence free component. The regu-
larized equations are then defined in Step 4, and solved with standard ODEs tools.
The solution thus obtained is studied in Step 5, where we prove a posteriori that
its vorticity is divergence free. Energy estimates inspired by the a priori estimates
of Proposition 4.5 are then established in Step 6 and used in Step 7 to prove that
the solutions to the regularized equations converge to a solution of (100).
For the sake of simplicity, we often write U = Uσ[ζ](ψ, ω), a = a[ζ](ψ, ω), etc.
when no confusion is possible.
Step 1. Modification of the vorticity equation. As explained in the proof of Propo-
sition 4.1, it is equivalent to solve the equations (98) with the vorticity equation
replaced by

∂tω + Vσ[ζ](ψ, ω) · ∇ω + a[ζ](ψ, ω)∂zω = ω · ∇σX,zUσ[ζ](ψ, ω)

with, denoting N(z) = (−∇σT , 1)T (so that N(0) = N),

a[ζ](ψ, ω) =
1

1 + ∂zσ

(
Uσ[ζ](ψ, ω) ·N(z)− z +H0

H0
Uσ[ζ](ψ, ω)|z=0

·N
)
.

The equations (98) are therefore equivalent to

(100) ∂tΘ + F(Θ) = 0,

with

Θ =

 ζ
ψ
ω

 , F(Θ)

 F1(Θ)
F2(Θ)
F3(Θ)


8The notation a = a(ζ, ψ, ω) suggests that a is a function of (ζ, ψ, ω) and not of their time

derivatives. We actually use an alternative definition of a where ∂t
(
wσ [ζ](ψ, ω)

)
is written in terms

of ∂tψ, ∂tζ and ∂σt ω through Proposition 3.17, and where these time derivatives are replaced by

purely spatial operators using the time evolution equations provided by (98).
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and

F1(Θ) = −Uσ[ζ](ψ, ω) ·N,

F2(Θ) = gζ +
1

2

∣∣Uσ‖ [ζ](ψ, ω)
∣∣2 − 1

2
(1 + |∇ζ|2)wσ[ζ](ψ, ω)2,

F3(Θ) = Vσ[ζ](ψ, ω) · ∇ω + a[ζ](ψ, ω)∂zω − ω · ∇σX,zUσ[ζ](ψ, ω).

Step 2. Definition of the mollifiers. For the horizontal variables, we use a standard
mollifier. We define, for all 0 < ι < 1, the mollifier J ι = χ(ι|D|), where χ : R→ R
is a smooth, even, and compactly supported function equal to 1 in a neighborhood
of the origin. The mollifying properties of J ι are classical and straightforwardly
deduced from standard results on Fourier multipliers. We shall in particular use
the fact that

(101) ∀s, t ∈ R, ∃Cιs,t > 0, ∀f ∈ Ht(Rd) |J ιf |Hs ≤ Cιs,t|f |Ht

and
(102)

∀ι1, ι2 > 0, ∀s ∈ R, ∃C > 0, ∀f ∈ Hs+1(Rd), |(J ι
1

− J ι
2

)f |Hs ≤ C|ι1− ι2||f |Hs+1 .

For the vertical variable for which Fourier transform cannot be used, we use another
kind or regularization based on the following lemma; in the statement, we use the
following functional spaces, where a is some smooth enough function defined on S,

H(a∂z,S) :={f ∈ L2(S); a∂zf ∈ L2(S)},

Hk(a∂z,S) :={f ∈ Hk(S),∀β ∈ Nd,∀j ∈ N, |β|+ j ≤ k, a∂z∂β∂jzf ∈ L2(S)}

Va(S) :={f ∈ H−1(S),∃f̃ ∈ L2(Rd), f = a∂z f̃}.

Lemma 4.8. Let N ≥ 5. Let a ∈ W 1,∞(S) be such that a|z=0
= a|z=−H0

= 0 and
0 < ι < 1.
i. The mapping

(1− ι2∂z(a2∂z·)) :
H(a∂z,S) → H−1(S)
f 7→ f − ι2∂z(a2∂zf)

is well defined and one-to-one.
ii. One also has L2(S) + Va(S) ⊂ Range (1− ι2∂z(a2∂z·)).
iii. Let a ∈ HN−1(S), and 0 ≤ k ≤ N − 1. Then, for ι > 0 small enough, the
mapping

Kι[a∂z] :
Hk(S) → Hk(a∂z,S)
f 7→ (1− ι2∂z(a2∂z·))−1(a∂zf)

is well defined and continuous; if k ≤ N −2, the result remains true if one assumes
only that a ∈ HN−2(S).
iv. Under the same assumptions, one also has

∀β ∈ Nd,∀j ∈ N, |β|+ j ≤ k, (∂β∂jzK
ι[a∂z]f, ∂

β∂jzf) ≤ C(‖a‖HN−1)‖f‖Hk ;

if k ≤ N − 2, one can replace ‖a‖HN−1 by ‖a‖HN−2 in the right-hand-side.
v. For all 0 < ι1 ≤ ι2 < 1 and all f ∈ HN−1(S), one has

‖Kι1 [a∂z]f −Kι2 [a∂z]f‖HN−3 ≤ |ι1 − ι2|C(‖a‖HN−1)‖f‖HN−1 .
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Proof of the lemma. The fact that (1 − ι2∂z(a2∂z·)) is one-to-one follows immedi-
ately by taking f = g in the following integration by parts formula (recall that a is
assumed to cancel at the boundaries)

∀f, g ∈ H(a∂z, S),
(
(1− ι2∂z(a2∂z·))f, g

)
= (f, g) + ι2(a∂zf, a∂zg)

:= B(f, g).(103)

In order to prove the second point of the lemma, we need to prove that for all
f1, f2 ∈ L2(S), there exists u ∈ H(a∂z,S) such that

(1− ι2∂z(a2∂z·))u = f1 + ∂z(af2).

We prove the existence of a variational solution, i.e. of u ∈ H(a∂z,S) such that

∀g ∈ H(a∂z;S), B(u, g) = (f1 + ∂z(af2), g);

since the bilinear form is obviously continuous and coercive on H(a∂z,S), the exis-
tence of a variational solution is granted by Lax-Milgram’s theorem if we can prove
that g 7→ (f1 + ∂z(af2), g) defines a continuous linear form on H(a∂z,S). Since a
vanishes at the boundaries, one has

(f1 + ∂z(af2), g) =(f1, g)− (f2, a∂zg)

≤‖f1‖2‖g‖2 + ‖f2‖2‖a∂zg‖2,

which implies the desired continuity property. Note moreover for later use that,
owing to (103), the solution u = (1 − ι2∂z(a

2∂z·))−1(f1 + ∂z(af2)) satisfies the
bound

(104) ‖u‖2 + ι‖a∂zu‖2 ≤ 2‖f1‖2 +
2

ι
‖f2‖2.

From the second point, one can define Kι[a∂z] : L2(S)→ H(a∂z,S). For f ∈ L2(S)
let u = Kι[a∂z]f . We need to prove that if f ∈ Hk(S), then u ∈ Hk(a∂z,S).
Applying ∂β∂jz , with |β|+ j ≤ k to the relation

(1− ι2∂z(a2∂z·))u = a∂zf = −(∂za)f + ∂z(af),

we obtain

(105) (1− ι2∂z(a2∂z·))∂β∂jzu = f1 + ∂z(af2)

where f1 and f2 are of the form

f1 = ∂z[∂
β∂jz , a]f − ∂β∂jz

(
(∂za)f

)
+

+ι2∂z

[ ∑
|β′|+j′≥1,|β′′|+j′′≥1

∗(∂β
′
∂j
′

z a)(∂β
′′
∂j
′′

z a)∂β−β
′−β′′∂j−j

′−j′′
z ∂zu

]
f2 = ∂β∂jzf + ι2

∑
|β′|+j′≥1

∗(∂β
′
∂j
′

z a)∂β−β
′
∂j−j

′

z ∂zu,

where we denoted by ∗ numerical coefficients of no importance here. From (104)
and (105), and using the product estimates as in the proof of Lemma 3.15, we have

‖∂β∂jzu‖2 + ι‖a∂z∂β∂jzu‖2 . ‖a‖HN−1‖f‖Hk + ι2‖a‖2HN−1‖u‖Hk

+
1

ι

(
‖f‖Hk + ι2‖a‖HN−1‖u‖Hk

)
.
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Summing over all |β| + j ≤ k and taking ι small enough to absorb the terms in
‖u‖Hk in the right-hand-side by the left-hand-side of the inequality, we get

(106) ‖u‖Hk + ι
∑
|β|+j≤k

‖a∂z∂β∂jzu‖2 ≤ C(‖a‖HN−1 ,
1

ι
)‖f‖Hk ,

which proves the third point of the lemma.
For the fourth point, let us first prove the case k = 0. With f̃ = (1−ι2∂z(a2∂z·))−1f ,
we have

(Kι[a∂z]f, f) =
(
a∂z(1− ι2∂z(a2∂z·))f̃ , f̃

)
=− 1

2

(
(∂za)f̃ , f̃

)
+ ι2

(
a∂z f̃ , ∂z(af̃)

)
,

and therefore

(Kι[a∂z]f, f) ≤ C(‖∂za‖∞)(‖f̃‖22 + ι2‖a∂z f̃‖22)

≤ C(‖∂za‖∞)‖f‖2,

the second inequality stemming from (104); the result is therefore proved when
k = 0. When 0 < k ≤ N − 1, we write, for all |β|+ j ≤ k,

(∂β∂jzK
ι[a∂z]f, ∂

β∂jzf) = (∂β∂jzf,K
ι[a∂z]∂

β∂jzf) +
(
∂β∂jzf, [∂

β∂jz ,K
ι[a∂z]]f

)
;

we can use the case k = 0 to control the first term of the r.h.s. The commutator
[∂β∂jz ,K

ι[a∂z]]f can then be controlled with the same computations as in the proof
of the third point, but without the term ∂β∂jzf in f2, which was responsible for the
ι−1 singularity in (106). We therefore have

‖[∂β∂jz ,Kι[a∂z]]f‖ ≤ C(‖a‖HN−1)‖f‖Hk ,
and the result follows.
For the last point of the lemma, let us write uj = Kιj [a∂z]f (j = 1, 2). One
computes that

u1 − u2 = −(ι22 − ι22)(1− ι21∂z(a2∂z·))−1∂z(a
2∂zu2);

using (106), we deduce that

‖u1 − u2‖HN−3 ≤ |ι22 − ι21|C(‖a‖HN−1)‖∂z(a2∂zu2)‖HN−3

≤ |ι22 − ι21|C(‖a‖HN−1)‖u2‖HN−1

≤ |ι
2
2 − ι21|
ι2

C(‖a‖HN−1)‖f‖HN−1

(the last line follows from the computations performed in the proof of the third
point), which implies the result stated in the lemma. �

Step 3. Relaxing the divergence-free condition on the vorticity. The div-curl
problem has been solved in §2.2 assuming that ∇X,z ·ω = 0, or equivalently ∇σX,z ·
ω = 0. Consistently with Definition 2.1, we introduce the notations

Hk(divσ0 ,S) ={ω ∈ Hk(S),∇σX,z · ω = 0},

Hk
b (divσ0 ,S) ={ω ∈ Hk(divσ0 ,S), ω|z=−H0

·Nb ∈ H−1/2
0 }.

If ω 6∈ Hk
b (divσ0 ,S), it is therefore not possible to define Uσ[ζ](ψ, ω). The vorticity

equation in (98) preserves the divergence free-property, so that these equations
make sense if the vorticity field is initially diverge-free. However, the regularization
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of the vorticity equation introduced in Step 3 below does not preserve a priori
the divergence free condition (we only show a posteriori that it does so) and we
therefore have to define the projection onto divergence-free vector fields as follows,
for all 1 ≤ k ≤ N − 1,

π[ζ] :
Hk
b (S) → Hk(divσ0 ,S)

ω 7→ ω −∇σX,zφ,

where we denote by Hk
b (S) the set of all ω ∈ Hk(S) such that ωb ·Nb ∈ H−1/2

0 (Rd),
while φ solves the boundary value problem{

∇X,z · P (Σ)∇X,zφ = (1 + ∂zσ)∇σX,z · ω,
φ|z=0

= 0, ez · P (Σ)∇X,zφ|z=−H0
= 0,

and where we recall that P (Σ) = (1 + ∂zσ)J−1
Σ (J−1

Σ )T and (1 + ∂zσ)∇σX,z · ∇σX,z =

∇X,z ·P (σ)∇X,z. By simple elliptic estimates similar to those of Corollary 3.14, we
get that for all 0 ≤ j ≤ N − 1,

‖∇X,zφ‖Hk ≤MN (‖ω‖Hk + |ωb ·Nb|H−1/2
0

).

In particular, if ω ∈ H1(S) and ωb ·Nb ∈ H−1/2
0 (Rd) (note that the H1 regularity

is imposed on ω so that the normal trace of ω at the bottom makes sense) then
π[ζ]ω ∈ H1

b (S,divσ0 ,S); when ω ∈ H1(S)\H1
b (divσ0 ,S), we can therefore replace

Uσ[ζ](ψ, ω) by Uσ[ζ](ψ, π[ζ]ω), which is well defined. We also have that for all
1 ≤ k ≤ N − 1,

(107) ∀ω ∈ Hk
b (S), ‖π[ζ]ω‖Hk ≤MN

(
‖ω‖Hk + |ωb ·Nb|H−1/2

0

)
.

Step 4. Existence of a local solution for a regularized system. We consider the
following regularization of the water waves equations (100),

(108) ∂tΘ + Fδ,ι(Θ) = 0,

with 0 < δ, ι < 1 and

Fδ,ι1 (Θ) =− J ι
(
Uσ[ζ](ψ, π[ζ]ω) ·N

)
,

Fδ,ι2 (Θ) =gJ ιζ +
1

2
J ι
∣∣Uσ‖ [ζ](ψ, π[ζ]ω)

∣∣2 − 1

2
J ι
[
(1 + |∇ζ|2)wσ[ζ](ψ, ω)2

]
+ δJ ιΛζ,

Fδ,ι3 (Θ) =gι −∇σX,zQ,

with

gι =J ι
(
Vσ[ζ](ψ, π[ζ]ω) · ∇ω

)
+Kι[a[ζ](ψ, π[ζ]ω)∂z]ω

− J ι
(
ω · ∇σX,zUσ[ζ](ψ, π[ζ]ω)

)
.

We also consider regularized initial conditions,

Θ|t=0
= (J ιζ0, J ιψ0, ω0).

The reasons why such a regularization is introduced are listed below:

• Projection onto the divergence free component of the vorticity. As already
mentioned, the mapping Uσ[ζ](ψ, ω) is well defined provided that ∇σX,z ·
ω = 0. Since such a condition is not necessarily propagated from the
initial condition by the regularized vorticity equation, we have to replace
Uσ[ζ](ψ, ω) by Uσ[ζ](ψ, π[ζ]ω) in all its occurrences.
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• Mollifiers. Horizontal derivatives are regularized with the mollifier J ι. For
the vertical derivative, the mollifier Kι[a∂z] is used; this is made possible
by the fact that a vanishes at the surface and at the bottom.
• Dispersive regularization with parameter δ. The purpose of the term δJ ιΛζ

in Fδ,ι2 (Θ) is to allow for the control of an extra 1/2-derivative on ζ, uni-
formly with respect to ι, and that will be used to control commutator terms
due to the above mollifiers.
• Pressure term Q. If we simply regularize the equation as explained above,

the equation does not preserve the divergence free condition anymore. In
order to recover this property, we choose the pressure Q so that ∂tdivσω =
0. This leads to9

(109)


∇X,z · P (Σ)∇X,zQ = (1 + ∂zσ)∇σX,z · gι

+∇σX,z
(z +H0

H0
J ι(U ·N)

)
· ∂zω,

Q|z=0
= 0, ez · P (Σ)∇X,zQ = 0

(we recall that (1 + ∂zσ)∇σX,z · ∇σX,z = ∇X,z · P (Σ)∇X,z).
Before proceeding to construct a solution to the regularized equations (108), we
need to provide some estimates on the pressure term ∇σX,zQ. We shall use the
following lemma.

Lemma 4.9. Let k = N − 2, N − 1, g ∈ Hk(S) and h ∈W k,∞((−H0, 0);Hk(Rd))
be such that h|z=−H0

= 0. Then there is a unique solution Q ∈ Ḣk+1(S) to{
∇X,z · P (Σ)∇X,zQ = (1 + ∂zσ)∇σX,z · g + h · ∂zω,
Q|z=0

= 0, ez · P (Σ)∇σX,zQ|z=−H0
= 0,

and one has
‖∇σX,zQ‖Hk ≤MN

(
‖g‖Hk + ‖h‖Wk,∞Hk‖ω‖Hk

)
.

Proof of the lemma. Existence of a solution follows classically from Lax-Milgram’s
theorem. In order to get an L2-estimate on ∇X,zQ (and therefore on ∇σX,zQ), one

multiplies by Q, integrates by parts, and use the coercivity property (54) of P (Σ)
to get

‖∇X,zQ‖22 ≤MN‖g‖2‖∇X,zQ‖2 +

∫
Rd
gb ·NbQb + ‖h‖W 1,∞‖ω‖2‖∇X,zQ‖,

where we used for the last term the fact that h vanishes at the bottom, and Q
vanishes at the surface. From the trace lemma we then get

‖∇X,zQ‖2 ≤MN (‖g‖H0,1 + ‖h‖W 1,∞‖ω‖2
)
.

In order to control horizontal derivatives of ∇X,zQ, just remark that Q̃ = ΛsQ
solves

∇X,z · P (Σ)∇X,zQ̃ = (1 + ∂zσ)∇σX,z ·
(
Λsg − JΣ[Λs, P (Σ)]∇X,zQ

)
+h · ∂z(Λsω) + f,

Q̃|z=0
= 0, ez · P (Σ)∇σX,zQ̃|z=−H0

= −ez · [Λs, P (Σ)]∇X,zQ|z=−H0
,

9We use the fact that ∂σt = ∂t − ∂tσ
1+∂zσ∂z

∂z , and substitute

∂tσ =
z +H0

H0
Jι(U ·N),

which holds provided that the regularized kinematic equation is satisfied.



WATER WAVES WITH VORTICITY 51

with f = [Λs, N(z)
1+∂zσ

]∂zg + [Λs,h]∂zω. Proceeding as above, we get

‖∇X,zQ̃‖2 ≤MN (‖g‖Hs,1 + ‖[Λs, P (Σ)]∇X,zQ‖2 + ‖h‖W 1,∞‖ω‖Hs,0 + ‖f‖2
)
.

Controlling the commutator in terms of s − 1 derivatives of ∇X,zQ one get after
a finite induction (see Proposition 2.36 if [39] for details on the control of this
commutator term) that for all 0 ≤ s ≤ N − 1,

‖Λs∇X,zQ‖2 = ‖∇X,zQ̃‖2 ≤MN (‖g‖Hs,1 + ‖h‖W 1,∞‖ω‖Hs,0 + ‖f‖2
)
.

Using commutator estimates (e.g. Corollary B.16 in [39]) and the expression of f ,
we also get (with t0 > d/2)

‖f‖2 ≤MN

(
‖g‖Hs,1 + ‖h‖L∞Hs∨(t0+1)‖ω‖Hs,1

)
,

and therefore

‖∇X,zQ‖Hs,0 ≤MN (‖g‖Hs,1 + ‖h‖W 1,∞Hs∨(t0+1)‖ω‖Hs,1
)
.

Using the equation to express ∂2
zQ in terms of first and second order derivatives of

Q involving at most one vertical derivative, we get, for all 1 ≤ k ≤ s,
‖∇X,zQ‖Hs,k ≤MN (‖g‖Hs,k + ‖h‖Wk,∞Hs∨(t0+1)‖ω‖Hs,k

)
,

and the result of the lemma follows. �

Applying the lemma to (109) with k = N − 2, g = gι and h = ∇σX,z(
z+H0

H0
J ι(U ·

N)), we deduce from the product estimate ‖fg‖HN−2 . ‖f‖HN−2‖g‖HN−2 and the
third point of Lemma 4.8 that

‖∇σX,zQ‖HN−2 .
(
‖U‖HN−1 + ‖a‖HN−2

)
‖ω‖HN−2

. C(|ζ|HN , |∇ψ|HN−1 , ‖ω‖HN−2 , |ωb ·Nb|H−1/2
0

),(110)

where we used the definition of a in terms of U and Corollary 3.14 to derive the
second inequality.

We can now proceed to construct a solution to the regularized system (108). Let
us introduce the space X and its open subset X0 as

X = HN (Rd)× ḢN (Rd)×HN−2
b (S),

X0 = {(ζ, ψ, ω) ∈ X, inf
Rd
|H0 + ζ| > 0, a(ζ, ψ, ω) > 0}.

From (101) and Corollary 3.14, Fδ,ιj (j = 1, 2) define smooth mappings10 on X0

with values in H∞(Rd). Using also the third point of Lemma 4.8, together with

(110), Fδ,ι3 defines a smooth mapping on X0 with values in HN−2(S). We can
therefore deduce that F ι,δ maps X0 into X provided that for all Θ ∈ X0, one has

Fδ,ι3 (Θ)|z=−H0
·Nb ∈ H−1/2

0 (Rd). One computes after recalling that a and w vanish
at the bottom,

Fδ,ι3 (Θ)|z=−H0
·Nb = J ι

(
V · ∇ωv

)
|z=−H0

− J ι
(
ωv∂

σ
zw
)
|z=−H0

,

where ωv stands for the vertical component of ω. Now, since by construction U is
divergence free, one has ∂σzw|z=−H0

= −∇ · Vb and therefore

F ι3(Θ)|z=−H0
·Nb = ∇ · J ι

(
V ωv

)
|z=−H0

,

10This follows from the fact that Uσ [ζ](ψ, ω) has a Lipschitz dependence on ζ, ψ and ω, as
shown in Corollary 3.19.
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which implies the desired result. It follows that F ι,δ defines a smooth mapping X0

with values in X; by standard results on ODEs, there exists a maximal existence
time T ι,δ such that there exists a unique solution Θ ∈ C1([0, T ι,δ); X) to (108).
Step 5. Properties of the solution to the regularized system. The solution con-
structed in the previous step has some extra regularity properties. One has for
instance (ζ, ψ) ∈ C([0, T ι,δ);H∞(Rd) × Ḣ∞(Rd)). One deduces in particular that
for all α ∈ Nd, 1 < |α| ≤ N , one has |∂αψ − wσ[ζ](ψ, π[ζ]ω)∂αζ|Ḣ1/2 < ∞. We
can therefore deduce from the third point of Lemma 4.8, Corollary 3.14 and (107)

that, ζ and ψ being fixed, the mapping F ι,δ3 (ζ, ψ, ·) maps HN−1(S) into itself, from
which one classically deduces that ω ∈ C([0, T ι,δ);HN−1(S)). In addition to this
regularity property, we now show that ω remains divergence free. After remarking
that

divσ∂tω = divσ(∂σt ω + ∂tσ∂
σ
z ω)

= ∂σt divσω +∇σX,z(∂tσ) · ∂σz ω + ∂tσ∂
σ
z divσω

= ∂tdivσω +∇σX,z(∂tσ) · ∂σz ω,

we can use the definition (109) of the pressure Q, and apply divσ to the vorticity
equation to get

∂tdivσω +∇σX,z(∂tσ) · ∂σz ω −∇σX,z
(z +H0

H0
J ι(U ·N)

)
· ∂σz ω = 0.

Since we get from the equation on ζ and the definition of σ that z+H0

H0
J ι(U ·N) =

∂tσ, we finally obtain that

∂tdivσω = 0;

since the initial condition ω0 is assumed to be divergence free, this yields that
divσω = 0 on [0, T ι,ζ). A consequence of this is that ω = π[ζ]ω, so that we can
drop all the occurrences of π[ζ] in (108).
Step 6. Uniform energy estimates. Proceeding exactly as for Proposition 4.5, but
with the regularized equations (108), we obtain, with the same notations,

(∂t + J ι(V · ∇))∂αζ − J ι∂kU (β) ·N = J ιR1
α,

(∂t + J ι(V · ∇))(U(β)‖ · ek) + J ι(a∂αζ) + δJ ιΛ∂αζ = J ιR2
α + R̃2

α,

(∂σt + J ι(V · ∇) +Kι[aι∂z])∂
βω = R3

β ,

with the Rjα satisfying the same estimates as in Proposition 4.2 (for the vorticity
equation, we use the fact that ‖∇X,zQ‖HN−1 ≤ mN (ζ, ψ, ω), which is a consequence
of Lemma 4.9), and

R̃2
α = −(1− J ι)(∂tw∂αζ) + [w, J ι]∂α

(
Uσ[ζ](ψ, ω) ·N

)
;

the control of this extra term (coming from commutators with the mollifiers J ι) in

Ḣ1/2 norm requires a control of ζ in HN+1/2(Rd) instead of HN (Rd), namely,

|PR̃2
α|2 ≤ mN (ζ, ψ, ω)(1 + |∂αζ|H1/2);

the dispersive regularization δJ ιΛζ has been added to the second equation in order
to control this extra term. Proceeding exactly as for (89) except for the fact that
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the first equation is multiplied by a∂αζ+δΛ∂αζ instead of a∂αζ, we obtain therefore

1

2
∂t
[
(a∂αζ, ∂αζ) + δ|∂αζ|2H1/2

]
+
(
(∂t + J ι(V · ∇·))(U(β)‖ · ek), ∂kU (β) ·N

)
≤ mN (ζ, ψ, ω)(1 + |∂αζ|H1/2).(111)

As in the proof of Proposition 4.5, the second term is handled using Green’s formula;
because of the presence of the mollifiers, (90) must be replaced by

(∂t + J ι(V · ∇·))(U(β)‖ · ek) =
(
(∂t + J ι(V · ∇) +Kι[aι∂z])(U

[
(β)‖ · ek)

)
|z=0

(we recall that aι vanishes at the surface). We are therefore led to replace (91) by(
(∂t+J

ι(V · ∇·))(U(β)‖ · ek), ∂kU (β) ·N
)

=

∫
S

(1 + ∂zσ)
[
(∂t + J ι(V · ∇) +Kι[aι∂z])∇σX,z(U [(β)‖ · ek)

]
· ∂kU(β) + l.o.t.

From Lemma 4.6, we therefore get(
(∂t+J

ι(V · ∇))(U(β)‖ · ek), ∂kU (β) ·N
)

=

∫
S

(1 + ∂zσ)
[
(∂t + J ι(V · ∇) +Kι[aι∂z])∂kU(β)

]
· ∂kU(β)

+

∫
S

(1 + ∂zσ)
[
tk × (∂t + J ι(V · ∇) +Kι[aι∂z])∂

βω
]
· ∂kU(β) + l.o.t.

=A+B

Integrating by parts (using the fourth point of Lemma 4.8 for the term involving
Kι[aι∂z], one readily obtains that the identity (92) remains true up to lower order
terms, while B is controlled as in (93). The energy inequality (95) can therefore be
adapted into

(112)
d

dt
ẼNδ (ζ, ψ, ω) ≤ C

( 1

a0
,

1

δ
, ẼNδ (ζ, ψ, ω)

)
,

where

ẼNδ (ζ, ψ, ω) = ẼN (ζ, ψ, ω) + δ|ζ|2HN+1/2

Step 7. Conclusion. The energy estimate (112) is uniform with respect to ι. In
particular, the solutions (Θι,δ)ι,δ to (108) exist on a non trivial time interval [0, T δ]
independent of ι and one can prove that, δ > 0 being fixed, the sequence (θι,δ)ι,δ is

a Cauchy sequence in H2 × Ḣ2 ×H2(S) as ι→ 0.

Lemma 4.10. For all 0 < δ < 1, (Θι,δ)ι is a Cauchy sequence, as ι → 0, in

C([0, T δ];H2(Rd)× Ḣ2(Rd)×H2(S)).

Proof. We omit the proof of this result because it is very similar to what happens
in the irrotational case, and the proof of Lemma 4.28 in [39] can therefore easily
be adapted. Note that this result is a consequence of (102). The only additional
property that is needed here compared to the irrotational case is that a similar
property holds for the vertical mollifier Kι[a∂z], but this is already proved in the
fifth point of Lemma 4.8. �

The end of the proof is then quite similar to the irrotational case and we only
give the main steps (see §4.3.4.4 of [39] for more details). One first deduces the
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existence of a limit Θδ ∈ C([0, T δ];H2(Rd) × Ḣ2(Rd) × H2(S)) to the sequence
(Θι,δ)ι as ι→ 0, and that this limit solves

∂tΘ
δ + Fδ,0 = 0,

where Fδ,0 is deduced from Fδ,ι by setting ι to 0; moreover, Θδ also satisfies the
energy estimate (112). Because of the dependence on 1

δ of this energy estimate, one

cannot directly extract a converging sequence from (Θδ)δ as δ → 0. However, this
singular dependence on δ of the energy estimate comes from the term (1+|∂αζ|H1/2)

in the right-hand-side of (111), which itself comes from the control of R̃2
α. Since

this term vanishes when ι = 0, one can replace (112) by a nonsingular (with respect
to δ) energy estimate,

(113)
d

dt
ẼNδ (ζ, ψ, ω) ≤ C

( 1

a0
, ẼNδ (ζ, ψ, ω)

)
.

This uniform bound can then be used to prove, as in Lemma 4.10 that (Θδ)0<δ<1 is

a Cauchy sequence as δ → 0 and that it converges in C([0, T ];H2(Rd)× Ḣ2(Rd)×
H2(S)) (with T > 0 independent of δ) to a solution Θ of the non-regularized
equations (100). Moreover, the solutions satisfies (113) with δ set to 0, namely,

d

dt
ẼN (ζ, ψ, ω) ≤ C

( 1

a0
, ẼN (ζ, ψ, ω)

)
,

and the bound on EN (Θ) given in the statement of the theorem follows as for the a
priori estimates of Proposition 4.5. Uniqueness of the solution is then obtained by
estimating the difference of two solutions in C([0, T ];H2(Rd) × Ḣ2(Rd) × H2(S))
using the uniform bound provided by the energy estimates, along lines quite similar
to the proof of Lemma 4.10. �

5. Asymptotic regimes

5.1. The dimensionless free surface Euler equations. The fluid motion de-
pends qualitatively on several physical parameters: the typical amplitude a of the
waves, the depth at rest H0, and the typical horizontal scale L. Using these quan-
tities, it is possible to form two dimensionless parameters,

ε =
a

H0
, µ =

H2
0

L2
;

the parameter ε is often called nonlinearity (or amplitude) parameters, and the
parameter µ is the shallowness parameter.
We also use a, H0 and L to define dimensionless variables and unknowns (written
with a tilde),

z̃ =
z

H0
, X̃ =

X

L
, ζ̃ =

ζ

a
;

the non dimensionalization of the time variable and of the velocity, and pressure
fields is less obvious, and is based on the linear analysis of the equations (see for
instance [39], Chapter 1),

Ṽ =
V

V0
, w̃ =

w

w0
, t̃ =

t

t0
, P̃ =

P

P0

with

V0 = a

√
g

H0
, w0 =

aL

H0

√
g

H0
, t0 =

L√
gH0

, P0 = ρgH0.
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With these variables and unknowns, and with the notations

Uµ =

( √
µV
w

)
, ∇µ =

( √
µ∇
∂z

)
, Nµ =

(
−ε√µ∇ζ

1

)
,

and

curlµ = ∇µ×, divµ = (∇µ)T , Uµ = (
√
µV T , w)T := Uµ

|z=εζ ,

the incompressible Euler equations take the form (omitting the tildes),

∂tU
µ +

ε

µ
Uµ · ∇µUµ = −1

ε

(
∇µP + ez

)
in Ω,

divµUµ = 0 in Ω,

where Ω now stands for the dimensionless fluid domain,

Ω = {(X, z) ∈ Rd+1, −1 < z < εζ(t,X)},

and with the non vanishing depth condition now reading

(114) ∃hmin > 0, ∀X ∈ Rd, 1 + εζ ≥ hmin.

Finally, the boundary conditions on the velocity read in dimensionless form,

∂tζ −
1

µ
Uµ ·Nµ = 0 at the surface,

Uµ
|z=−1

·Nµ
b = 0 at the bottom,

where Nµ
b = ez, while for the pressure, we still have

P = 0 at the surface.

5.2. Notations. We give here a list of notations specific to the study of the shallow
water regime. Most of them are the dimensionless version of notations already used
in the dimensional case; for the sake of clarity, we write them in the same way. Below
is a list adaptations we need to make to handle the dimensionless case:

Ω = {(X, z), −H0 < z < ζ(X)}  Ω = {(X, z), −1 < z < εζ(X)}
S = Rd × (−H0, 0)  S = Rd × (−1, 0),

σ(X, z) = ζ
z +H0

H0
 σ(X, z) = εζ(z + 1),

P =
|D|

(1 + |D|)1/2
 P =

|D|
(1 +

√
µ|D|)1/2

,

|u|
H
−1/2
0

= | 1

|D|
u|H1/2  |u|

H
−1/2
0

= |
(1 +

√
µ|D|)1/2

|D|
u|2.

We also adapt the notation (6) as follows,

(115) A‖ =
1
√
µ
Ah + εAv∇ζ

so that A×Nµ =
√
µ

(
−A⊥‖
−ε√µA⊥‖ · ∇ζ

)
. Finally, we also write

(116) ∇σ,µ =

( √
µ∇
0

)
+

(
−√µ∇σ

1

)
∂σz ,
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5.3. The dimensionless generalized ZCS formulation. According to the no-
tation (115), we have

Uµ‖ = V + εw∇ζ =
1
√
µ

(
Uµ ×Nµ)Th ,

and proceeding as in §2.3, we deduce the following dimensionless version of (9),

(117) ∂tU
µ
‖ +∇ζ +

ε

2
∇|Uµ‖ |

2 − ε

2µ
∇
(
(1 + ε2µ|∇ζ|2)w2

)
+ εωµ ·NµV ⊥ = 0,

where ωµ = ωµ|z=εζ and ωµ is given by

ωµ =

( 1√
µ

(
∂zV

⊥ −∇⊥w
)

−∇ ·V⊥

)
=

1

µ
curlµUµ.

The dimensionless version of the orthogonal decomposition of U‖ performed in §2.3
is then given by

Uµ‖ = ∇ψ +∇⊥ψ̃,

with ∆ψ̃ = ωµ ·Nµ. The equation on ψ corresponding to the dimensionless version
of (10) is therefore

(118) ∂tψ + ζ +
ε

2
|Uµ‖ |

2 − ε

2µ

(
(1 + |∇ζ|2)w2

)
+ ε
∇
∆
·
(
ωµ ·NµV ⊥

)
= 0.

Finally, the dimensionless vorticity equation is obtained by applying ∇µ to the
dimensionless Euler equation,

(119) ∂tωµ +
ε

µ
Uµ · ∇µωµ =

ε

µ
ωµ · ∇µUµ.

In order to write Uµ as a function of ζ, ψ and ωµ, we need to solve the following
dimensionless version of the div-curl problem (15),

(120)


curlµUµ = µωµ in Ω
divµUµ = 0 in Ω
Uµ‖ = ∇ψ +∇⊥∆−1(ωµ ·Nµ) at the surface

Uµb ·N
µ
b = 0 at the bottom;

we write the solution

Uµ = Uµ[εζ](ψ,ωµ) =

( √
µV[εζ](ψ,ωµ)
w[εζ](ψ,ωµ)

)
;

the generalized Zakharov-Craig-Sulem formulation takes therefore the following
form in dimensionless form,

(121)



∂tζ −
1

µ
Uµ[εζ](ψ,ωµ) ·Nµ = 0,

∂tψ + ζ+
ε

2

∣∣Uµ‖ [εζ](ψ,ωµ)
∣∣2 − ε

2µ
(1 + ε2µ|∇ζ|2)w[εζ](ψ,ωµ)2

−ε∇
⊥

∆
·
(
ωµ ·NµV[εζ](ψ,ωµ)

)
= 0,

∂tωµ +
ε

µ
Uµ[εζ](ψ,ωµ) · ∇µωµ =

ε

µ
ωµ · ∇µUµ[εζ](ψ,ωµ).
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5.4. Statement of the main result. As in the dimensional case, the statement
of the well-posedness result requires to work with a straightened vorticity. We
therefore use a diffeomorphism Σ to straighten the fluid domain; it now takes the
form Σ(X, z) = (z, z + σ(X, z)) where σ(X, z) = (1 + z)εζ(X) and maps the strip
S = Rd × (−1, 0) to Ω. We denote Uµ := Uµ ◦ Σ, ωµ := ωµ ◦ Σ, etc., and also

Uσ,µ[εζ](ψ, ωµ)

( √
µVσ[εζ](ψ, ωµ)
wσ[εζ](ψ, ωµ)

)
. := Uµ[εζ](ψ,ωµ) ◦ Σ.

The well-posedness result deals therefore with the following straightened version of
(121),

(122)



∂tζ −
1

µ
Uσ,µ[εζ](ψ, ωµ) ·Nµ = 0,

∂tψ + ζ+
ε

2

∣∣Uσ,µ‖ [εζ](ψ, ωµ)
∣∣2 − ε

2µ
(1 + ε2µ|∇ζ|2)wσ[εζ](ψ,ωµ)2

−ε∇
⊥

∆
·
(
ωµ ·NµVσ[εζ](ψ, ωµ)

)
= 0,

∂σt ωµ +
ε

µ
Uσ,µ[εζ](ψ, ωµ) · ∇σ,µωµ =

ε

µ
ωµ · ∇σ,µUσ,µ[εζ](ψ, ωµ),

together with the divergence free condition on ωµ which is propagated from the
initial condition,

(123) ∇σ,µ · ωµ = 0 in S.

The statement of the theorem also requires the introduction of the dimensionless
energy

EN (ζ, ψ, ωµ) :=
1

2
|ζ|2HN +

1

2
|Pψ|2H3 +

1

2

∑
0<|α|≤N

|Pψ(α)|22

+
1

2
‖ωµ‖2HN−1 +

1

2
|ωµ,b ·Nµ

b |
2

H
−1/2
0

,(124)

with ψ(α) = ∂αψ − εw∂αζ (and w = wσ[εζ](ψ, ωµ)), and we still denote by

mN (ζ, ψ, ωµ) any constant of the form

mN (ζ, ψ, ωµ) = C
( 1

hmin
, EN (ζ, ψ, ωµ)

)
,

and by ENT the associated functional space defined in (76). Note also that the
dimensionless version of the Rayleigh-Taylor coefficient is

a = a(ζ, ψ, ωµ) = 1 + ε(∂t + Vσ[εζ](ψ, ωµ))wσ[εζ](ψ, ωµ).

The theorem states that the solution furnished by Theorem 4.7 exists on a time
interval [0, T/ε], with T independent of ε ∈ (0, ε0) and µ ∈ (0, µ0), and that it is
uniformly bounded on this time interval.

Theorem 5.1. Let ε0, µ0 > 0, ε ∈ (0, ε0), µ ∈ (0, µ0), and N ≥ 5. Let also
Θ0 = (ζ0, ψ0, ω0

µ) ∈ EN0 be such that ω0
µ satisfies the divergence free condition

(123). Assume moreover that

∃hmin > 0,∃a0 > 0, 1 + εζ0 > hmin, a(ζ0, ψ0, ω0) > a0.

Then there exists T > 0 (independent of ε and µ), and a unique solution Θ ∈ ENT/ε
to (122) satisfying the divergence free constraint (123), and with initial condition
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Θ0. Moreover,

1

T
= c1 and sup

t∈[0,T ]

EN (Θ(t)) = c2

with cj = C(EN (Θ0),
1

hmin
,

1

a0
, ε0, µ0) for j = 1, 2.

Remark 5.2. Note that no smallness assumption is made on ε0 and µ0. The theorem
furnishes in particular an existence time and bounds on the solutions that are
relevant to study many asymptotic regimes of interest in oceanography:

• The (large amplitude) shallow water regime: here ε ∼ 1 and µ � 1. We
get an existence on a time interval of order 1, uniformly with respect to µ.
• The long wave (also called Boussinesq, or KdV in dimension d = 1) regime:

here ε ∼ µ � 1. The existence is then on a larger time interval of order
O(1/ε) with uniform bounds on this time scale.
• The deep water regime. Here µ ∼ 1 and ε � 1, and asymptotics can be

studied in terms of ε, on a time interval of order O(1/ε).

5.5. Proof of Theorem 5.1. Theorem 4.7 furnishes the existence of a solution.
We just need to prove the necessary bounds on the solution with respect to ε and µ.
This is done by deriving uniform a priori estimates on the solution. The derivation
of these estimates follows sometimes the same steps as for the dimensional case
already treated, but sometimes require specific attention. We only focus on these
latter aspects, and omit (or only sketch) the proof of the former ones.
The dependence on ε, µ of the div-curl problem is investigated in §5.5.1, the vorticity
energy estimates are addressed in §5.5.2, and the a priori estimates on the full
equations are finally derived in §5.6.
We always assume throughout this section that ε ∈ (0, ε0) and µ ∈ (0, µ0) for some
ε0, µ0 > 0. For the sake of clarity, we never make explicit the dependence on ε0

and µ0.

5.5.1. The div-curl problem with parameters. We can still invoke Theorem 2.2 to
insure the existence and uniqueness of a solution to (120), however, the dependence
on the parameter µ is not obvious in the estimates on the solution provided in
Theorem 2.2 and special attention must be paid to avoid singular terms as µ → 0
(in the estimates involving the bottom vorticity for instance). This dependence is
made precise in the following proposition.

Proposition 5.3. Let ζ ∈ W 2,∞(Rd) be such that (114) is satisfied. Then for all

ωµ ∈ L2(Ω)3 such that divµωµ = 0, and all ψ ∈ Ḣ3/2(Rd), there exists a unique
solution U ∈ H1(Ω)3 to (120), and one can decompose it as Uµ = curlµA +∇µΦ,

where Φ ∈ Ḣ2(Ω) solves

{
(∂2
z + µ∆)Φ = 0 in Ω

Φ|surf = ψ, ∂zΦ|bott
= 0,
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while A ∈ Ḣ2(Ω)3 solves

curlµcurlµA = µωµ in Ω,
divµA = 0 in Ω,

Nµ
b ×Ab = 0
Nµ ·A = 0

(curlµA)‖ = ∇⊥∆−1ωµ ·Nµ,
Nµ
b · (curlµA)|bott

= 0.

Moreover, one has

‖Uµ‖2 ≤
√
µC(|ζ|W 2,∞ ,

1

hmin
)
(√
µ‖ωµ‖2 + |ωµ,b ·Nµ|H−1/2

0
+ |Pψ|2

)
,

‖∇µUµ‖2 ≤ µC(|ζ|W 2,∞ ,
1

hmin
)
(
‖ωµ‖2 + |ωµ,b ·Nµ

b |H−1/2
0

+ |Pψ|H1

)
.

Proof. The existence/uniqueness of Uµ, follows directly (up to a rescaling) from
Theorem 2.2. The fact that ∇µΦ satisfies the estimates of the proposition is known
from the irrotational case (Corollary 2.40 in [39]); by linearity, we can therefore
assume that ψ = 0 and therefore Uµ = curlµA with A as in the statement of
the proposition; we also know from the proof of Theorem 2.2 that A is the unique
solution to the dimensionless version of the variational equation (33),∫

Ω

curlµA · curlµC = µ

∫
Ω

ωµ ·C +
√
µ

∫
Rd

(∇ψ̃,√µε∇ψ̃ · ∇ζ) · C,(125)

for all C ∈ Xµ, and where the space Xµ is given by

Xµ = {C ∈ H1(Ω)d+1 ∇µ ·C = 0, Nµ × Cb = 0, Nµ
b · C = 0}.

We shall use the following lemma instead of the standard trace lemma that does
not provide a sharp dependence on µ.

Lemma 5.4. i. For all C ∈ Xµ, one has

‖C‖2 ≤ C(|ζ|W 1,∞)‖∂zC‖2 and ‖∇µC‖2 ≤ C(|ζ|W 2,∞)‖curlµC‖2.

(it is not necessary that C be divergence free for the first inequality).
ii. For all C ∈ H1(Ω) such that C|z=−1

= 0, one has

|(1 +
√
µ|D|)1/2C|2 ≤ C(|ζ|W 1,∞ ,

1

hmin
)‖∇µC‖2.

iii. For all C ∈ H1(Ω), such that C|z=−1
= 0, one has

|PC|2 ≤
1
√
µ
C(|ζ|W 1,∞)‖∇µC‖2;

if C does not vanish at the bottom, then we still have

|PC|2 ≤
1
√
µ
C(|ζ|W 1,∞)

(
‖∇µC‖2 + ‖C‖2).

Proof of the lemma. For the first point, one just has to track the dependance on
µ in the proofs of Lemmas 3.1, 3.2 and 3.3). For the second point, denoting by
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Σ : S → Ω the diffeomorphism defined by Σ(X, z) = (X, z+ (1 + z)εζ), and writing
C = C ◦ Σ, we have

|(1 +
√
µ|D|)1/2C|22 = 2<

∫
Rd

∫ εζ

−1

(1 +
√
µ|ξ|)Ĉ∂zĈ

≤ 2(‖C‖2 +
√
µ‖∇C‖2)‖∂zC‖2

≤ C(
1

hmin
, |ζ|W 1,∞)(‖C‖2 + ‖∇µC‖2)‖∂zC‖2,

and the result follows from the first part of the lemma.
For the third point, we have with C = C ◦ Σ,

|PC|22 = |PC(·, 0)|22

=

∫
Rd

|ξ|2

1 +
√
µ|ξ|
|Ĉ(ξ, 0)|2L2

≤ 2

∫
Rd

∫ 0

−1

|ξ|2

1 +
√
µ|ξ|
|Ĉ(ξ, z)||∂̂zC(ξ, z)|dξdz

=
2

µ

∫ √
µ|ξ|

1 +
√
µ|ξ|
|√̂µ∇C(ξ, z)||∂̂zC(ξ, z)|dξdz.

From Cauchy-Schwarz inequality and Plancherel’s identity, we then get

|PC|22 ≤
C

µ
||√µ∇C̃||L2(S)||∂zC̃||L2(S)

≤ 1

µ
C(|ζ|W 1,∞)||∇µC||2L2(Ω),

which implies the result.
Finally, if C does not vanish at the bottom, then one can apply the result to
C̃ := ϕ(X, z)C, where ϕ ∈ W 1,∞(Ω) is equal to one in a neighborhood of the

surface, and vanishes at the bottom. This yields the result since C̃|surf = C and

‖∇µC̃‖2 . ‖∇µC‖2 + ‖C‖2. �

We can use (125) and the lemma to get a control on the L2-norm of Uµ,

‖Uµ‖22 ≤ C(|ζ|W 2,∞)
(
µ‖ωµ‖2‖A‖2 +

√
µ|Pψ̃|2

∣∣(1+
√
µ|D|)1/2(Ah+ε

√
µ∇ζAv)

∣∣
2

)
≤ C(|ζ|W 2,∞ ,

1

hmin
)
(
µ‖ωµ‖2 +

√
µ|Pψ̃|2

)
‖Uµ‖2

and therefore

‖Uµ‖2 ≤ C(|ζ|W 2,∞ ,
1

hmin
)
(
µ‖ωµ‖2 +

√
µ|Pψ̃|2

)
≤ µC(|ζ|W 2,∞ ,

1

hmin
)
(
‖ωµ‖2 +

1
√
µ
|ωµ,b ·Nµ

b |H−1/2
0

)
,(126)

where we used the fact that |Pψ̃|2 ≤ |∇ψ̃|2 and the following lemma that makes
explicit the dependence on µ of the estimate given in Lemma 3.7.

Lemma 5.5. The solution ψ̃ to the equation ∆ψ̃ = ωµ ·Nµ satisfies

|∇ψ̃|2 ≤
√
µC(|ζ|W 1,∞ ,

1

hmin
)(‖ωµ‖2 +

1
√
µ
|ωµ,b ·Nµ

b |H−1/2
0

).
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and

|(1 +
√
µ|D|)1/2∇ψ̃|2 ≤

√
µC(|ζ|W 1,∞ ,

1

hmin
)(‖ωµ‖2 +

1
√
µ
|ωµ,b ·Nµ

b |H−1/2
0

).

Proof. Multiplying the equation ∆ψ̃ = ωµ · Nµ by ψ̃, we get as in the proof of
Lemma 3.7,

|∇ψ̃|22 = −
∫

Rd
ψ̃ωµ ·Nµ

= −
∫

Rd
ψ̃ext
b ωµ,b ·Nµ

b −
∫
S

(1 + ∂zσ)∇σ,µψ̃ext · ωµ.

where ωµ = ωµ ◦ Σ (and Σ as in the proof of Lemma 5.4) and ∇σ,µ as in (116),

while ψ̃ext is now given by ψ̃ext =
cosh(

√
µ(z + 1)|D|)

cosh(
√
µ|D|)

ψ̃. We deduce that

|∇ψ̃|22 ≤
√
µ
∣∣ |D|
(1 +

√
µ|D|)1/2

ψ̃ext
|z=−1

∣∣
2

∣∣ (1 +
√
µ|D|)1/2

√
µ|D|

(ωµ,b ·Nµ
b )
∣∣
2

+ C(|ζ|W 1,∞ ,
1

hmin
)‖ωµ‖2‖∇µψ̃ext‖2

≤ √µC(|ζ|W 1,∞ ,
1

hmin
)
(
‖ωµ‖2 +

1
√
µ
|ωµ,b ·Nµ

b |H−1/2
0

)
|∇ψ̃|2,

which gives the first estimate of the lemma. For the second one, we multiply the
equation by (1 +

√
µ|D|)ψ and proceed as above to get∣∣(1+

√
µ|D|)1/2∇ψ̃

∣∣2
2
≤ C(|ζ|W 1,∞ ,

1

hmin
)‖ωµ‖2‖(1 +

√
µ|D|)∇µψ̃ext‖2

+
√
µ
∣∣∣(1 +

√
µ|D|)1/2|D|ψ̃ext

b

∣∣∣
2

∣∣∣ (1 +
√
µ|D|)1/2

√
µ|D|

(ωµ,b ·Nµ
b )
∣∣∣
2

≤ √µC(|ζ|W 1,∞ ,
1

hmin
)
(
‖ωµ‖2 + |ωµ,b ·Nµ

b |H−1/2
0

)∣∣(1 +
√
µ|D|)1/2∇ψ̃

∣∣
2
,

(in both terms of the right-hand-side in the first inequality, a smoothing argument
must be used to gain half-a-derivative; the dependence of this smoothing on µ is
crucial here; it is of the form (1 +

√
µ|D|)−1/2 – see for instance Lemma 2.20 in

[39]). The result follows directly. �

Similarly, the dependence on µ of the H1-estimate of Lemma 3.8 must be made
precise. For the energy estimates on the vorticity, it shall be crucial that no 1/

√
µ

singularity appears in front of the bottom vorticity term of this H1-estimate. For

the L2-estimate (126), this singularity comes from the control of |Pψ̃|2; for the

H1-estimate this term is expected to be replaced by |Pψ̃|H1 , which is also singular.

However, it turns out that a control in terms of |P∇ψ̃|2 is enough, and that for
this term, low frequencies are damped, and the 1/

√
µ singularity can be removed.

This is done in the following lemma.

Lemma 5.6. The solution ψ̃ to the equation ∆ψ̃ = ωµ ·Nµ satisfies

|P∇ψ̃|2 ≤ C(
1

hmin
, |ζ|W 1,∞)‖ωµ‖2.
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Proof. Proceed as in the proof of Lemma 5.5 to obtain

|P∇ψ̃|22 = −
∫

Rd

( D2

1 +
√
µ|D|

ψ̃
)
ωµ ·N

= −
∫
S

(1 + ∂zσ)∇σ,µ
( D2

1 +
√
µ|D|

ψ̃ext
0

)
· ωµ,

where we have chose a different extension of ψ̃ than in the proof of Lemma 5.5,
namely,

ψ̃ext
0 =

sinh(
√
µ(z + 1)|D|)

sinh(
√
µ|D|)

ψ̃;

in particular, ψ̃ext
0 vanishes at the bottom, and this is the reason why no bottom

boundary term appears in the expression above. One readily deduces that

(127) |P∇ψ̃|22 ≤ C(|ζ|W 1,∞ ,
1

hmin
)‖∇σ,µ

( D2

1 +
√
µ|D|

ψ̃ext
0

)
‖2‖ωµ‖2,

and we therefore need to control ‖∇σ,µ
(

D2

1+
√
µ|D| ψ̃

ext
0

)
‖2. We distinguish the hori-

zontal and vertical derivatives involved in∇σ,µ; we start with the vertical derivative,
which is the the most delicate:
- Control of ‖ D2

1+
√
µ|D|∂zψ̃

ext
0 ‖2. One has∥∥ D2

1 +
√
µ|D|

∂zψ̃
ext
0

∥∥2

2
=
∥∥D2

√
µ|D|

1 +
√
µ|D|

cosh(
√
µ(z + 1)|D|)

sinh(
√
µ|D|)

ψ̃
∥∥2

2

=

∫
Rd

∫ 0

−1

∣∣√µ|ξ|cosh(
√
µ(z + 1)|ξ|)

sinh(
√
µ|ξ|)

∣∣2∣∣P̂∇ψ̃∣∣2dzdξ.
Let F (r) = 1

2r + 1
4 sinh(2r) (F is the primitive of cosh(r)2 vanishing at zero);

integrating with respect to z in the above expression, we get∥∥ D2

1 +
√
µ|D|

∂zψ̃
ext
0

∥∥
2

=

∫
Rd

F (
√
µ|ξ|)

sinh(
√
µ|ξ|)2

∣∣P̂∇ψ̃∣∣2dzdξ.
Since

F (
√
µ|ξ|)

sinh(
√
µ|ξ|)2 is uniformly bounded from above (with respect to ξ and µ), we

deduce finally from Plancherel’s identity that

‖ D2

1 +
√
µ|D|

∂zψ̃
ext
0 ‖2 . |P∇ψ̃|2.

- Control of ‖ D2

1+
√
µ|D|
√
µ∇ψ̃ext

0 ‖2. One has∥∥ D2

1 +
√
µ|D|

√
µ∇ψ̃ext

0

∥∥
2
≤ ‖D2ψ̃ext

0 ‖2

≤
∣∣ D2

(1 +
√
µ|D|)1/2

ψ̃
∣∣
2

= |P∇ψ̃|2,

the second inequality stemming from a smoothing argument similar to the one used
to control the vertical derivative.

Together with (127), these two controls give the result of the lemma. �

We can therefore provide a control of ∇µUµ without the 1/
√
µ singularity in

front of the bottom vorticity component.



WATER WAVES WITH VORTICITY 63

Lemma 5.7. The following estimate holds,

‖∇µUµ‖2 ≤ µC(|ζ|W 2,∞ ,
1

hmin
)
(
‖ωµ‖2 + |ωµ,b ·Nµ

b |H−1/2
0

)
.

Proof. The proof is similar to that one of Lemma 3.8. Here we present the main
differences. The dimensionless version of (40) is∫

Ω

|∇µUµ|2 = µ2

∫
Ω

|ωµ|2 + 2µ

∫
Rd
V · ∇w − µ2ε

∫
Rd

(
∇⊥ζ · ∇

)
V ⊥ · V

:= µ2

∫
Ω

|ωµ|2 + µI1 + µ2I2.(128)

Now we proceed to bound the integral I1 and I2. We recall that V = ∇⊥ψ̃− εw∇ζ
and we can write

I1 ≤ 2ε

∫
Rd

∣∣∇ζ · ∇ww∣∣
≤ C(|ζ|W 2,∞)‖∇µUµ‖2‖Uµ‖2,

where we used the fact that, since wb = 0, one has |w|22 ≤ ||w||2||∂zw||2. Together
with (126), this yields

I1 ≤ C(|ζ|W 2,∞ ,
1

hmin
)
(
µ‖ωµ‖2 +

√
µ|Pψ̃|2

)
‖∇µUµ‖2

≤ √µC(|ζ|W 2,∞ ,
1

hmin
)
(√
µ‖ωµ‖2 + |ωµ,b ·Nb|H−1/2

0

)
‖∇µUµ‖2,

the last inequality stemming from the observation that |Pψ̃|2 ≤ |∇ψ̃|2 and Lemma
5.5.
For I2, after substituting V = ∇⊥ψ̃−εw∇ζ, the integrand can be written as a sum
of terms of the form

C(ζ)∂2ψ̃∂ψ̃, C(ζ)w∂2ψ̃, C(ζ)∂w∂ψ̃, C(ζ)w∂ψ̃, C(ζ)w2,

where C(ζ) stand for any polynomial expression in the first and second order deriva-
tives of ζ, while ∂ and ∂2 stand here for any first and second order partial derivative
respectively. We consequently get

I2 ≤ C(|ζ|W 2,∞)
[
|(1 +

√
µ|D|)1/2∇ψ̃|2(|P∇ψ̃|2 + |Pw|2 + |w|2) + |w|22

]
.

Remarking that |Pf |2 ≤ µ−1/2|(1+
√
µ|D|)1/2f |2, recalling that |w|22 ≤ ‖w‖2‖∂zw‖2,

and with the help of (126) and Lemmas 5.4, 5.5 and 5.6, this yields

I2 ≤
√
µC(|ζ|W 2,∞ ,

1

hmin
)
(√
µ‖ωµ‖2 +

1
√
µ
|ωµ,b ·Nb|H−1/2

0

)
‖ωµ‖2

+ C(|ζ|W 2,∞ ,
1

hmin
)
(
‖ωµ‖2 +

1
√
µ
|ωµ,b ·Nb|H−1/2

0

)
‖∇µUµ‖2.

Gathering the estimates on I1 and I2, one readily gets

I1 + µI2 ≤
√
µC(|ζ|W 2,∞ ,

1

hmin
)
(√
µ‖ωµ‖2 + |ωµ,b ·Nb|H−1/2

0

)
‖∇µUµ‖2

+ µC(|ζ|W 2,∞ ,
1

hmin
)
(√
µ‖ωµ‖2 + |ωµ,b ·Nb|H−1/2

0

)
‖ωµ‖2;

with (128), this yields the result. �
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The result of the proposition directly follows from (126), Lemma 5.7 (and the
aforementioned estimates on the irrotational part). �

For higher order regularity estimates, we use as in §3.3 the straightened version
of the velocity and vorticity introduced in §5.4. The proposition below shows how
the higher order estimate of Corollary 3.14 depends on µ.

Proposition 5.8. Let N ∈ N, N ≥ 5. Then for all 0 ≤ l ≤ k ≤ N − 1, the
straightened velocity Uµ = Uσ,µ[εζ](ψ, ωµ) satisfies the estimate

‖∇µUµ‖Hk,l ≤ µMN

(
|Pψ|H1 +

∑
1<|α|≤k+1

|Pψ(α)|2 + ‖ωµ‖Hk,l + |Λkωµ,b ·Nb|H−1/2
0

)
,

where ψ(α) := ∂αψ − εw∂αζ (and w = wσ[εζ](ψ, ωµ)|z=0
).

Proof. The proof is based on the dimensionless version of (50) which reads∫
S

∇µUµ · Pµ(Σ)∇µUµ =µ

∫
S

(1 + σz)ωµ · ∇σ,µ × C +

∫
Rd
Fµ · C,(129)

for all C ∈ H1(S), and with ∇σ,µ as in (116) while

Pµ(Σ) = (1 + σz) (JµΣ)
−1

(JµΣ)
−1 T

, with (JµΣ)
−1 T

=

 1 0
−√µσx
1+σz

0 1
−√µσy
1+σz

0 0 1
1+σz

,


and

Fµ = (Nµ ×∇µ ×Uµ + (Nµ · ∇µ)Uµ)|surf

= (
√
µ∇w − µ 3

2 (∇ζ⊥ · ∇)V ⊥,−µ∇ · V ).

The key point is that the matrix Pµ(Σ) is uniformly coercive with respect to µ
so that the same structure as for Proposition 3.12 can be used for the proof. In
particular, (55) is replaced by

‖∇µ∂βUµ‖22 ≤MN (I1 + I2 + I3),

with the following definition and upper bounds on Ii , i = 1, 2, 3:
- Upper bound for I1. Proceeding exactly as for (56) we get

I1 =

∫
S
∇µ∂βU · [∂β , Pµ(Σ)]∇µU

≤MN ||∇µ∂βUµ||2||Λk−1∇µUµ||2.
- Upper bound for I2. With straightforward adaptations, we get as for Proposition
3.12 that

I2 =

∫
S

Λkωµ · Λ−k∇σ,µ × ∂2βUµ

≤ µMN ||Λkωµ||2||∂β∇µUµ||2.
- Upper bound for I3 We split I3 into three terms

I3 =2µ

∫
Rd
∂β∇w · ∂βV − µ2ε

∫
Rd

(∇⊥ζ · ∇)∂βV ⊥ · ∂βV

− µ2ε

∫
Rd

[∂β ,∇⊥ζ] · ∇V ⊥ · ∂βV

=I31 + I32 + I33.
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Replacing the product estimate (59) by

∀f, g ∈ H1/2(Rd),
∫

Rd
f∂jg ≤ |Pf |2

∣∣(1 +
√
µ|D|)1/2g

∣∣
2

(1 ≤ j ≤ d),

and using the µ-dependent version of the trace lemma furnished by the second point
of Lemma 5.4, the upper bound on I31 given in the proof of Proposition 3.12 can
be adapted into

I31 ≤MN

(
µ|P

(
∇∂βψ − εw∇∂βζ

)
|2 +
√
µ‖Λk−1∇µUµ‖2

)
‖Λk∇µUµ‖2.

For I32, we proceed as for I31 to get

I32 ≤ µ2MN

[(
|P
(
∇∂βψ − εw∇∂βζ

)
|2 + |P∂βψ̃|2 + |PΛk−1w|2

)
× 1
√
µ
|(1 +

√
µ|D|)1/2∂βUµ|2 + |∂βw|22

]
;

with Lemma 5.4 and the inequality |∂βw|22 ≤ ‖∂βw‖2‖∂β∂zw‖2, we therefore get

I32 ≤MN

(
µ|P

(
∇∂βψ − εw∇∂βζ

)
|2 + µ|P∂βψ̃|2 +

√
µ‖Λk−1∇µw‖2

)
‖Λk∇µUµ‖2.

Finally, one readily gets that

I33 ≤MN‖Λk−1∇µUµ‖2‖Λk∇µUµ‖2.

Summing up the upper bounds on I31, I32 and I33, we finally get

I3 ≤MN

(
µ|P

(
∇∂βψ − εw∇∂βζ

)
|2 + µ|P∂βψ̃|2 + ‖Λk−1∇µUµ‖2

)
‖Λk∇µUµ‖2.

As a result of these upper bounds on I1, I2 and I3, we obtain

‖∇µ∂βUµ‖22 ≤MN

(
µ|P

(
∇∂βψ − εw∇∂βζ

)
|2 + µ|P∂βψ̃|2 + ‖Λk−1∇µUµ‖2

+ µ‖Λkωµ‖2
)
× ‖Λk∇µUµ‖2.

with k = |β|. With the same induction method as in the proof of Proposition 3.12,
one then deduces

‖Λk∇µUµ‖2 ≤MN

(
µ

∑
1<|α|≤k+1

|Pψ(α)|2 + µ|P∂βψ̃|2 + µ‖Λkωµ‖2 + ‖∇µUµ‖2
)
;

with the estimate on ∇µUµ provided by Proposition 5.3, and the following estimate
that generalizes Lemma 5.5 in the spirit of Lemma 3.13

|P∂βψ̃| ≤ |Λk∇ψ̃|2 ≤
√
µC(|ζ|W 1,∞ ,

1

hmin
)(‖Λkωµ‖2 +

1
√
µ
|ωµ,b ·Nµ|H−1/2

0
),

we finally get a dimensionless version of the upper bound of Proposition 3.12

‖Λk∇µUµ‖2 ≤ µMN

(
|Pψ|H1 +

∑
1<|α|≤k+1

|Pψ(α)|2 + ‖Λkωµ‖2 + |Λkωµ,b ·Nb|H−1/2
0

)
.

Following the same steps as in the proof of Corollary 3.14, we deduce an Hk,l

estimate of ∇µUµ from this L2 estimate of Λk∇µUµ. �

The adaptation to the dimensionless case of the other results presented in §3.5
and §3.6 are then straightforward and we therefore omit them.
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5.5.2. A priori estimates for the vorticity. We prove here that the estimates of
Proposition 4.1 can be replaced in the dimensionless case by

d

dt

(
‖ωµ‖2Hk + |ωµ,b ·Nb|H−1/2

0

)
≤ εmN (ζ, ψ, ω).(130)

We proceed as in the proof of Proposition 4.1, to obtain the following dimensionless
version of the vorticity equation (79)

∂tωµ + εVσ[εζ](ψ, ωµ) · ∇ω +
ε

µ
a[εζ](ψ, ωµ)∂zωµ =

ε

µ
ωµ · ∇σ,µUσ,µ[εζ](ψ, ωµ)

with, denoting Ñµ = (−√µ∇σT , 1)T (so that Ñµ
|z=0

= Nµ),

a[εζ](ψ, ωµ) =
1

1 + ∂zσ

(
Uσ,µ[εζ](ψ, ωµ) · Ñµ − µ∂tσ

)
=

1

1 + ∂zσ

(
Uσ,µ[εζ](ψ, ωµ) · Ñµ − z +H0

H0
Uσ,µ[εζ](ψ, ωµ) ·Nµ

)
,

and we are led to study the following equation instead of (80)

∂tωµ + εV · ∇ω +
ε

µ
a∂zωµ = εf,

(with V = Vσ[εζ](ψ, ωµ) and a = a[εζ](ψ, ωµ)). The L2-estimate (81) must be
refined to get a good dependence on µ. Taking the L2 scalar product of this
equation with ωµ, we get

1

2
∂t‖ωµ‖2L2 −

ε

2

∫
S

(∇ · V +
1

µ
∂za)|ωµ|2 = ε

∫
S
f · ωµ,

and therefore

∂t‖ωµ‖22 .
ε

µ

(
‖∇µUµ‖∞ +

√
µ‖Uµ‖∞

)
‖ωµ‖22 + ε‖ωµ‖2‖f‖2.

From the continuous embedding HN−1(S) ⊂ L∞(S) and the fact that ‖Uµ‖HN−1 ≤
‖Uµ‖2 + 1√

µ‖∇
µUµ‖HN−2 , we deduce that

∂t‖ωµ‖22 .
ε

µ

(
‖∇µUµ‖HN−1 +

√
µ‖Uµ‖2

)
‖ωµ‖22 + ‖ωµ‖2‖f‖2

. εmN (ζ, ψ,ω)‖ωµ‖22 + ‖ωµ‖2‖f‖2.,

the second inequality stemming from Propositions 5.3 and 5.8. Using this gener-
alization of (81), we obtain the estimate on the Hk-norm of ωµ of(130). For the
bottom vorticity, we have to replace (83) by

∂t(ωµ,b ·Nb) + ε∇ · (ωµ,b ·NbVb) = 0,

and therefore

∂t|ωµ,b ·Nb|H−1/2
0

≤ ε
∣∣(1 +

√
µ|D|)1/2

(
(ωµ,b ·Nb)Vb

)∣∣
2

≤ εmN (ζ, ψ, ωµ),

the last inequality stemming from the trace lemma, standard product estimates,
and Proposition 5.8. This completes the proof of (130).
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5.6. A priori estimates on the full equations. In dimensionless variables, the
good unknown becomes

∀α ∈ Nd\{0}, Uµ(α) = ∂αUµ − ∂ασ∂σz Uµ.

With a straightforward adaptation, and using the div-curl estimates derived in
§5.5.1, the quasilinear structure exhibited in Proposition 4.2 takes the following
form in dimensionless variables,

(∂t + εV · ∇)∂αζ − 1

µ
∂kU

µ
(β) ·N

µ = εR1
α,

(∂t + εV · ∇)(Uµ(β)‖ · ek) + a∂αζ = εR2
α,

(∂σt +
ε

µ
Uµ · ∇σ,µ)∂βωµ = εR3

β ,

with a = 1 + (∂t + εV · ∇)w and where

|R1
α|2 + |PR2

α|2 + ‖R3
β‖2 ≤ mN (ζ, ψ, ωµ).

The following dimensionless version of (89) can then be derived along the same
lines as in the dimensional case,

1

2
∂t(a∂

αζ, ∂αζ) +
(
(∂t + εV · ∇)(Uµ(β)‖ · ek),

1

µ
∂kU

µ
(β) ·N

µ
)
≤ εmN (ζ, ψ, ωµ),

from which, proceed as for (94), we get

∂t

{
(a∂αζ, ∂αζ) +

∫
S

(1 + ∂zσ)|∂kUµ(β)|
2
2

}
≤ εmN (ζ, ψ, ωµ).

Together with the vorticity estimate (130), and mimicking Steps 4 and 5 of the
proof of Proposition 4.5, we get that for all 0 ≤ t ≤ T/ε, one has

EN (ζ, ψ,ωµ)(t) ≤ C(T,
1

a0
,

1

hmin
, EN (ζ0, ψ0, ω0

µ)).

By a classical prolongation argument, this allows one to extend the solution pro-
vided by Theorem 4.7 on a time interval [0, T/ε], with T independent of ε and µ,
thus completing the proof of Theorem 5.1.

5.7. Justification of the shallow water equations with vorticity. Shallow
water models provide simplified models for the propagation of water waves when
µ � 1. In the irrotational case, they are typically stated as a set of equations
coupling the evolution of the surface elevation ζ to the vertically averaged horizontal
velocity V ,

V (t,X, z) =
1

h(t,X)

∫ εζ(t,X)

−1

V(t,X, z)dz (h = 1 + εζ).

Various models exist, depending on the precision of the approximation, and possi-
ble smallness assumptions on ε. The derivation and justification of these shallow
water models is now well understood; we refer to [39] for references and a detailed
description of the many shallow water models and for their rigorous justification.
In the so called shallow water, large amplitude regime corresponding to

ε = 1, µ� 1,
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one obtains for instance at first order (i.e. up to O(µ) terms) the well known
Nonlinear Shallow Water (or Saint-Venant) equations

(131)

{
∂tζ +∇ · (hV ) = 0,
∂tV + V · ∇V +∇ζ = 0.

A byproduct of the derivation and justification of this model is that the horizontal
velocity V is, at the precision of the model, independent of the vertical variable z
(in the physics literature, this is is often an assumption, called “columnar motion”
assumption). A consequence is that at the precision of the model, the velocity at
the surface V is equal to the averaged velocity V for which (131) is derived. This
is of importance since direct experimental data are more accessible for V (using
buoys for instance) than for V .

In the rotational case, the picture is less clear and there does not exist any fully
justified shallow water model. Even at the formal level, there is no real consensus
in the physics literature. The assumption of “columnar motion” is often made
to derive asymptotic models, but, as shown below, it is in general wrong at the
precision of the model. As shown in [15] by the authors, a consequence of this fact
is that even though the Nonlinear Shallow Water model (131) remains the same11

in the presence of vorticity when written in (ζ, V ) variables, the recovery of the
velocity V at the surface requires the resolution of one more equation,

(132) V = V −√µQ, with ∂tQ+ V · ∇Q+Q · ∇V = 0,

The goal of this section is to show that Theorem 5.1 provides all the necessary
bounds on the solution to justify the formal computations of [15], and therefore to
bring a full justification of the Nonlinear Shallow Water model12 (131)-(132) as a
model for the description of shallow water waves in presence of vorticity.

5.7.1. Derivation of the model. For the sake of completeness, we sketch here the
derivation of the NSW model (131)-(132). We refer to [15] for details. For clarity,
we also use the notation

f = O(µα) ⇐⇒ ∃k ≥ 0,∀n ≥ 0, |f |Hn ≤ µαC(En+k(ζ, ψ, ωµ))

for function defined on Rd, and with obvious adaptation for functions defined on
Ω. We recall that the energy En+k(ζ, ψ, ωµ) is controlled uniformly with respect to
µ by Theorem 5.1.

Let us consider therefore (ζ, ψ, ωµ), the solution provided by Theorem 5.1. We
denote ωµ = ωµ ◦ Σ−1 the corresponding vorticity in the fluid domain. One can
show that the velocity field Uµ has the following structure,
(133)

Uµ =

( √
µV
w

)
=

( √
µV + µ

( ∫ ζ
z

(ωµ)⊥h −Q
)

+O(µ3/2)

−µ(1 + z)∆ψ − µ3/2∇ ·
∫ z
−1

∫ ζ
z′

(ωµ)⊥h − µ2
∫ z
−1
∇ · V (1)

)
,

with

Q :=
1

h

∫ ζ

−1

∫ ζ

z′
(ωµ)⊥h .

11This statement is not obvious and deserves a proof!
12Other, more precise, models are derived in [15], showing for instance the creation of horizontal

vorticity from an initially purely vertical vorticity. A good local well-posedness theory for these
models is the only thing to prove in order to deduce a full justification along the procedure
described here for the NSW model (131)-(132).
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Plugging this expression into the vorticity equation (119), we obtain, for the hori-
zontal components,

∂t(ωµ)h+V ·∇(ωµ)h−(1+z)∇·V ∂z(ωµ)h = (ωµ)h ·∇V −(∇⊥ ·V )(ωµ)⊥h +O(
√
µ);

integrating this equation then gives the following equation for Q,

(134) ∂tQ+Q · ∇V + V · ∇Q = O(
√
µ).

Using (133) again, we can relate Uµ‖ to the averaged velocity V through the

approximation

Uµ‖ = V + w∇ζ

= V −√µQ+O(µ) where Q :=
1

h

∫ ζ

−1

∫ ζ

z′
(ωµ)⊥h .

This approximation is then plugged into (117) to obtain

∂tV + V · ∇V +∇ζ =
√
µ
[
∂tQ+Q · ∇V + V · ∇Q

]
+O(µ)

= O(µ),(135)

the second identity stemming from (134).
Using the exact relation Uµ ·Nµ = −µ∇ · (hV ) in the equation for the surface

elevation, we get moreover

(136) ∂tζ +∇ · (hV ) = 0.

The Nonlinear Shallow Water model with vorticity (131)-(132) corresponds there-
fore to (134), (135) and (136) without all the terms of order O(µ).

5.7.2. Justification of the model. Let us denote by (ζSW, V SW, QSW) the exact so-
lution to (131)-(132) with initial conditions

(137) ζ0
SW = ζ0, V

0

SW =
1

1 + ζ0

∫ ζ0

−1

V0, Q0
SW =

1

1 + ζ0

∫ ζ0

−1

∫ ζ0

z′
(ω0

µ)⊥h .

The following proposition shows that (ζSW, V SW, QSW) is a good approximation13

at order O(µ) to the full water waves equations (122).

Proposition 5.9. Let N ∈ N be large enough, ε = 1 and µ ∈ (0, 1). Let (ζ0, ψ0, ω0
µ)

be such that the assumptions of Theorem 5.1 are satisfied.
There exists T > 0 (independent of µ) such that
i. There exists a unique solution (ζSW, V SW, QSW) ∈ C([0, T ];HN (Rd)×HN (Rd)2×
HN−1(Rd)d) to (131)-(132) with initial condition (137);
ii. There exists a unique solution (ζ, ψ, ωµ) ∈ ENT to (122) with initial data
(ζ0, ψ0, ω0

µ);
iii. The following error estimates hold,

|ζ − ζSW|L∞([0,T ]×Rd) + |V − V SW|L∞([0,T ]×Rd) +
√
µ|Q−QSW|L∞([0,T ]×Rd) ≤ µc,

with c = C
(
EN (ζ0, ψ0, ω0

µ),
1

hmin
,

1

a0

)
.

13In the statement of the theorem, the quantities V and Q are given by

V =
1

1 + ζ

∫ ζ

−1
V[ζ](ψ,ωµ), Q =

1

1 + ζ

∫ ζ

−1

∫ ζ

z′
(ωµ)⊥h ,

with ωµ = ωµ ◦ Σ−1 and V[ζ](ψ,ωµ) the horizontal component of the U[ζ](ψ,ωµ), as given in

Definition 2.3.
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Proof. The first point of the proposition is classical and stems directly from the hy-
perbolic structure of (131), and the second point is a direct consequence of Theorem
5.1. For the third point, we have shown in §5.7.1 that (ζ, V ,Q) solves (131)-(132) up
to O(µ) terms. Standard hyperbolic estimates then give a O(µ) control of the error
in H2-norm (provided than N is chosen large enough), from which the L∞-estimate
given in the statement of the lemma follows from Sobolev embeddings. �

6. A Hamiltonian formulation of the water waves equations with
vorticity (19)

The total energy is given by the sum of the potential energy E and the kinetic
energy K,

H = E +K

=
1

2

∫
Rd
gζ2 +

1

2

∫
Ωζ

|U|2,

where we always assume that ζ satisfies the nonvanishing depth condition (14)
and where Ωζ is the fluid domain delimited above by the graph of ζ and below
by the flat bottom z = −H0 (when no confusion is possible, we simply write
Ω = Ωζ as everywhere else in this paper). In [59], Zakharov showed that, in the
irrotational case, the water waves equations could be formally written under a
canonical Hamiltonian formulation, namely,

(138) ∂t

(
ζ
ψ

)
= Jgradζ,ψH, with J =

(
0 1
−1 0

)
.

Several authors have proposed formulations of the water waves equations in presence
of vorticity that also have a Hamiltonian structure (but without addressing the
well-posedness of these formulations). Let us mention for instance [46, 17] in a
Lagrangian framework, [54] in an Eulerian framework for one dimensional flows
with constant vorticity, and the general approach of [43] (see also [37], and [36]
for comments on the validity of these formulations). We investigate in this section
if our new well-posed formulation (19) has a structure similar to (138) when the
vorticity is non zero.
We first define admissible functionals in §6.1, show how to compute the gradients
of such functionals in §6.2, and finally show in §6.3 that the formulation (19) has a
formal Hamiltonian structure.

6.1. The set of admissible functionals. With the notations introduced in Def-
inition 2.3, we can write the energy as a function of (ζ, ψ,ω),

H = H(ζ, ψ,ω) =
1

2

∫
Rd
gζ2 +

1

2

∫
Ω

|U(ζ, ψ,ω)|2

=: H(ζ,U(ζ, ψ,ω)),(139)

where H and H are respectively functionals on M and N , defined as follows.

Definition 6.1. i. We denote

M =
{

(ζ, ψ,ω),(ζ, ψ) ∈ H∞(Rd)2, ζ satisfies (14),

ω ∈ H∞(Ωζ)
3, div ω = 0, ωb ·Nb ∈ H∞0 (Rd)

}
.
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ii. We denote

N = {(ζ,U),ζ ∈ H∞(Rd) satisfies (14),

U ∈ H∞(Ωζ)
3, div U = 0, Ub ·Nb = 0}.

Denoting σζ = 1
H0

(z +H0)ζ, and recalling that divσζ is defined in (43), we also
define the straightened version of N by

N σ = {(ζ, U), ζ ∈ H∞(Rd) satisfies (14), U ∈ H∞(S)3, divσζU = 0, Ub ·Nb = 0}.

Any functional F on N can be equivalently defined as a functional Fσ on N σ

through the relation

Fσ(ζ, U) = F(ζ, U ◦ Σ−1
ζ ) with Σζ(X, z) = (X, z + σζ(X, z));

we use this observation to define the class C∞(N ) of smooth functionals on N .

Definition 6.2. A functional F belongs to C∞(N ) if and only if Fσ belongs to
C∞(N σ).

We can also use this observation to define Gâteaux-derivatives of functional
C∞(N ); the following assumption is made on these derivatives:

(140)



∃ δF
δζ
∈ H∞(Rd), ∀ δζ ∈ H∞(Rd), dζF · δζ =

∫
Rd

δF
δζ
δζ,

∃ δF
δU
∈ H∞(Ωζ)

3, div
δF
δU

= 0,
δF
δU
|z=−H0

·Nb = 0,

∀ δU ∈ H∞(Ωζ)
3 such that div δU = 0, (δU)|z=−H0

·Nb = 0,

one has dUF · δU =
∫

Ωζ
δF
δU · δU.

We can finally define the class A of admissible functionals to which the Hamiltonian
H belongs.

Definition 6.3. A functional F onM belongs to the setA of admissible functionals
if and only if there exists F ∈ C∞(N ) satisfying (140), and such that

∀(ζ, ψ,ω) ∈M, F (ζ, ψ,ω) = F(ζ,U[ζ](ψ,ω)).

6.2. Gradients of admissible functionals. We give in the following proposition
an expression for the gradient of admissible functionals, as well as an expression
for the cotangent bundle T ∗M. Note that the tangent space Tζ,ψ,ωM, in which we
take the variations (δζ, δψ, δω), is defined14 as

Tζ,ψ,ωM = {(δζ, δψ, δω) ∈ H∞0 (Rd)× Ḣ∞(Rd)×H∞(Ωζ)
3,

div δω = 0, (δω)b ·Nb ∈ H∞0 (Rd)};

we also recall that the operator curl−1 is defined in Corollary 3.9.

14The fact that the variations δζ are taken in H∞0 (Rd) is to ensure the conservation of the

volume of the fluid domain; consequently, the variations δψ are taken in Ḣ∞(Rd).
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Proposition 6.4. Let F be an admissible functional and F be the associated func-
tional on N . One can write, for all variations (δζ, δψ, δω) ∈ Tζ,ψ,ωM,

〈
dζ,ψ,ωF,

 δζ
δψ
δω

〉
T∗ζ,ψ,ωM−Tζ,ψ,ωM

=

∫
Rd

δF

δζ
δζ +

∫
Rd

δF

δψ
δψ +

∫
Ωζ

δF

δω
· δω

=
(
gradζ,ψ,ω F,

 δζ
δψ
δω

)
L2(Rd)×L2(Rd)×L2(Ωζ)

with the L2-gradient gradζ,ψ,ω F given by

gradζ,ψ,ω F :=


δF

δζ
δF

δψ
δF

δω

 =


δF
δζ
− w δF

δU
·N − ω⊥h · ∇∆−1 δF

δU
·N

δF
δU
|z=ζ ·N

curl−1 δF
δU

.

 .

Identifying the cotangent space with the set of the L2-gradients of all the admissible
functionals, one has moreover

T ∗ζ,ψ,ωM = {(a, b,C) ∈ H∞(Rd)×H∞(Rd)×H∞(Ωζ)
3,

div C = 0, ∇⊥ · C‖ = b, Cb = 0}.

Proof. Let us first consider the derivative with respect to ψ. Since F is admissible,
one has

F (ζ, ψ,ω) = F(ζ,U[ζ](ψ,ω))

with F ∈ C∞(N ) satisfying (140), and therefore

dψF · δψ = dUF ·
(
dψU[ζ](·,ω) · δψ

)
=

∫
Ω

δF
δU
· UI [ζ]δψ

=

∫
Rd

δF
δU
|z=ζ ·Nδψ,

where we used the definition of UI [ζ]δψ and the fact that δF
δU is divergence free and

that its normal component vanishes at the bottom.
For the derivative with respect to ω, one proceeds along the same lines as above to
get

dωF · δω =

∫
Ω

δF
δU
· UII [ζ]δω

Since δF
δU is divergence free and has zero normal component at the bottom, we can

use Corollary 3.9 and Green’s identity and write

dωF · δω =

∫
Ω

curl−1 δF
δU
· δω +

∫
Rd
N × (curl−1 δF

δU
) · (UII [ζ]δω)|surf

=

∫
Ω

curl−1 δF
δU
· δω +

∫
Rd

(curl−1 δF
δU

)⊥‖ · (UII [ζ]δω)‖.

The second term in the above expression vanishes because (curl−1 δF
δU )⊥‖ = −∇∆−1(C·

N), which is L2-orthogonal to (UII [ζ]δω)‖ = ∇⊥∆−1(δω|surf ·N), and we therefore
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have

dωF · δω =

∫
Ω

curl−1 δF
δU
· δω.

Finally, for the derivative with respect to ζ, we get

dψF · δψ = dζF · δζ + dUF ·
(
dζU[·](ψ,ω) · δζ

)
=

∫
Rd

δF
δζ
δζ +

∫
Ω

δF
δU
· UI [ζ](−wδζ +

∇
∆
· (ω⊥h δζ)),

where we used15 Proposition 3.17 to substitute dζU[·](ψ,ω) · δζ = UI [ζ](−wδζ +
∇
∆ · (ω

⊥
h δζ)) in the second term. Since δF

δU is divergence free and has zero normal
component at the bottom, we can use Green’s identity to get

dψF · δψ =

∫
Rd

δF
δζ
δζ +

∫
Rd

δF
δU
·N(−wδζ +

∇
∆
· (ω⊥h δζ))

=

∫
Rd

(δF
δζ
− w δF

δU
·N − ω⊥h · ∇∆−1 δF

δU
·N
)
δζ,

and the expression for gradζ,ψ,ωF given in the statement of the proposition follows
easily.
Recalling the identity ∇⊥ · C‖ = (curl C)|surf ·N , one immediatly deduces that

T ∗ζ,ψ,ωM⊂ {(a, b,C) ∈ H∞(Rd)×H∞(Rd)×H∞(Ωζ), ∇⊥ · C‖ = b, Cb = 0}.
In order to prove the reverse inclusion, we need, for all (a, b,C) satisfying the con-
dition defining the space in the right part of the identity, to construct a functional
F ∈ C∞(N ) satisfying (140), and such that

δF
δU

(ζ,U) = curl C,
δF
δζ

(ζ,U) = a+ wb− ω⊥h · ∇∆−1b.

This is achieved by taking F defined as

F(ζ ′,U′) =

∫
Ωζ′

curl C ·U′ +
∫

Rd

(
a+ wb− ω⊥h · ∇∆−1b− (curl C)|z=ζ · U

)
ζ ′,

for all (ζ ′,U′) ∈ N . �

This proposition can be used to compute the gradient of the total energy (139).

Corollary 6.5. Let H be the functional onM associated to the total energy (139).
One has

gradζ,ψ,ωH =

 gζ + 1
2 |U‖|

2 − 1
2 (1 + |∇ζ|2)w2 − ω⊥h · ∇∆−1U ·N

U ·N
curl−1U


Proof. The functional H is admissible, with associated function H on N given by

H(ζ,U) =
1

2

∫
Rd
gζ2 +

1

2

∫
Ωζ

|U|2.

The result follows from Proposition 6.4 and the observation that

δH
δζ

= gζ +
1

2
|U |2, δH

δU
= U.

15Proposition 3.17 actually gives a formula for the time derivative of U[ζ](ψ,ω); the shape
derivative formula used here is obtained exactly in the same way.
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�

6.3. The Poisson bracket and the Hamiltonian formulation. As said above,
Zakharov showed that the irrotational water waves equations (21) can be written
under the form

∂t

(
ζ
ψ

)
= Jgradζ,ψH, with J =

(
0 1
−1 0

)
;

in particular, J is an antisymmetric operator on H∞0 (Rd) × Ḣ∞(Rd). In order
to generalize this result to the rotational case, we need to define the notion of
antisymmetric operator on the cotangent bundle T ∗M.

Definition 6.6. A mapping J : T ∗M→ TM is antisymmetric if on each fiber of
the cotangent bundle, the bilinear mapping

T ∗ζ,ψ,ωM× T ∗ζ,ψ,ωM → R
(dζ,ψ,ωF, dζ,ψ,ωG) 7→

(
gradζ,ψ,ωF, Jζ,ψ,ωgradζ,ψ,ωG

)
L2(Rd)×L2(Rd)×L2(Ωζ)

is antisymmetric.

We can now state the following generalization of Zakharov’s result.

Theorem 6.7. The water waves equations (19) can be written

∂t

 ζ
ψ
ω

 = Jζ,ψ,ωgradζ,ψ,ωH.

with

Jζ,ψ,ω =

 0 1 0

−1
(
ωh ·∇

⊥

∆ •+∇
⊥

∆ ·(ωh•)
) ∇⊥

∆ ·
(
ωh(curl •)·N − ω ·N(curl •)h

)
0 0 curl

(
ω × curl •

)
 ;

the field of linear mappings J = (Jζ,ψ,ω)(ζ,ψ,ω)∈M : T ∗M→ TM is antisymmetric.

Proof. Let us define J0
ω by

J0
ω =

(
0 1

−1
(
ωh · ∇

⊥

∆ •+∇
⊥

∆ · (ωh•)
) ) .

We have therefore for all admissible functionals F,G ∈ A (and writing δζF = δF
δζ

etc.),

(
gradζ,ψ,ωF , Jζ,ψ,ωgradζ,ψ,ωG

)
L2×L2×L2 =

(( δζF
δψF

)
, J0
ζ,ω

(
δζG
δψG

))
L2×L2

+
(
δψF,

∇⊥

∆
·
(
ωh(curl δωG)|surf ·N − ω ·N(curl δωG)|surf,h

))
L2(Rd)

+
(
δωF, curl (ω × curl δωG)

)
L2(Ω)

.(141)
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Focusing our attention on the last two terms of the right hand side, we remark first
that (

δψF,
∇⊥

∆
·
(
ωh(curl δωG)|surf ·N − ω ·N(curl δωG)|surf,h

))
=−

(∇⊥
∆
δψF, ωh(curl δωG)|surf ·N − ω ·N(curl δωG)|surf,h

)
=
(

curl δωG|surf
, ω ×

( ∇
∆δψF

∇
∆δψF · ∇ζ

))
.

For the last term of (141), we use Green’s identity to get(
δωF, curl (ω × curl δωG)

)
L2(Ω)

=
(

curl δωF,ω × curl δωG
)
L2(Ω)

+
(
(curl δωG)|surf , ω × (N × (δωF ))|surf

)
L2(Rd)

=
(

curl δωF,ω × curl δωG
)
L2(Ω)

+
(
(curl δωG)|surf , ω ×

(
(δωF )⊥‖

(δωF )⊥‖ · ∇ζ

))
L2(Rd)

.

We therefore get from (141) that

( δζF
δψF
δωF

 ,Jζ,ψ,ω

 δζG
δψG
δωG

)
L2×L2×L2

=
((

δζF
δψF

)
, J0
ζ,ω

(
δζG
δψG

))
L2×L2

+
(

curl δωF,ω × curl δωG
)
L2(Ω)

+
(

(curl δωG)|surf
, ω ×

(
(δωF )⊥‖ + ∇

∆δψF

((δωF )⊥‖ + ∇
∆δψF ) · ∇ζ

))
L2(Rd)

.

Now, the assumption that F ∈ A implies by Proposition 6.4 that the last term
vanishes, so that

( δζF
δψF
δωF

 ,Jζ,ψ,ω

 δζG
δψG
δωG

)
L2×L2×L2

=
(( δζF

δψF

)
, J0
ζ,ω

(
δζG
δψG

))
L2×L2

+
(

curl δωF,ω × curl δωG
)
L2(Ω)

.(142)

Since moreover J0
ζ,ω is obviously skew-symmetric for the L2(Rd) × L2(Rd) scalar

product, the result follows directly. �

We can now deduce the following corollary that shows that the water waves
equations with vorticity can be formally written in Hamiltonian form.

Corollary 6.8. The water waves equations (19) are equivalent to the Hamiltonian
equation

∀F ∈ A, Ḟ = {F,H},
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where H is the Hamiltonian (139), while the Poisson bracket {·, ·} is defined as

{F,G} =

∫
Rd

δF

δζ

δG

δψ
− δF

δψ

δG

δζ
−
∫

Rd
ωh ·

[δF
δψ

∇⊥

∆

δG

δψ
− δG

δψ

∇⊥

∆

δF

δψ

]
+

∫
Ω

(curl
δF

δω
) · (ω × curl

δG

δω
),

for all F,G ∈ A.

Remark 6.9. As said above, the Hamiltonian formulation derived above is only
formal. In order to obtain a valid Hamiltonian structure [36], one must also prove
that the Poisson bracket satisfies Jacobi’s identity, and that it is closed (i.e. that for
all F,G ∈ A, F,G is also an admissible functional). Checking these points is left for
future work. Note that it is proved in [36] that the Poisson brackets derived in [43]
are not valid; actually, even in the irrotational case, it does not seem to be known
whether Zakharov’s formulation (138) provides a valid Hamiltonian structure.

Proof. The fact that if (ζ, ψ,ω) solves (19) implies that the Hamiltonian equation is
satisfied follows directly from Theorem 6.7 after remarking that (142) corresponds
exactly to the Poisson bracket.
Conversely, if the Hamiltonian equation is satisfied for all admissible functional F ,
one deduces from Theorem 6.7 that

∀F ∈ A,
(
gradζ,ψ,ωF,

 ∂tζ
∂tψ
∂tω

− Jζ,ψ,ωgradζ,ψ,ωH
)
L2×L2×L2 = 0.

Using the last point of Proposition 6.4, one readily deduces that ∂tζ
∂tψ
∂tω

− Jζ,ψ,ωgradζ,ψ,ωH = 0,

and the result is proved. �
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