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Abstract New statistical and spectral detectors, the modified matched pairs t-

test, the extended spectral method and the modified spectral method, was pro-

posed for T-wave alternans (TWA) detection gaining robustness according to trend

and single frequency interferences. They were compared to classic detectors such

as matched pairs t-test, unpaired t-test, spectral method, generalized likelihood

ratio test and estimated TWA amplitude within a simulation framework and ap-

plied to real data. The optimal detection threshold was selected by using a full

Monte-Carlo simulation where signals, with and without alternans episodes, were

corrupted by Gaussian noise with different power and single frequency interferences

with different tones. All the combinations of noise and frequency were selected and

repeated 500 times in order to compute probability of detection (Pd) and the false

alarm probability (Pfa), providing ROC curves. The study group consisted of 50

patients with implantable cardioverter-defibrillator (age: 55.3 ±16.4; LVEF: 42.8

±15.5), who were paced (ventricular pacing) at 100 bpm. Two-minute recordings

were analyzed. The XYZ orthogonal lead system was used. The best performance

was reached by using the modified matched pairs t-test (in comparison with the

spectral method and other reference methods).
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1 Introduction

The non-invasive risk stratification of life-threatening ventricular arrhythmias is

nowadays of great clinical importance, especially for the prevention of sudden car-

diac death (SCD) [1]. Currently, there is no generally accepted non-invasive SCD

risk index [2]. The most important method employed to prevent SCD is the use of

Implantable Cardioverter Defibrillator (ICD). The different parameters, such as:

left ventricular ejection fraction (LVEF), ventricular late potentials, appearance of

ventricular arrhythmic episodes in 24-hour Holter electrocardiograms, heart rate

variability, T-wave abnormalities, QRS duration, repolarization duration interval,

and QT variability, are used as the predictors of SCD, nonetheless their predic-

tive value is still far from clinical needs [3]. Ventricular arrhythmia which can

cause SCD is connected to the spatiotemporal heterogeneity of the repolarization

process in the heart [4] which can be manifested as repolarization alternans. It

arises from the beat to beat alternation of the action potential duration at the

level of cardiac myocytes. This process can be spatially concordant if during one

heart beat all ventricular cells have short action potential duration and during

the next beat all ventricular cells have long action potential duration or discor-

dant if at least one region is out of phase. Alternans can induce gradients of

repolarization across the heart which are known substrates for cardiac arrhyth-

mias [5], [6]. Repolarization alternans is seen on the surface electrocardiogram as

T-wave alternans (TWA) which is a very promising electrocardiographic index of

the increased risk of SCD [7], even though there is not yet definitive evidence that

it can guide therapy [8]. The magnitude of TWA is assessed by the analysis of the

beat-to-beat alternations in the shape, amplitude and timing of the ST segment,
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T wave and U wave that repeats every other heart beat [9]. Clinical evidence link

the appearance of TWA with inducible and spontaneous ventricular arrhythmias

and mechanisms of arrhythmia generation [6]- [10]. The magnitude of TWA can

be gained or attenuated by abrupt changes in heart rate or ectopic beats. The

ischemia and extrasystoles may reverse the phase of alternans causing the devel-

opment of discordant alternans and re-entrant arrhythmia. The microvolt T-wave

alternans testing is considered as a tool which can help to identify candidates for

ICD implantation [11]. The measurement of TWA is associated with the assess-

ment of several parameters. The most common technique, which is connected to

the basic TWA model, is the magnitude assessment [12]. A higher TWA ampli-

tude reflects a greater SCD risk. Very important is the phase reversal when TWA

changes its pattern from ABABAB to ABABBABA [13]. It could be a better pre-

dictor of SCD than the elevated TWA magnitude, sustained arrhythmias induced

in the electrophysiological test, or LVEF [14]. The shape of a TWA episode and its

change to consecutive heart beats is another very important factor which should

be considered during SCD risk assessment but its diagnostic value is still unclear.

It was shown that a TWA episode following an abrupt heart rate change is not of

diagnostic value and can be explained by the theory of restitution [15]. One other

factor is the distribution of TWA within the T-wave, where the T-wave amplitude

is of great importance [16]. The final one is the spatial distribution assessed by

the number of ECG leads with the presence of TWA [17]. Usually, the standard

12-lead system is used for TWA assessment but also the XYZ orthogonal lead

system as well as the optimal lead system selected from the body surface potential

mapping (BSPM) are applied [18]. T-wave alternans is a heart rate dependent

phenomenon. An increased heart rate leads to an amplified TWA amplitude, so



Improved Robust T-Wave Alternans Detectors 5

it can be induced even in normal subjects. To prevent false positive detections in

medical diagnostics, a significant heart rate value was limited to 110 bpm. For a

lower heart rate, the amplitude of TWA decreases and the detection becomes more

complicated. For the TWA measurement at accelerated rates the stress test [19]

or pacing is used [20]. TWA could also be measured without heart rate accelera-

tion [21] in ambulatory electrocardiograms [22] and Holter recordings [23]. Many

methods for TWA detection have been developed [9, 25]- [29]. The reliability of

the detection process depends on the properties of the detectors and their suscep-

tibility to noise interference and stationarity of the data [24]. Most of the TWA

detectors consist of a filter, usually nonlinear, followed by a decision rule based on

a threshold crossing. The determination of the optimal value of threshold level for

decision making procedures is not trivial because its value is not adapted to any

kind of interference types or levels. These interferences are typically the Gaussian

or Laplacian noise, periodic components and slow trends [30]. Stress testing pro-

duces a high level of single frequency interference as a product of pedaling when

using ergometer. Respiration and body movements are also sources of periodic

interferences that hinder the TWA detection.

Among the TWA detectors, in the Spectral Method (SM) [28] the T-wave

alternans signal is well separated from most of the interferences present in elec-

trocardiographic signals. This method is a typical confidence interval computation

that uses normalized Fourier transform frequencies. In the SM method, all the T-

waves, typically 128 waves, are firstly aligned and processed, as depicted in fig. 1.

Since the signals are sampled, this dataset corresponds to a matrix whose rows are

the samples of the T-waves and the columns the different T-waves. Then, for each

row the Fourier Transform is computed over 128 samples, providing an ensemble



6 O. Meste et al.

of power spectrum which are finally averaged. In this averaged spectrum, the beat

to beat fluctuation in the amplitude of the T-waves appears as the spectral peak

at the frequency of 0.5 cycles ber beat and is positively detected according to the

computation of a confidence interval for normally distributed random variable.

128 T-Waves
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Fig. 1 Schematic representation of the Spectral Method (SM) introduced in [28]

The magnitude of this peak is a direct marker of alternans. The suggested

length of the data taken for the spectral analysis is 128 sample points corresponding

to consecutive heart beats [28]. Shortening of the window is significant if TWA is

changing its amplitude during the recording and it allows to track its dynamics.

However, short windows increase the risk that random sequences will be falsely

assigned as alternans. TWA is likely to be non-stationary under all measurement

conditions. The disadvantage of this method is that it treats the T-wave alternans

signal as a stationary sine wave with a constant amplitude and a phase, which is not

true in general. This has significant implications for the selection and development

of optimal measurement techniques. Among the well-known detectors such as t-

test [31], matched pairs t-test [31], generalized likelihood ratio test (glrt) [32],

none of them are really designed to be robust according to artifacts such as trends
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or single frequency interference. For example, t-test based methods can reliably

detect periodic changes in the T-wave amplitude but they are sensitive to trends

in the data. In the same situation, matched pairs t-test is only slightly affected

but without a TWA episode it will produce a false detection corresponding to low

specificity.

In line of the aforementioned statistical and spectral approaches, we proposed

new methods for T-wave alternans detection whose aim is to be robust according

to pure tone interferences together with noise. In section 2, methods are introduced

as extension of classic solutions. In section 2.1, the results of the sensitivity and

specificity calculated in simulated and real data, obtained from 50 patients with

ICD, were compared. Corresponding ROC curves and illustrative examples are

displayed in section 3 where it was shown that the ventricular fibrillation risk

stratification can be addressed by TWA detection. Discussion and conclusion close

this paper.

2 Methods

In the following part of the paper, the new methods are described, and each of

the T-wave alternans marker is defined. As it will be introduced in the following,

different sets of data will be processed. For the Spectral Method (SM), also called

alternans ratio in [28], a set of 128 consecutive T-waves are required and processed

globally. For the amplitudes comparison method (Amp), the original T-waves set

is split into consecutive subsets successively shifting, by one T-wave, a window

of 16 T-waves. Thus, a set of 128 T-waves produced 128-16+1=113 consecutive

subsets of 16 T-waves. For all the other methods the subsets of 16 T-waves are
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also considered but they are subsequently processed in two different ways in order

to supply single 16 values series to the detectors. In the first case, the average over

time of every T-wave was calculated and the series was composed of the received

results (processing labeled M). In the second case, the singular value decomposition

(SVD) was computed and the series was built by using the first eigenvector instead

of T- wave itself (processing labeled S). Finally, in the simulated data section

the 16 values series are directly synthesized instead of T-waves and subsequent

processings.

Unlike these processings, the sequence of values to be processed by SM is the

mean of the magnitude of all the Fourier transforms of the time correlated T- wave

samples, as depicted in fig. 1. Then SM is defined by:

SM =
F̄{0.5} −mean(F̄{[0.35, 0.45]})

std(F̄{[0.35, 0.45]})
(1)

According to the previous study [28], a patient is classified as alternans positive if

the alternans ratio (AR) exceeds 3. It means that the power at alternans frequency

(0.5 cycles per beat) is above noise level more than 3 times standard deviation of

noise estimated outside alternans frequency. In other words, SM defined by (1)

should be greater than a threshold equal to 3. Note that when using SM the

function F̄{.} stands for the mean of the magnitude of all the Fourier transforms

as previously mentioned in Introduction section while for the following proposed

methods F{.} will be a single Fourier magnitude computed from processings M

or S. Because the range of frequencies suggested in [28] is not suitable for short

length data analysis we propose a methodology of calculation which uses extended
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frequency band for noise assessment (2) when 16 consecutive T-waves only are

analyzed.

The Extended Spectral Method (ESM) proposed in [33] is also defined in the

spectral domain such as:

ESM =
F{0.5} −mean(F{[0.25, 0.5[})

std(F{[0.25, 0.5[})
(2)

As for the SM , this definition corresponds to a confidence interval calculation

under the assumption of gaussianity. However, when data are contaminated by

the single frequency interference, the spectrum exhibits spikes which makes the

gaussianity assumption invalid. Then, Modified Spectral Method (SMM) [33] was

proposed which is based on the averaging of data with the use of the median

function (3).

SMM =
F{0.5}

median(F{]0, 0.5[})
(3)

The use of the median is meaningful when data are corrupted by spectral

spikes due to periodic components. Then, without introducing a rigid model of

the interferences, robustness is increased by using the median operator, known to

be robust regards outliers in contrast to the mean. The preliminary study presented

in [33] shows the advantage of using SMM method. If we treat the problem of

TWA detection as a statistical issue, at least two tests appear to be suitable: t-test

and matched pairs t-test. As it was shown in the introduction both of them fail in

the presence of high elevated trends in signals with and without TWA. Matched

pairs t-test is used to compare two population means (paired observations of the
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same subject) and reduces inter-subject variability (since it makes comparisons

between the same subject). Defined by:

pttest = ttest(seqodd − seqeven, 0) (4)

, it is theoretically more powerful than unpaired t-test:

ttest = ttest(seqodd, seqeven) (5)

where seqodd and seqeven stand respectively for the odd and even samples from

the data sequence . We proposed a novel statistical method which is Modified

Matched Pairs t-Test (MMPT ) which is calculated according to the formula (4).

MMPT =
1

K

K−1∑
k=0

ttest(seqodd − circ(seqeven, k), 0) (6)

where, K is the number of samples in the window of analysis. The function

circ(seqeven, k) shifts right values located in variable seqeven by k values in such

a way that the last value is moved to the first position. For instance, if seqeven =

{a, b, c, d} then circ(seqeven, 1) = {d, a, b, c} or circ(seqeven, 2) = {c, d, a, b}. In this

method, Matched pairs t-test is calculated for the differences between odd sequence

and every circular rotation of even sequence. The outcome of the method is the

mean value calculated from the results of all the tests. Classical Matched pairs

t-test performs badly when temporal trend is present in the data because of bad

specificity whereas the sensitivity is high. The aim of the circ() operator is to

reduce the effect of this temporal feature since data are shuffled while preserving
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the alternans feature. Here again without modeling the trend and its subsequent

substraction, robustness of the detection is improved compared to pttest.

It is worth noticing that all these methods do not directly account for ampli-

tudes of TWA for detection. In contrast, methods based on the TWA amplitude

estimation provide a value where detection could be also applied. Along the same

line of [12] we propose to use the following TWA energy estimation for comparison:

Ampi =
1

N

N∑
n=1

(T̄odd,i(n)− T̄even,i(n))2 (7)

corresponding to the energy of the means (noted T̄ ) difference of odd and even T

waves, where n and i stand for the T-wave sample number and T-waves block index,

respectively. Indeed, when the number of T-waves at disposal is large enough, the

ensemble is splited in indexed blocks in order to track short duration alternans

events. For instance, if the size of each T-wave block is 16 T-waves then the means

are computed over 8 T-waves.

The last method tested in this work is the glrt [32]. This detector distinguishes

the two hypotheses (H0 and H1) applied to a model of observation where a refer-

ence T-wave is assumed identical along the observation and the interference is only

noise. The hypotheses H0 and H1 correspond to the lack or presence of alternans,

respectively. In [32] different types of noise are considered. This detector suffers

from robustness in term of model departure.

Novel methods proposed in this paper defined in the time (MMPT ) and fre-

quency (ESM , SMM) domains will be compared to the references ones (SM , ttest,

pttest, glrt, Ampi) by using real data and synthetic data when it applies.
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2.1 Application to simulated data

In order to gain in robustness, complete simulated data will be generated not only

to compare methods but also to fix thresholds for subsequent processing. To this

aim, synthetic observations are generated by adding gaussian noises and sinusoids,

with different properties, to the alternans sequence. This processing is fully de-

scribed and adapted to the analysis of real data. In order to stick to the properties

of the observed interferences during experimental studies, the performance of all

the methods was assessed by 500 simulated positive sequences seq1,i defined as:

seq1,i(n) = (−1)n + bi(n) + cisin(ωn); n = 1 · · · 16 (8)

where it appears that the alternans sequence is corrupted by noise in addition

to the single frequency interference. The window length was limited to 16 samples

(or 16 beats according to T-wave analysis) in order to assess the performances

with short duration alternans episodes. Note that for low frequencies, because the

length of the window of analysis is 16 samples, the single frequency interference

could be equivalent to a trend and it will be not seen as a periodic signal. The

Gaussian noise sequences bi(n) were generated with 8 different standard deviations

σb = 0, 0.1, 0.3, 0.5, 0.7, 1, 1.5 , 2, the single frequency interference was chosen

from the set of 7 different frequencies ω (rad/s) = 0, 0.1, 0.3, 0.5, 0.7, 1, 1.7

and ci is a Gaussian random variable with σc = 4. For all the possible values of

the pairs (σb, ω) a set of 500 TWA positive sequences seq1,i (i = 1 . . . 500) was

generated. Note that the simulations with only noise or only single frequency are

also provided by a proper selection of σb and ci . TWA negative sequences seq0,i

were generated by using the formula (8) where the alternans term was removed.
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Since the labels (alternans or no alternans) is known for each sequence from the

up to 8x7x500 simulated sequences, the Receiver Operating Curves (ROC) can

be computed by varying the threshold for detection. A detection threshold was

selected which corresponds to the probability of false alarm equal to 5% (it is the

risk of positive detection of 5 TWA sequences out of 100 when TWA is not present

there).

2.2 Application to real data

Recordings of patients with ICD were analyzed with the use of all the methods.

Electrocardiographic signals were recorded from the patients body surface. Six

silver-silver chloride electrodes were positioned in the orthogonal XYZ lead config-

uration. ECG signals were amplified (gain, 1000), filtered (bandwidth, 0.05 Hz to

500 Hz) and digitized (2 kHz sampling frequency, 22 bits resolution). Two minute

recordings were made during the ventricular pacing at 100 bpm, during periodic

control of the pacemaker, after implantation.

The study group consisted of 50 patients with ICD and with possible occur-

rence of Ventricular Tachycardia/Ventricular Fibrillation (VT/VF) during the 10

years follow-up. Patients underwent the ICD implantation due to one of the fol-

lowing conditions: Coronary Artery Disease (CAD), Myocardial Infarction (MI),

Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Long

QT Syndron (LQTS), Arrhythmogenic Right Ventricular Dysplasia (ARVD), Id-

iopathic Ventricular Fibrillation (IVF). The patients basic and detailed clinical

data were shown in Table 1. For detailed analysis of clinical data, the repartition

of the study group among CAD, MI and VT/VF(+) is given in fig. 2. CAD, MI
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and VT/VF conditions play an important role for the risk stratification of life-

threatening cardiac diseases and they are considered together with the presence

of TWA [8], [35]. The study was conducted according to the Helsinki Declaration

(1964). All participants provided informed consent prior to their participation.

Table 1 The study group clinical data (2). VT/VF (+): the patients with ICD who experi-
enced ventricular tachycardia or ventricular fibrillation which occurred during their follow-up,
VT/VF (-): the patients with ICD who did not experience ventricular episodes.

Total VT/VF (+) VT/VF (-)

Patients 50 26 (52%) 24 (48%)

Women 13 (26%) 6 (46%) 7 (54%)

Men 37 (74%) 20 (54%) 17 (46%)

Age 55.3 (σ16.4) 58.5 (σ15.3) 51.8 (σ17.2)

LVEF 42.8 (σ15.5) 39.7 (σ15.1) 46.3 (σ15.5)

CAD 32 (64%) 19 (38%) 13 (26%)

MI 29 (58%) 16 (32%) 13 (26%)

HCM 6 (12%) 1 (2%) 5 (10%)

ARVD 3 (6%) 3 (6%) 0

DCM 2 (4%) 2 (4%) 0

IVF 2 (4%) 0 2 (4%)

LQTS 1 (2%) 0 1 (2%)

another 3 (6%) 1 (2%) 2 (4%)

CAD

MI
VT/VF(+)

16
13 3

7

Fig. 2 Distribution of study group among labels CAD, MI and VT/VF(+)
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The ICD electrodes were used for pacing of the heart at the rate which was

programmed in ICD device. The following procedures were applied, for X, Y, Z

signal pre-processing :

– To localize T-waves in each heartbeat, the R peaks of the previously averaged

signal were detected by Pan-Tompkins algorithm [34]

– Baseline wander was eliminated by the use of cubic splines [36]

– T-wave locations were estimated using Bazett formula [37]. ECG signals con-

sisting of 128 T-waves with 310 ms time duration each were used.

– When it applies, in order to transform each segmented T-wave into a single

parameter for subsequent detection, they were averaged over time (labeled M)

or projected onto their first singular vector (labeled S).

and for TWA detectors MMPT , SMM , ESM , ttest, pttest, glrt:

– Parameters series were segmented by using a 16-values sliding window, for

instance consecutive M values.

– Filters (MMPT , SMM , ESM , ttest, pttest, glrt) were computed on each seg-

ment

– The filter outputs were compared to the detection threshold (individually se-

lected for each method based on the simulation study)

– Duration times of detection episodes were scored and the median value was

calculated. This value will be used for subsequent detection performance as-

sessments that are ROC curves and ranksum tests.

– TWA was detected when it was present in at least one lead.
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In case of SM method, the sequence of 128 values long does not allow a sliding

window processing. SM provides a single detection value for each lead. Finaly,

TWA is detected if the detection is positive in at least one lead.

For the TWA amplitude based detector the mean T wave operator is computed

over 8 waves for both even and odd heart beat index, corresponding to the total of

16 waves forming the i’th T-waves block. Each processed T-wave block provides 3

Ampi values corresponding to expression (7) for the three leads. Since the initial

ensemble of T-waves is splited in several blocks (i = 1, . . . , I), the median function

is finally applied to all the Ampi (i = 1, . . . , I) to provide a single value for each X,

Y , Z leads. To perform the comparison with other detectors not only the individual

lead values are computed but also the squared root, the minimum, the maximum,

the median and the mean of the three X, Y, Z values. These results are labeled Al,

with l corresponding to how the X, Y , Z values are processed. These values will

be used for subsequent detection performance assessments that are ROC curves

and ranksum tests.

3 Results

Sensitivity and specificity (alternatively Pd - probability of detection and Pfa -

probability of false alarm) were calculated with the simulated signals with and

without TWA, providing Receiver Operating Curve (ROC) curves and subsequent

Area Under the Curve (AUC). The three types of simulations were performed. At

first, Gaussian noise was simulated and added to the signal. The obtained results

for all the methods are shown in figure 3.
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Fig. 3 Simulated ROC curves for all the analyzed methods. Only Gaussian noise is added
in the model (8). The Gaussian noise sequences bi(n) were generated with different standard
deviations σb = 0, 0.1, 0.3, 0.5, 0.7, 1, 1.5 , 2.

Next, single frequency interference were simulated and added to the signal.

Obtained results are shown in figure 4.

Finally, both Gaussian noise and single frequency interference were simulated

and added to the signal. Obtained results for all methods are shown in figure 5.

Since the higher is the curve whatever the 1-specificity value, the higher is the

performance of the corresponding detector, it is tedious to rank all the methods.

However detection power of the methods can be compared by computing the Area

Under the Curve (AUC) of each ROC curves. Comparing fig. 3 and 4, it is clear that

the performances of the methods depend on the type of added interferences. For

instance, the ESM performs really better in the presence of sinusoidal interferences

compared to the noise case and the performance of pttest degrades strongly with

sines. With respect to results displayed in fig. 5, a detection threshold was selected
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Fig. 4 Simulated ROC curves for analyzed methods. Only single frequency interference were
added in the model (8). the single frequency interference was chosen from the set of frequencies
ω (rad/s) = 0, 0.1, 0.3, 0.5, 0.7, 1, 1.7.

for each method which corresponded to the probability of false alarm equal to 5%.

Respective values are shown in Table 2, in addition to the probability of detection

Pd and AUC.

Table 2 T-wave alternans detection AUC, thresholds and Pd for Pfa=5%

Method AUC Threshold Pd

pttest 0.92 2.28 0.65

ttest 0.93 1.52 0.63

SMM 0.95 2.05 0.78

ESM 0.94 3.60 0.74

glrt 0.93 1.07 0.61

MMPT 0.94 1.63 0.67

Among the study group, 26 VT/VF positive patients exhibited ventricular

tachycardia or fibrillation episodes. It is hypothesized that the presence of VF

in the follow-up should correlate with the detection of TWA. The correlation of
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Fig. 5 Simulated ROC curves for analyzed methods. Gaussian noise and single frequency
interference were added in the model (8). Their statistical characteristics are identical to those
used in figures 3 and 4.

TWA episodes with CAD and MI conditions is also analyzed separately but also

combining the three conditions, noted ∩. These correlations are assessed by com-

puting first the AUC and secondly the ranksum test for comparison of mean. Note

that this test has been selected because the normality test failed. The correspond-

ing values are given in Table 3 where boldface means significant ranksum test for

means comparison (p < 0.05).

In this table only AX and Amin, corresponding to lead X and the minimum

value (see section 2.1) , are given because other Al failed to exhibit a significant

rank sum test, whatever the analyzed conditions. The presence of the VT/VF

episodes in the follow-up was considered as a gold standard for decision making

about increased risk to SCD. Additionally, the results of the analysis applied to
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Table 3 AUC values for all the methods considering separately VT/VF, CAD, MI status and
their intersection ∩. Left and right values correspond to M and S transformations, respectively.
Bold face type is applied when ranksum test for means comparison is < 0.05

Method VT/VF CAD MI
⋂

MMPT 0.64 0.52 0.75 0.69 0.68 0.65 0.73 0.63

SMM 0.62 0.63 0.70 0.73 0.64 0.67 0.71 0.71

ESM 0.54 0.50 0.72 0.72 0.67 0.67 0.64 0.58

ttest 0.60 0.50 0.75 0.65 0.68 0.62 0.67 0.58

pttest 0.52 0.57 0.59 0.62 0.52 0.59 0.57 0.62

glrt 0.54 0.50 0.59 0.50 0.56 0.5 0.54 0.5

SM 0.45 0.58 0.60 0.6

AX 0.65 0.61 0.60 0.73

Amin 0.71 0.51 0.53 0.72

each time sample of the T-wave along the T-wave index axis are computed by the

MMPT methods and provided in figure 6 (lower part).
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Fig. 6 Upper part: MMPT method output for a given patient (Y lead) where the sequence is
the average in time of the T-wave (M pre-processing). Detection threshold is 1.63 (horizontal
line). Lower part: MMPT method output for each time sample of the T-waves (in black -
values > 1.63, in white - otherwise)

This example has been chosen because the SM failed, in contrast to MMPT ,

probably because of the short term TWA sequence. The result is a matrix of
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the outcome of the method MMPT compared to the threshold of table 2. The

corresponding segments where TWA was detected are plotted in black. In addition,

the upper part of this figure shows the result of the same analysis (MMPT ),

applied to each T-wave but averaged in the time of the T-wave. It is clear that the

localizations of the detected TWA are slightly different along the T-wave index

axis and that detection appear mostly in the first half of the T- wave.

4 Discussion

The new methods (MMPT , SMM , ESM) as well as the well-known ones (ttest,

pttest, glrt, SM , Ampi) have been tested with the use of simulated data and real

ECG recordings. All AUC differences in table 2 are significant after applying the

test described in [38]. This test provides a p-value for the comparison of AUC cou-

ples and a corresponding value below 0.05 is assumed significant in the following.

The results of the simulations showed that the best methods are SMM , ESM and

MMPT , confirmed by the corresponding AUC values equal to 0.95, 0.94 and 0.94.

In addition to the Pd provided in table 2, the respective AUC equal to 0.92, 0.93

and 0.93 show that pttest, ttest and glrt failed to outperform other detectors. It

was not surprising because the requirements for the properties of the data that

support these detectors were not fulfilled. The two first methods assume that the

data are Gaussian and the last one relies on an inadequate model different from the

simulated one. This is evidently reflected in figure 4 where only single frequency

interference is considered as noise. This simulation stage provided thresholds for

the application on real data. It is worth noticing that its aim was to reduce the

overfitting of the presented methods with the real data for the detection char-
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acterizations. Due to the fact that ESM , SMM and MMPT outperform other

methods they were also compared with follow-up data connected with presence or

absence of VT/VF episodes and CAD/MI conditions. Concerning VT/VF predic-

tion, although their performance was not very high, the detection power assessed

by the AUC is the best for Amin (AUC=0.71), however not significantly, and the

worst is for SM method (AUC=0.45). The test for AUC comparison [38] shows

that significancy is only verified when comparing SM with AX , Amin, MMPT and

SMM . In terms of AUC and ranksum test, the methods tend to be more accurate

when distinguishing CAD and MI groups. Meaning that TWA is more likely to be

present in this category of subjects but not necessarily induces VT/VF episodes.

Notes that for both CAD and MI, the group (MMPT , SMM , ESM , ttest) exhibits

significant AUC differences compared to group (pttest, glrt, SM , AX , Amin) but

not inside the groups. Finally, combining all the conditions (∩) globally results

in good performance that concurs with other outcomes, confirming that in our

dataset CAD/MI patients are prone to exhibit TWA.

It was foreseen better performances for SMM because of the simulation out-

comes, in contrast to the real data ones. This difference could be explained by the

difficulty to model accurately real interferences in a simulation perspective. It is

worth noting that the performances of SMM , the best detector from the simula-

tion scheme, are rather good with respect to AUC. In the case of MMPT method,

the use of averaging of consecutive T-waves in the pre-processing stage (M) even

increases the power of the detector. This is globally confirmed whatever the detec-

tion method compared to the use of the SVD (S). According to the performance of

SM it could be hypothesized that TWA episodes were rarely long enough to make

SM efficient, as illustrated in fig. 6. This result is not in favor of SM whereas it
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is consider as a reference for TWA detection. The short duration of TWA is con-

firmed by the threshold selection from fig. 6 equal to 4 a. u. in order to optimize

the selectivity and specificity with respect to MMPT performances. Although this

value is computed from our data set it could be suggested as a reference threshold

for TWA detection. In summary, global results from table 3 seem to be in favor

to MMPT method in term of AUC and ranksum test.

It is interesting to note that TWA amplitude based detector Al (AX and Amin)

performed well for VT/VF and
⋂

, however not significantly better than others

except SM , but failed for CAD and MI because the ranksum tests are negative. It

probably means that the amplitude only is not enough to make the detector robust

to interferences, impeding more complete detections. It is interesting to mention

that unlike the other methods presented in this work, based on relative measures,

the Al detectors provide an rather good alternative as an absolute measure.

The overall low AUC for VT/VF prediction could be explained by the lack

of real ground truth. In other words, it could be expected that patients suffering

from VF should exhibit TWA but the presence of TWA does not necessarily mean

that VF will occur, particularly when the transition from concordant to discor-

dant TWA is not assessed [8]. This means that for a given level of sensitivity the

specificity could be low.

5 Conclusions

It has been shown that alternatives exist while using the spectral domain as well

as statistical tests. In contrast to this method, the proposed tools are applicable

to short time windows which allow tracking of dynamic TWA episodes. Robust-
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ness has been increased not only by using the median computed over the duration

time of detections but also by fitting the detectors to the presence of spikes in

the data spectrum or trends in the data sequences. Based on a fully simulated

dataset, including different noise levels and single frequency interference, the pro-

posed methods outperformed the classic ones. In addition, optimal thresholds were

provided for a selected sensitivity. The methods were applied to real data where it

appears that the detection of TWA episodes correlated with the existence of ven-

tricular fibrillation and CAD/MI conditions. Although this detection is not related

to a very high specificity, the proposed method is an adequate tool in comparison

with the classic spectral method and amplitude based detector. The poor perfor-

mance of the classical spectral method could be explained by a dynamic TWA

pattern where short durations and changes of phase may hinder accurate detec-

tions. The proposed methods proved that they are well designed for short time

TWA episode detection and the use of averaging of T-waves in the pre-processing

stage has the advantage of being less affected by misalignments of the T-waves. It

was shown that this statistical test provides a complementary and computationally

efficient solution to the alternans detection problem in surface ECG. Although the

TWA amplitude estimation is addressed in this paper, it failed to outperform the

proposed methods for extended detection.
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