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Introduction

Let us first recall two classical results on the eigenvalues and eigenfunctions of the Dirichlet-Laplacian on a bounded domain Ω in the plane. According to a well-known result by R. Courant (in [START_REF] Courant | Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke[END_REF]), an eigenfunction (real valued) associated with the k-th eigenvalue λ k (Ω) of this operator has at most k nodal domains. In [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF], Å. Pleijel sharpened this result by showing that, for a given domain, an eigenfunction associated with λ k (Ω) has less than k nodal domains, except for a finite number of indices k . This was generalized in [START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF] by P. Bérard and D. Meyer to the case of a compact Riemannian manifold, with or without boundary, in any dimension. It has been shown by I. Polterovich in [START_REF] Polterovich | Pleijel's nodal theorem for free membranes[END_REF], using estimates from [START_REF] Toth | Counting nodal lines that touch the boundary of an analytic domain[END_REF], that the analogous result also holds for the Neumann-Laplacian on a planar domain with a piecewise-analytic boundary.

These results leave open the question of determining, for a specific domain or manifold, the cases of equality. It is stated in [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF] that when Ω is a square, equality can only occur for eigenfunctions having one, two or four nodal domains, associated with the first, the second (which has multiplicity two), and the fourth eigenvalue respectively. The proof in [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF] is however incomplete and was corrected by P. Bérard and B. Helffer in [START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF]. The case of the sphere is treated in [START_REF] Helffer | On spectral minimal partitions: the case of the sphere. In Around the research of Vladimir Maz'ya. III[END_REF], see also [START_REF] Leydold | Knotenlinien und Knotengebiete von Eigenfunktionen[END_REF][START_REF] Leydold | On the number of nodal domains of spherical harmonics[END_REF] for a related study. The cases of an equilateral torus and an equilateral triangle are investigated in [START_REF] Bérard | Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF], and the case of the Neumann-Laplacian in a square is treated in [START_REF] Helffer | Nodal domains in the square-the Neumann case[END_REF]. In this note, we will show that for the flat torus (R/Z) 2 , equality holds only for eigenfunctions having one or two nodal domains, respectively associated with the first and the second eigenvalue (this last eigenvalue has multiplicity four). This complements the result [9, Theorem 7.1], which determines the cases of equality for a flat torus (R/Z) × (R/bZ) with b 2 irrational.

Let us give a more precise statement of the above result, and fix some notation that will be used in the following. In the rest of this paper, T 2 stands for the two-dimensional torus (R/Z) 2 equipped with the standard flat metric, and -∆ T 2 stands for the Laplace-Beltrami operator on T 2 . If Ω is an open set in T 2 with a sufficiently regular boundary, we write (λ k (Ω)) k≥1 for the eigenvalues of -∆ T 2 in Ω with a Dirichlet boundary condition on ∂Ω , arranged in non-decreasing order and counted with multiplicity. In particular, λ k (T 2 ) is the k-th eigenvalue of -∆ T 2 (in that case the boundary is empty). If u is an eigenfunction of -∆ T 2 , we call nodal domains of u the connected components of T 2 \ u -1 ({0}) , and we denote by µ(u) the cardinal of the set of nodal domains. With any eigenvalue λ of -∆ T 2 , we associate the integer

ν(λ) = min{k ∈ N * : λ k (T 2 ) = λ} .
We say that an eigenvalue λ of -∆ T 2 is Courant-sharp if there exists an associated eigenfunction u such that µ(u) = ν(λ) . Following [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], we also use the adjective Courant-sharp for such an eigenfunction u . We will prove the following result.

Theorem 1. The only Courant-sharp eigenvalues of -∆ T 2 are λ k (T 2 ) with k ∈ {1, 2, 3, 4, 5} .
The proof follows the approach used by Å. Pleijel in [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF] and in the case of a compact manifold by P. Bérard and D. Meyer in [START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF] (see also [START_REF] Bérard | Inégalités isopérimétriques et applications. Domaines nodaux des fonctions propres[END_REF][START_REF] Bérard | Volume des ensembles nodaux des fonctions propres du Laplacien[END_REF]). We first establish a Faber-Krahn type inequality for domains in T 2 whose area is sufficiently small. We deduce it from an isoperimetric inequality proved in [START_REF] Howards | The isoperimetric problem on surfaces[END_REF][START_REF] Chavel | Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives[END_REF]. We then combine this information with an explicit lower bound of the counting function (similar to Weyl's law) to show that large eigenvalues cannot be Courant-sharp.

Let us point out that interest in Courant-sharp eigenvalues has grown recently thanks to their connection to minimal partition problems. This appears clearly in the paper [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], where the authors consider the following problem: given a two-dimensional domain Ω and an integer k , find a k-partition of Ω , that is to say a family (D i ) 1≤i≤k of k open, connected, and disjoint subsets of Ω , that minimizes the energy

max 1≤i≤k λ 1 (D i ) .
Such a k-partition is said to be minimal. Existence and regularity for minimal partitions are proved in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]. Following [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], let us say that a k-partition is nodal if it is the family of the nodal domains for some eigenfunction of the Dirichlet-Laplacian on Ω . It is shown in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] that a nodal partition is minimal if, and only if, the corresponding eigenfunction is Courant-sharp. Finding nodal minimal partitions is therefore equivalent to finding Courant-sharp eigenfunctions. In particular, Theorem 1 has the following consequence.

Corollary 2. If k ≥ 3 , minimal k-partitions of T 2 are not nodal.
The problem of finding minimal k-partitions of T 2 , with k ≥ 3 , is studied in [START_REF] Léna | Spectral minimal partitions for a family of tori[END_REF]. In this paper, a numerical method, based on [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF], is used to produce candidates to be minimal partitions for k ∈ {3, 4, 5}. They seem to be tillings of T 2 by hexagons or squares. Proposition 3. If Ω is an open set in T 2 such that |Ω| ≤ 1 π , we have the inequality

H 1 (∂Ω) 2 ≥ 4π|Ω| . (1) 
In this proposition, |Ω| stands for the usual two-dimensional area measure of Ω and H 1 (Ω) for the one-dimensional Hausdorff measure of ∂Ω . This inequality is also proved in [START_REF] Léna | Courant-sharp eigenvalues of a two-dimensional torus[END_REF], by a more elementary method than in [START_REF] Howards | The isoperimetric problem on surfaces[END_REF].

Proposition 4. If Ω is an open set in T 2 such that |Ω| ≤ 1 π , then λ 1 (Ω)|Ω| ≥ πj 2 0,1 . (2) 
The constant j 0,1 in Equation ( 2) is the first positive zero of the Bessel function of the first kind J 0 . Let us note that πj 2 0,1 is the value of the product λ 1 (D)|D| , when D is a disk in the euclidean plane R 2 . As in the planar case, the proof uses Schwarz symmetrization of the level sets Ω t = {x : u(x) > t} , where u is a positive eigenfunction associated with λ 1 (Ω) and t > 0 . We go through the same steps as in [5, I.9], or [START_REF] Chavel | Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives[END_REF]III.3]. Note that since |Ω t | ≤ |Ω| ≤ 1 π for all t > 0 , we can use Inequality (1).

Weyl's law with explicit bounds

For λ ≥ 0 , we define the counting function by N (λ) = ♯{k : λ k (T 2 ) ≤ λ}.

Proposition 5. We have, for all λ ≥ 0 ,

λ 4π - 2 √ λ π -3 ≤ N (λ) . (3) 
Proof. The proof consists in counting lattice points contained in a planar region. Indeed, the eigenvalues of -∆ T 2 are of the form

λ m,n = 4π 2 (m 2 + n 2 ) , with (m, n) ∈ N 2 .
With each pair of integers (m, n) we associate a finite dimensional space E m,n of eigenfunctions such that

L 2 (T 2 ) = (m,n) E m,n .
The vector space E m,n is generated by products of trigonometric functions, see for instance the proof of [9, Theorem 2.2] for details. The dimension of E m,n is 1 if (m, n) = (0, 0) , 2 if either m or n, but not both, is 0 , and 4 if m > 0 and n > 0 . Let us denote by n(λ) the number of points with positive and integer coordinates contained in the disk of center 0 and radius √ λ 2π . Taking the dimension of the spaces E m,n into account, we have the following exact formula for the counting function:

N (λ) = 4n(λ) -4 √ λ 2π -3 , (4) 
where ⌊x⌋ denotes the largest integer not greater than x . By covering the upper right-hand quarter of the disk of center 0 and radius √ λ 2π with squares of side 1 , we see that n(λ) ≥ λ 16π , and we obtain the desired lower bound.

Courant-sharp eigenvalues of the torus

We now turn to the proof of Theorem 1. We will use the following lemmas. Lemma 6. If λ is an eigenvalue of -∆ T 2 that has an associated eigenfunction u with k nodal domains, and if k ≥ 4 , πj 2 0,1 k ≤ λ . 

λ = λ 1 (D) ≥ πj 2 0,1 |D| ≥ πj 2 0,1 k . Corollary 7. If λ is a Courant-sharp eigenvalue of -∆ T 2 with ν(λ) ≥ 4 , πj 2 0,1 ν(λ) ≤ λ . (5) 
Lemma 8. For all all k ∈ N ,

λ k (T 2 ) ≤ 4 + 2 4 + π(k + 3) 2 . ( 6 
)
Proof. The proof is immediate from the following remark: if λ is a non-negative number such that N (λ) ≥ k , then λ k (T 2 ) ≤ λ . The lower bound for N (λ) given in Inequality (3) then implies the desired upper bound.

Comparing the lower bound (5) with the upper bound (6), we can easily show that if λ is an eigenvalue of -∆ T 2 with ν(λ) ≥ 50 , it is not Courant-sharp. Table 1 gives the first fifty-seven eigenvalues of -∆ T 2 . It shows that we have to test Inequality (5) for λ = λ k (T 2 ) with k ∈ {6, 10, 14, 22, 26, 30, 38, 46} . Table 2 displays the ratio λ k (T 2 ) 4kπ 2 , which should be greater than j 2 0,1 4π ≃ 0.4602 in case λ k (T 2 ) is Courant-sharp. This does not happen in the cases considered, and therefore Theorem 1 is proved.

Table 1 :

 1 The first 57 eigenvalues (Les 57 premières valeurs propres)

			λ 4π 2 0	indices (0, 0)	multiplicity ν(λ) 1 1		
			1	(1, 0), (0, 1)	4		2		
			2	(1, 1)	4		6		
			4	(2, 0), (0, 2)	4		10		
			5	(2, 1), (1, 2)	8		14		
			8	(2, 2)	4		22		
			9	(3, 0), (0, 3)	4		26		
			10 (3, 1), (1, 3)	8		30		
			13 (3, 2), (2, 3)	8		38		
			16 (4, 0), (0, 4)	4		46		
			17 (4, 1), (1, 4)	8		50		
	k	6	10	14	22	26	30	38	46
	λ k (T 2 ) 4kπ 2	0.3333 0.4000 0.3571 0.3636 0.3462 0.3333 0.3421 0.3478

Table 2 :

 2 Table of ratios (Tableau des rapports) Proof. Since |T 2 | = 1 , one of the nodal domains of u has an area no larger than 1 k . Let us denote this nodal domain by D . Since k ≥ 4 , |D| ≤ 1 k < 1 π . According to Proposition 4,
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