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Courant-sharp eigenvalues of a two-dimensional torus

Valeurs propres Courant-strictes d’un tore bidimensionnel

Corentin Léna∗

December 14, 2015

Abstract

In this note, we determine, in the case of the Laplacian on the flat two-dimensional torus (R/Z)2 ,
all the eigenvalues having an eigenfunction which satisfies Courant’s theorem with equality (Courant-
sharp situation). Following the strategy of Å. Pleijel (1956), the proof is a combination of a lower
bound (à la Weyl) of the counting function, with an explicit remainder term, and of a Faber–Krahn
inequality for domains on the torus (deduced as in the work of P. Bérard and D. Meyer from an
isoperimetric inequality), with an explicit upper bound on the area.

Résumé

Cette note vise à déterminer quelles sont les valeurs propres du Laplacien sur le tore plat (R/Z)2

qui ont une fonction propre réalisant le cas d’égalité dans le théorème de Courant (situation Courant-
stricte). Nous suivons la stratégie de Å. Pleijel (1956), qui associe une borne inférieure de type loi de
Weyl pour la fonction de comptage et une inégalité de type Faber-Krahn. Comme dans les travaux de
P. Bérard et D. Meyer, cette dernière est déduite d’une inégalité isopérimétrique, avec une condition
de petitesse, ici explicitée, sur l’aire du domaine.
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1 Introduction

Let us first recall two classical results on the eigenvalues and eigenfunctions of the Dirichlet-Laplacian
on a bounded domain Ω in the plane. According to a well-known result by R. Courant (in [8]), an
eigenfunction (real valued) associated with the k-th eigenvalue λk(Ω) of this operator has at most k nodal
domains. In [18], Å. Pleijel sharpened this result by showing that, for a given domain, an eigenfunction
associated with λk(Ω) has less than k nodal domains, except for a finite number of indices k . This
was generalized in [5] by P. Bérard and D. Meyer to the case of a compact Riemannian manifold, with
or without boundary, in any dimension. It has been shown by I. Polterovich in [19], using estimates
from [20], that the analogous result also holds for the Neumann-Laplacian on a planar domain with a
piecewise-analytic boundary.

These results leave open the question of determining, for a specific domain or manifold, the cases of
equality. It is stated in [18] that when Ω is a square, equality can only occur for eigenfunctions having
one, two or four nodal domains, associated with the first, the second (which has multiplicity two), and
the fourth eigenvalue respectively. The proof in [18] is however incomplete and was corrected by P.
Bérard and B. Helffer in [3]. The case of the sphere is treated in [11], see also [16, 17] for a related
study. The cases of an equilateral torus and an equilateral triangle are investigated in [4], and the case
of the Neumann-Laplacian in a square is treated in [12]. In this note, we will show that for the flat torus
(R/Z)2 , equality holds only for eigenfunctions having one or two nodal domains, respectively associated
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with the first and the second eigenvalue (this last eigenvalue has multiplicity four). This complements
the result [9, Theorem 7.1], which determines the cases of equality for a flat torus (R/Z)× (R/bZ) with
b2 irrational.

Let us give a more precise statement of the above result, and fix some notation that will be used in
the following. In the rest of this paper, T2 stands for the two-dimensional torus (R/Z)2 equipped with
the standard flat metric, and −∆T2 stands for the Laplace-Beltrami operator on T

2 . If Ω is an open set
in T

2 with a sufficiently regular boundary, we write (λk(Ω))k≥1 for the eigenvalues of −∆T2 in Ω with
a Dirichlet boundary condition on ∂Ω , arranged in non-decreasing order and counted with multiplicity.
In particular, λk(T

2) is the k-th eigenvalue of −∆T2 (in that case the boundary is empty). If u is an
eigenfunction of −∆T2 , we call nodal domains of u the connected components of T2 \ u−1({0}) , and we
denote by µ(u) the cardinal of the set of nodal domains. With any eigenvalue λ of −∆T2 , we associate
the integer

ν(λ) = min{k ∈ N
∗ : λk(T

2) = λ} .
We say that an eigenvalue λ of −∆T2 is Courant-sharp if there exists an associated eigenfunction u such
that µ(u) = ν(λ) . Following [10], we also use the adjective Courant-sharp for such an eigenfunction u .
We will prove the following result.

Theorem 1. The only Courant-sharp eigenvalues of −∆T2 are λk(T
2) with k ∈ {1, 2, 3, 4, 5} .

The proof follows the approach used by Å. Pleijel in [18] and in the case of a compact manifold by
P. Bérard and D. Meyer in [5] (see also [1, 2]). We first establish a Faber-Krahn type inequality for
domains in T

2 whose area is sufficiently small. We deduce it from an isoperimetric inequality proved in
[13, 7]. We then combine this information with an explicit lower bound of the counting function (similar
to Weyl’s law) to show that large eigenvalues cannot be Courant-sharp.

Let us point out that interest in Courant-sharp eigenvalues has grown recently thanks to their con-
nection to minimal partition problems. This appears clearly in the paper [10], where the authors consider
the following problem: given a two-dimensional domain Ω and an integer k , find a k-partition of Ω , that
is to say a family (Di)1≤i≤k of k open, connected, and disjoint subsets of Ω , that minimizes the energy

max
1≤i≤k

λ1(Di) .

Such a k-partition is said to be minimal. Existence and regularity for minimal partitions are proved in
[10]. Following [10], let us say that a k-partition is nodal if it is the family of the nodal domains for
some eigenfunction of the Dirichlet-Laplacian on Ω . It is shown in [10] that a nodal partition is minimal
if, and only if, the corresponding eigenfunction is Courant-sharp. Finding nodal minimal partitions is
therefore equivalent to finding Courant-sharp eigenfunctions. In particular, Theorem 1 has the following
consequence.

Corollary 2. If k ≥ 3 , minimal k-partitions of T2 are not nodal.

The problem of finding minimal k-partitions of T2 , with k ≥ 3 , is studied in [14]. In this paper, a
numerical method, based on [6], is used to produce candidates to be minimal partitions for k ∈ {3, 4, 5}.
They seem to be tillings of T2 by hexagons or squares.

Acknowledgements I thank Bernard Helffer for introducing me to this problem and for numerous
discussions and advices. I also thank Pierre Bérard for explaining to me the approach used in [5],
pointing out the reference [13], and suggesting several improvements. I thank Virginie Bonnaillie-Noël
for her corrections and Thibault Paolantini for his help with topological questions. I also thank the
anonymous referee for their constructive comments. This work was partially supported by the ANR
(Agence Nationale de la Recherche), project OPTIFORM n◦ ANR-12-BS01-0007-02.

2 Proof of the theorem

2.1 Faber-Krahn inequality

Let us first recall an isoperimetric inequality, which is a special case of [13, 7].
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Proposition 3. If Ω is an open set in T
2 such that |Ω| ≤ 1

π
, we have the inequality

H1(∂Ω)2 ≥ 4π|Ω| . (1)

In this proposition, |Ω| stands for the usual two-dimensional area measure of Ω and H1(Ω) for the
one-dimensional Hausdorff measure of ∂Ω . This inequality is also proved in [15], by a more elementary
method than in [13].

Proposition 4. If Ω is an open set in T
2 such that |Ω| ≤ 1

π
, then

λ1(Ω)|Ω| ≥ πj20,1. (2)

The constant j0,1 in Equation (2) is the first positive zero of the Bessel function of the first kind J0 .
Let us note that πj20,1 is the value of the product λ1(D)|D| , when D is a disk in the euclidean plane
R

2 . As in the planar case, the proof uses Schwarz symmetrization of the level sets Ωt = {x : u(x) > t} ,
where u is a positive eigenfunction associated with λ1(Ω) and t > 0 . We go through the same steps as
in [5, I.9], or [7, III.3]. Note that since |Ωt| ≤ |Ω| ≤ 1

π
for all t > 0 , we can use Inequality (1).

2.2 Weyl’s law with explicit bounds

For λ ≥ 0 , we define the counting function by N(λ) = ♯{k : λk(T
2) ≤ λ}.

Proposition 5. We have, for all λ ≥ 0 ,

λ

4π
− 2

√
λ

π
− 3 ≤ N(λ) . (3)

Proof. The proof consists in counting lattice points contained in a planar region. Indeed, the eigenvalues
of −∆T2 are of the form

λm,n = 4π2(m2 + n2) ,

with (m,n) ∈ N
2 . With each pair of integers (m,n) we associate a finite dimensional space Em,n of

eigenfunctions such that

L2(T2) =
⊕

(m,n)

Em,n .

The vector space Em,n is generated by products of trigonometric functions, see for instance the proof
of [9, Theorem 2.2] for details. The dimension of Em,n is 1 if (m,n) = (0, 0) , 2 if either m or n, but not
both, is 0 , and 4 if m > 0 and n > 0 . Let us denote by n(λ) the number of points with positive and

integer coordinates contained in the disk of center 0 and radius
√
λ

2π . Taking the dimension of the spaces
Em,n into account, we have the following exact formula for the counting function:

N(λ) = 4n(λ)− 4

⌊√
λ

2π

⌋

− 3 , (4)

where ⌊x⌋ denotes the largest integer not greater than x . By covering the upper right-hand quarter of

the disk of center 0 and radius
√
λ

2π with squares of side 1 , we see that n(λ) ≥ λ
16π , and we obtain the

desired lower bound.

2.3 Courant-sharp eigenvalues of the torus

We now turn to the proof of Theorem 1. We will use the following lemmas.

Lemma 6. If λ is an eigenvalue of −∆T2 that has an associated eigenfunction u with k nodal domains,

and if k ≥ 4 ,
πj20,1k ≤ λ .
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λ
4π2 indices multiplicity ν(λ)
0 (0, 0) 1 1
1 (1, 0), (0, 1) 4 2
2 (1, 1) 4 6
4 (2, 0), (0, 2) 4 10
5 (2, 1), (1, 2) 8 14
8 (2, 2) 4 22
9 (3, 0), (0, 3) 4 26
10 (3, 1), (1, 3) 8 30
13 (3, 2), (2, 3) 8 38
16 (4, 0), (0, 4) 4 46
17 (4, 1), (1, 4) 8 50

Table 1: The first 57 eigenvalues (Les 57 premières valeurs propres)

k 6 10 14 22 26 30 38 46
λk(T

2)
4kπ2 0.3333 0.4000 0.3571 0.3636 0.3462 0.3333 0.3421 0.3478

Table 2: Table of ratios (Tableau des rapports)

Proof. Since |T2| = 1 , one of the nodal domains of u has an area no larger than 1
k
. Let us denote this

nodal domain by D . Since k ≥ 4 , |D| ≤ 1
k
< 1

π
. According to Proposition 4,

λ = λ1(D) ≥
πj20,1
|D| ≥ πj20,1k .

Corollary 7. If λ is a Courant-sharp eigenvalue of −∆T2 with ν(λ) ≥ 4 ,

πj20,1ν(λ) ≤ λ . (5)

Lemma 8. For all all k ∈ N ,

λk(T
2) ≤

(

4 + 2
√

4 + π(k + 3)
)2

. (6)

Proof. The proof is immediate from the following remark: if λ is a non-negative number such that
N(λ) ≥ k , then λk(T

2) ≤ λ . The lower bound for N(λ) given in Inequality (3) then implies the desired
upper bound.

Comparing the lower bound (5) with the upper bound (6), we can easily show that if λ is an eigenvalue
of −∆T2 with ν(λ) ≥ 50 , it is not Courant-sharp. Table 1 gives the first fifty-seven eigenvalues of −∆T2 .
It shows that we have to test Inequality (5) for λ = λk(T

2) with k ∈ {6, 10, 14, 22, 26, 30, 38, 46} . Table
2 displays the ratio

λk(T
2)

4kπ2
,

which should be greater than
j20,1
4π

≃ 0.4602

in case λk(T
2) is Courant-sharp. This does not happen in the cases considered, and therefore Theorem

1 is proved.
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[11] B. Helffer, T. Hoffmann-Ostenhof, and S. Terracini. On spectral minimal partitions: the case of the sphere.
In Around the research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.) 13 (2010) 153–178.

[12] B. Helffer, M. Persson Sundqvist. Nodal domains in the square—the Neumann case. Preprint arXiv:1410.6702
(October 2014).

[13] H. Howards, M. Hutchings, and F. Morgan. The isoperimetric problem on surfaces. Amer. Math. Monthly
106 (1999) 430–439.

[14] C. Léna. Spectral minimal partitions for a family of tori. Preprint arXiv:1503.04545 (Mars 2015).
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