
HAL Id: hal-01101822
https://hal.science/hal-01101822

Submitted on 9 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Optimized fixed point implementation of a local stereo
matching algorithm onto C66x DSP

Judicaël Menant, Muriel Pressigout, Luce Morin, Jean-Francois Nezan

To cite this version:
Judicaël Menant, Muriel Pressigout, Luce Morin, Jean-Francois Nezan. Optimized fixed point im-
plementation of a local stereo matching algorithm onto C66x DSP. DASIP 2014, Oct 2014, Madrid,
Spain. �10.1109/DASIP.2014.7115636�. �hal-01101822�

https://hal.science/hal-01101822
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Optimized fixed point implementation of a local

stereo matching algorithm onto C66x DSP

Judicaël MENANT, Muriel PRESSIGOUT, Luce MORIN, Jean-Francois NEZAN

INSA, IETR, UMR CNRS 6164

Université Européenne de Bretagne, France

20, Avenue des Buttes de Coesmes, 35708 RENNES, France

Email: jmenant, mpressigout, lmorin, jnezan @insa-rennes.fr

Abstract—Stereo matching techniques aim at reconstructing
disparity maps from a pair of images. The use of stereo matching
techniques in embedded systems is very challenging due to the
complexity of the state-of-the-art algorithms. An efficient local
stereo matching algorithm has been chosen from the literature
and implemented on a c6678 DSP. Arithmetic simplifications
such as approximation by piecewise linear functions and fixed
point conversions are proposed. Thanks to factorisation and pre-
computing, the memory footprint is reduced by a factor 13 to fit
on the memory footprint available on embedded systems. A 14.5
fps speed (factor 60 speed-up) has been reached with a small
quality loss on the final disparity map.

I. INTRODUCTION

Embedded vision is the merging of two technologies cor-

responding to embedded systems and computer vision. An

embedded system is any microprocessor-based system that is

not a general-purpose computer[1].

The goal of our work is to implement computer vision

algorithms in modern embedded systems to provide them

with stereo perception. Such systems take up little space

and consume little power, so they are ideal for widespread

integration into everyday objects. However, their architecture

is significantly different to desktop systems, posing a challenge

on how new algorithms and implementations that effectively

and efficiently use these computational capabilities can be

created. This paper focuses on Binocular Stereo-Vision algo-

rithms. Stereo Matching aims to create 3D measurements from

two 2D images, generating a disparity map which is inversely

proportional to the distance of any object to the acquisition

system. Such maps are used in scenarios where distance must

be computed in all domains of computer vision. This is a

strategically important knowledge field to test computation

acceleration with.

Active devices such as Kinect [2] are able to produce real

time depth map. This kind of device works by emitting an

infra-red grid on the observed scene. The depth map is then

deduced from this sensed-back grid. Those devices are limited

to indoor use with a 5 meter range[2] and they are sensitive to

infra-red interferences. Binocular stereo matching algorithms

bypass these limitations and they are multi-purpose.

Energy-efficient embedded platforms are now available. The

c6678 platform is an 8-core DSP platform clocked at 1 GHz

with a standard 10W power consumption. The challenge is

now to find and adapt algorithms and implementations that

can fully exploit the powerful computational capabilities of

such an architecture.

Most existing implementations of stereo matching algo-

rithms are carried out on desktop GPUs, leading to poor energy

efficiency. To be efficiently implemented on embedded sys-

tems, algorithms must be ported to fixed point implementation.

Fixed point implementations lead to quantization noise and

quality loss, thus a trade-off between precision and quality

must be found.

In this paper, an efficient fixed point implementation of a

stereo matching algorithm on the c66x architecture is pro-

posed. First, the c66x core and its architecture are introduced

in section II. Then the studied stereo matching algorithm is

exposed in section III. The studied algorithm is a local search

modified in order to fit the c66x architecture. Next the quality

and speed results are presented in section IV. Finally the

perspectives and future work conclude the paper in section

V.

II. THE C66X MULTI-CORE DSP PLATFORM

The c6678 platform is composed of 8 c66x DSP cores and

it is designed for image processing.

A. Memory architecture

Memory is a critical point parameter in embedded systems.

Large memories being slower than smaller ones, modern

systems integrate several memory layers in order to increase

the memory capacity without increasing the access time to

data. The memory hierarchy of the c6678 platform is exposed

described below :

• 512 MBytes of external DDR3 memory. This memory is

slow, and the bus bandwidth is limited to 10 GBytes/s.

This memory is shared between all 8 cores. It is con-

nected to the 64-bit DDR3 EMIF bus.

• 4 MBytes of internal shared memory (MSMSRAM). It is

a SRAM memory and is very fast : its memory bandwidth

is 128 GBytes/s .

• 512 KBytes of L2 cache per core. It can be configured

as cache or as memory, and it is very fast. In this paper

this memory is configured as cache.

• 32 KBytes of Data L1 cache and 32 KBytes of Program

L1. They are zero wait state caches (one transfer per

machine cycle).

Computer

GrayIm.

Median

Filter

Cost

Construcion

Cost Aggregaion

AggrCost_V AggrCost_H

Ndisp

NIt

Iri

Depth

map

Offset[it] Distance[it]

DispSelect

Ile

IRVB_le

IRVB_ri

Ed,it

Ed,it+1

Ed,Nit Disp

= Ix with X=R,V,B

Fig. 1: Description of the Stereo Matching Algorithm

B. DSP Core

In this section, the main specific architecture point of c66x

cores are introduced.

1) VLIW: The C66x DSP core is able to executes up to 8

instructions simultaneously in one cycle Thanks to Very Long

Instruction Word (VLIW).

In most digital signal processing applications, a loop kernel

is a succession of interdependent sequential operations. These

loops must be pipelined to be parallelized.

Loop pipelining is done by the compiler, and a factor 6

speed-up can be easily achieved with a little human work.

However a pipelined loop can not have any jumps, and

conditional statements (if/else) must be avoided inside the

loop. These rules must be kept in mind when writing efficient

code and designing algorithms.

2) SIMD: Single Instruction Multiple Data (SIMD) are

instructions that are executed on multiple data. A SIMD

instruction considers one or two registers (32 or 64 bits

respectively) as a set of smaller words. For instance a 32-

bit register can be seen as a group of 4 8-bit words, and is

called a 4-way 8-bit SIMD instruction.

This kind of instruction is very useful in image processing

because most of the manipulated data are 8-bit (pixels).

C. FPU

The FPU (Floating Point Unit) is a logic unit which is able

to execute operations on floating point numbers. The c66x has

a basic FPU ; Nevertheless, this FPU has low support of SIMD

(two ways maximum), whereas SIMD on fixed point numbers

is up to 8 ways. Moreover a floating point number is always

4 byte wide, and causes a higher memory usage.

III. PROPOSED ALGORITHM

A stereo matching algorithm computes depth information

from two cameras. The goal of these algorithms is to match

a pixel in left image with one in the right image. Due to

their high computational complexity, designing real time stereo

matching algorithms is a great challenge.

In the past decades a lot of work has been done on

stereo matching algorithms to increase their quality and time

efficiency. There are two main categories of stereo matching

algorithms : local and global methods [3].

Global methods minimize global energy on the entire dis-

parity map or scanline. Global methods are very good in terms

of quality, but not very well suited for real time applications.

Local methods are area-based algorithms, they match pixels

by taking into account the neighbourhood of these pixels.

Local methods give less accurate results than global methods,

but they are much faster.

In this paper, only local methods are considered for real time

considerations. The Middlebury Stereo Vision Website [3] is a

reference for the comparison of Stereo Matching algorithms.

The best ranked algorithms of this database and the related

papers has been studied. As the highest ranked algorithm is not

published, the algorithm proposed by Mei[4] has been targeted

for a DSP Implementation.

First, the original algorithm [4] will be introduced, and all

algorithm blocks will be detailed. Then, real time limitations

of this algorithm will be discussed and solutions to bypass

those limits will be exposed. To finish this section, some

implementation details will be given.

A. Algorithm overview

Figure 1 represents the chosen algorithm [4]. It is composed

of three main steps :

• The cost construction which computes matching cost for

each possible disparity and for all pixels.

• The cost aggregation which refines those cost maps

thanks to an iterative algorithm.

• The disparity selection which selects the minimum

matching cost (i.e. the best match) and deduces the

disparity.

A median filter is applied at the output of the disparity

selection step. The median filter is common and will not

considered in this paper.

1) Cost construction: The cost construction step takes left

and right images and computes a matching cost for all possible

disparity levels. Its output is a cost map for each disparity

level (same size as input image). It is computed thanks to

equation (1).

For a disparity d, a pixel p of coordinates (x, y) is taken

in the left image and compared to a pixel pd of coordinates

(x+ d, y) in the right image. The result of the comparison is

an error that is called matching cost. Equation (1) describes

the matching cost that is computed on each pixel and for all

possible disparities.

Cost(p, d) = CTAD(p, d).λTAD + CCEN (p, d).λCEN (1)

Equation (1) is composed of two sub-costs summed to-

gether :

• The truncated absolute difference cost (CTAD) expresses

the similarity of two pixels and is described in section

III-A1a. λTAD is a weight associated to CTAD cost.

• The census associated cost (CCEN) gives an information

about local texture and is described in section III-A1b.

λCEN is a weight associated to CCEN cost.

Fig. 2: 8 bits census signature example

a) Truncated absolute difference: The CTAD expresses

the similarity of two pixels, it focuses only on grey levels

similarity, and not about its neighbourhood.

CTAD(pd, d) = 1− e−
|Il(p)−Ir(pd)|

thr (2)

Ir and Il are left and right grey level images. thr is a

threshold (i.e. a constant) which defines the useful dynamics

of truncated absolute difference. It must be superior to the

noise value in image, 20 is a common value in the literature

[3].

b) Census Cost: The census gives an information about

local texture that CTAD does not provide.

Census produces an 8-bit signature for each pixel of an

input image. As shown in figure 2, this signature is obtained

by comparing each pixel to its 8 neighbours. The census is

referred as cenl, cenr in equation (3) for respectively left and

right grey level images.

CCEN (p, d) =
1

8

7
∑

k=0

{

0 if cenr(p)[k] = cenl(pd)[k]

1 if cenr(p)[k] 6= cenl(pd)[k]
(3)

In equation (3), CCEN is the cost associated to census.

cenl(p)[k] and cenr(p)[k] are the kth bits of the 8-bit census

signature for pixel p in the left and right images respectively.

pd is the pixel of coordinates p−d, with d the disparity level.

Equation (3) is a sum of bit-to-bit comparisons, and these

bit-to-bit comparisons are equivalent to a boolean operation

called ”exclusive or” (XOR).

The output of the cost construction step is one cost map

per disparity level. Those cost maps are the input of the cost

aggregation step.

2) Cost aggregation: The cost construction step has a low

computing cost, but it provides noisy matching cost maps. This

noise is mainly produced by CCEN which is random when

compared regions are not correlated. To remove this noise,

the cost aggregation step performs smoothing on areas with

similar colour in the original image. The cost aggregation step

is performed independently on each cost map. This is a key

point regarding implementation.

The cost aggregation algorithm’s structure is similar to a bi-

lateral filter. The cost aggregation step is performed iteratively

with varying parameters, it is defined by equation (4).

Ei+1(p) =
W (p, p+)Ei(p+) + Ei(p) +W (p, p−)Ei(p−)

W (p, p+) + 1 +W (p, p−)
(4)

Ei is the current cost map to be refined, E0 is the output

of cost construction (equation (1)).

Pixels p+ and p− have a position relative to pixel p :

• p+ = p+∆i

• p− = p−∆i

Equation (4) is computed alternatively for horizontal and

vertical aggregation :

• When i is odd, it is a vertical aggregation, the offset ∆i

is vertical.

• When i is even, it is a horizontal aggregation, the offset

∆i is horizontal.

At each iteration the parameter ∆i grows, thus further pixels

p+ and p− are used for smoothing p. ∆i evolves according

to equation (5), the influence range is limited by the modulo

(here ∆i ∈ [0, 32]).

∆i = floor(i/2)2 mod33 (5)

Weights W in equation (4) are defined by equation (6) :

W (p1, p2) = eCd.∆i−
sim(p1,p2)

L2 (6)

sim(p1, p2) =

√

∑

col∈(r,g,b)

(Ircol(p1)− Ircol(p2))2 (7)

In equation (6), Cd is a weight applied to distance[4] and

L2 is the weight applied to similarity [4]. Ir{r, g, b} and

Il{r, g, b} are the RGB (Red, Green, Blue) signals of right

and left images.

3) Disparity selection: The disparity selection step min-

imizes the matching cost. To do so, the Winner Takes All

(WTA) strategy [3] is applied. The WTA strategy is a simple

arithmetic comparison expressed by equation (8).

Disp(p) = argmin
d∈[0,Ndisp]

Ed,Nit(p) (8)

The output of disparity selection is a dense integer disparity

map providing a disparity value for each pixel in the right

image.

B. Arithmetic simplification

Section III-A has exposed the original algorithm. Now the

proposed modifications in order to speed up the algorithm

without too much degradation are exposed.

To be fast, all algorithm blocks must be implemented in

fixed-point arithmetic, because the DSP is more efficient with

fixed points (see II-C).

To be easily implemented in fixed-point arithmetic all

functions must be described with classical operators (+, −, ∗).

Functions such as square root or exponential must be avoided.

These principles are applied in the proposed modifications

below.

1) Cost construction: Section III-D2 will show that CCEN

fits well on a DSP architecture. But CTAD should be simplified

(exponential function is not recommended). A common way

in the literature [3] is to use a raw saturation described by

equation (9).

CTAD(i, j, d) = min(thr, | Iri(i, j)− Ile(i− d, j) |) (9)

Equation (9) is used instead of equation (2).

2) Cost aggregation: Cost aggregation takes up 85 % of

execution time (weight and aggregation rows in table III).

Optimization of cost aggregation is thus most important in

the stereo matching algorithm.

a) Number of iterations: The cost aggregation execution

time being linear with respect to the number of iterations,

a way to reduce execution time is to reduce the number of

iterations. This point will be explored in section II.

b) Weight computing: Weight computing is quite com-

plex because of the exponential function and the square root in

equation (6). In this equation, the weights increase when two

pixels are similar and decrease with distance. Equation (10)

proposes a piecewise linear function to approximate equa-

tion (6).

W (p1, p2) =
thr − truncthr(sim(p1, p2))

thr
.(1−∆.Cd) (10)

Equation (11) avoids use of square root by using a norm

L1 instead of a norm L2 in the original equation (7).

sim(p1, p2) =
∑

col∈(r,g,b)

| Ircol(p1)− Ircol(p2) | (11)

In equation (10), the denominator of the division is a

constant and thus can be replaced by a multiplication by 1/thr.

c) Aggregation: The core of cost aggregation is a simple

weighted sum (numerator of equation (4)). The denominator

of equation (4) expresses a normalization.

The normalization is important because it prevents diver-

gence and keeps a constant average cost value. A constant

average value is necessary because of the lack of signal

dynamic due to fixed point. To reach this goal, the sum of

weights must be equal to one.

This normalization is a critical point because it implies a

division which is not handled by the hardware.

The proposed approximation to normalization is described

by equation (12). The wanted property, the fact that the sum of

weights equals one, is verified by equation (12) (Wp+Wm+
Wo = 1).

Wp =
W (p, p+)

4
Wm =

W (p, p−)

4
(12a)

Wo = 1− (Wp+Wm) (12b)

Eit+1(p) = Wp.Eit(p+) +Wo.Eit(p) +Wm.Eit(p−)
(12c)

Equation (12) uses only basic operators : +, −, ∗ and ≫
(shift right) for the division by 4.

C. Memory optimization

The main difficulty of implementation in embedded systems

is the efficient use of the memory architecture. Data in the

slow external memory (DDR3) should be avoided (see II-A).

Best performances are reached when the memory footprint is

lower than the internal memory size in order to bypass the

external memory. The memory footprint of the algorithm has

to be reduced. Next sections describe the proposed strategies

to reduce memory footprint.

1) Disparity selection: Cost construction and cost ag-

gregation are done independently for each disparity level

(equations (1) and (4)). Winner Takes All (WTA) strategy

(equation (8)) finds the minimum value of their outputs.

It is not necessary to store each level of disparity in memory

when implementing argmin on the fly. Only the cost of

the current disparity level (Ed), the current argmind and

minimum values (mind) have to be kept in memory.

2) Weight precomputing: The iterative equation (12) is the

core of this algorithm. Weights are independent of disparity

but they are dependent on ∆i (see equation (10)). That is why

weights can be precomputed and reused for each disparity

level.

Moreover, memory and computational complexity can be

avoided. Indeed equation 11 implies W (p1, p2) = W (p2, p1)
which also implies that W (p, p+) and W (p, p−) are identical

with an offset of ∆i. This can easily be proved by taking a

second point p′ in weights table that has an offset of ∆i :

p′ = p+∆i = p+ p′
−
= p′ −∆i = p

W (p, p+) = W (p+, p) = W (p′, p′
−
)

Because the tables W (p, p+) and W (p, p−) are identical

with an offset of ∆i, only one of them needs to be computed.

This property decreases memory requirement and computation

by a factor two when precomputing weights.

Two weights tables are required per value of ∆i (one hori-

zontal and one vertical). Using this precomputing, each pixel

operation is reduced to three additions and two multiplications

plus normalization (see III-A2).

Finally all memory optimizations lead in a 13 times smaller

memory footprint (for a 20 disparity level image) :

• A factor 4 is obtained by replacing floating point by fixed

point.

• Precomputed weights take 2 buffers per iteration level

instead of 6.

• It is no more necessary to store each disparity level in a

buffer.

D. Hardware optimization

Previous parts were dealing with generic optimizations ;in

this part, c66x-specific hardware optimizations are introduced.

As explained in section III-B, a set of basic operators

must be used (+, −, ∗). Those operators are available on all

platforms, and often in SIMD version. But the c66x DSP has

special instructions that are very useful for this application.

The following sections describe how to use these instructions

efficiently.

1) Truncation: In part III-B, some truncation (minimum)

functions were used (in equations (9) and (10)). The DSP

has a 4-way 8-bit SIMD minimum instruction (minu4[5]), so

any saturation function can be implemented very efficiently

without any conditional statement, thus this implementation is

compatible with loop pipeline (see II-B1).

2) Census: The census cost is implemented very efficiently

using special instructions.

When looking at the description of the census cost in section

III-A1b, it cannot be implemented with usual operators, and

might look hard to implement. But there is a very efficient

implementation on the c66x DSP.

First, comparisons with a pixel’s neighbourhood are not

a problem, because they are precomputed once, and the

cumulated execution time is negligible.

Second, an exclusive or can be used to compare the two

8-bit signatures in Equation (3). To count the number of

bits that are equal to one, the ”bit count” instruction can

be used efficiently. This instruction takes a word and returns

the number of bit which are equal to one. This instruction is

available on 4-way 8-bit SIMD (bitc4[5]).

IV. RESULTS

This section exposes the results of the proposed modifica-

tions in quality and performance (execution time). The fixed

point implementation introduces more computing noise, thus

the quality loss due to fixed point must be quantified.

A. Quality Assessment

The quality of algorithm output has been evaluated with

Middlebury evaluation tools [3]. The Middlebury evaluation

gives the number of bad pixels in different parts of the image.

In this paper two values are considered for quality assessment:

• The global number of bad pixels. It gives a good repre-

sentation of the overall image quality.

• The number of bad pixels in non-occulted areas of the

image. This algorithm does not deal with occulted areas,

and the disparity map on those areas is very noisy, thus

results on occulted areas are partially random. Comparing

random results together does not give clear results. That

is why, when comparing two versions of this algorithm,

it is better to look at non-occulted parts of images.

1) Data Set: Seven images from the Middlebury database

[3] are used to evaluate quality for the proposed algorithm

(Aloe, Art, Laundry, Map, Sawtooth, Tsukuba, Venus).

2) Algorithm parameters: The algorithm’s default constants

from the literature are used [6], [7], [3]. These constants have

not been tuned to increase quality on this particular data-set :

• thr in equation (9) : 20

• thr in equation (10) : 60

• Cd in equation (10) : 0,015

• λcen in equation (1): 0,55

• λtad in equation (1) : 0,45

TABLE I: Quality of algorithms

Algorithm
Bad pixels

All Not occulted

original 7.01 % 4.68 %
weight 6.70 % 4.72 %

weight and normalization 8.68 % 5.69 %

TABLE II: Influence of iterations on cost aggrega-

tion.

Iteration steps (∆i) Iterations
Bad pixels

All Not occulted

1, 4, 9, 25 4 7.6 % 5.1 %
1, 4, 9, 16, 1 5 7.7 % 5.3 %
1, 4, 9, 16, 25 5 7.1 % 4.9 %
1, 4, 9, 16, 25, 3 6 6.7 % 4.7 %
1, 4, 9, 16, 25, 36 6 6.6 % 4.7 %

1, 2, 4, 8, 16 5 7.8 % 5.4 %
1, 2, 4, 8, 16, 32 6 6.7 % 4.6 %

B. Impact of approximations on quality

Impact of approximations described in part III-B on quality

are exposed in table I.

The impact of weights and cost construction approximation

on quality is 0.04 % on non-occulted pixels, and it can be

considered as negligible. This can be explained by the fact

that the equation (11) describes correctly the similarity of two

pixels. Moreover, because outputs of those functions are only

used for arithmetic comparisons in disparity selection (see

equation (8)), impact on quality is minor. Since functions are

monotonic (if arithmetic precision is not taken into account).

The normalization approximation is very intrusive, the qual-

ity loss is expected to be important on this point. Indeed

the normalization approximation (equation (12)) degrades the

quality by 1 % (see table I) on not occulted pixels, this is an

acceptable quality lost.

C. Cost aggregation iterations

As explained in part III-B2, a easy way to increase perfor-

mance is to reduce the number of iterations. Table II exposes

the impact of number of iterations and the value of ∆i on

quality. The more iterations there are the better the quality

is. But with more than four iterations, the quality does not

increase very fast. This can be explained by the iterative

algorithm which makes the result tend to an optimal value.

The execution time is almost linear with respect to the

number of iterations. The sixth line of table II is a good trade-

off between the number of iterations and quality.

(a) input pictures (b) Original (c) Proposed

Fig. 3: Inputs and output of the Stereo Matching algorithm

TABLE III: Execution times on DSP.

algorithm step execution number floating point fixed-point pipeline SIMD

aggregation Nit.NDisp (95) 13,24 30,13 % 8,83 75,80 % 1,44 63,58 % 0,41 56,72 %
cost construction NDisp (19) 100,09 45,56 % 5,44 9,34 % 1,89 16,72 % 0,63 17,40 %
disparity NDisp− 1 (18) 1,56 0,23 % - 2,54 % - 13,04 % 0,20 5,12 %
weight Nit (5) 199,73 23,92 % 19,37 8,75 % 1,93 4,48 % - 13,97 %

total (FPS) 0,24 0,9 4,7 * 14,5

* : data not directly measured (computed from measured values). - : not implemented parts. Units are machine million cycles
(The DSP is clocked 1 GHz, 1 million cycles = 1 millisecond).

TABLE IV: Sawtooth quality

Algorithm
Bad pixels

All Not occulted

original 2.43 % 1.12 %
normalization 3.41 % 1.35 %
DSP (SIMD) 4.02 % 1.68 %

D. Fixed point precision

When implementing on the DSP using SIMD, some signif-

icant bits are removed to increase speed. Table IV exposes the

quality lost when porting on DSP.

Results of only one image on DSP is presented, the quality

loss is the same for others images. Indeed the quality loss

is only due to precision lost on the DSP, and the loss is the

same magnitude for any image. Results of image sawtooth are

exposed in table IV.

The quality degradation from line 2 to 3 of table IV is

caused by the reduction of arithmetic precision to enhance the

speed of SIMD instructions. When using 8-bit data instead-of

16-bit data, twice as many operations can be achieved in one

SIMD cycle.

Table IV shows a 0.5 % quality degradation caused by the

loss of arithmetic precision. This quality degradation is not

prohibitive. The stereo pair and output disparity map are shown

figure 3.

E. Speed

In previous sections, the quality lost due to optimizations

and arithmetic simplifications has been exposed. This last

section deals with the speed performances resulting from those

simplifications.

Table III shows execution time of each algorithm step, and

the percentage of time used by these steps. The original version

of the algorithm (floating point) runs at 0.24 fps on DSP,

the fully optimized version runs at 14.5 fps, the speed-up

factor is 60. Disparity selection step uses inherently fixed point

(deals with integer disparity value), thus it is tagged as not

implemented in fixed-point column. Disparity selection step

can not benefit of loop pipeline without SIMD implementation,

thus it is tagged as not implemented in pipeline column. Some

steps were not optimized with SIMD because their execution

times are too small to have a significant impact on total

execution time.

Proposed modifications in section III are introduced at

fixed-point column of table III. However, speeds of pipelined

and SIMD versions could not be reached without proposed

optimizations. For instance, as explained in section III-B2c,

the cost aggregation core could not be pipelined because of

normalization. That is why the speed-up of proposed modi-

fications is not reduced to the speed-up between the original

algorithm and its fixed point version.

To conclude this section on performance, the proposed

modifications lead to a factor 60 speed-up (table III) with a

quality of 8.68 % (table I) of bad pixel on image compared

to 7.01 % before modification.

V. CONCLUSION AND PERSPECTIVES

The goal of this paper was to prove the feasibility of real-

time dense stereo matching on a DSP platform. Currently, a

cost-aggregation based algorithm is running at 14.5 fps on one

c66x core. This speed has been reached with minor quality

loss.

If the quality degradation is too important for applications,

a trade-off depending on application can be found to increase

quality. More significant bits can be allocated for computing

with a quality improvement, but less operations can be done

simultaneously, and eventually, more memory would be used

(if intermediate data are store to 16 bits instead of 8). Moreover

an easy way to increase the quality is to increase the number

of iterations in the cost aggregation core.

The current implementation of the algorithm described in

this paper uses only one of the eight cores of the c6678

platform. Future work will consist in using all the cores of

this platform.

REFERENCES

[1] E. V. Alliance, “What is embedded vision.” http://www.embedded-vision.
com/what-is-embedded-vision.

[2] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect
depth data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp.
1437–1454, 2012.

[3] R. S. Daniel Scharstein, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” International Journal of Computer

Vision, no. 47, pp. 7–42, 2002.
[4] X. Mei, X. Sun, and M. Zhou, “On building an accurate stereo matching

system on graphics hardware,” in Computer Vision Workshops (ICCV

Workshops), 2011 IEEE International Conference on, nov. 2011, pp. 467
–474.

[5] TMS320C66x DSP, CPU and Instruction Set, Texas Instruments.
[Online]. Available: www.ti.com/lit/ug/sprugh7/sprugh7.pdf

[6] A. Mercat, J.-F. Nezan, D. Menard, and J. Zhang, “Implementation of
a stereo matching algorithm onto a manycore embedded system,” pp.
1296–1299, June 2014.

[7] J. Zhang, J.-F. Nezan, M. Pelcat, and J.-G. Cousin, “Real-time gpu-based
local stereo matching method,” in conference on Design and Architecture

for Signal and Image Processing, Cagliary, October 2013.

http://www.embedded-vision.com/what-is-embedded-vision
http://www.embedded-vision.com/what-is-embedded-vision
www.ti.com/lit/ug/sprugh7/sprugh7.pdf‎

	Introduction
	the C66x multi-core DSP platform
	Memory architecture
	DSP Core
	VLIW
	SIMD

	FPU

	Proposed algorithm
	Algorithm overview
	Cost construction
	Cost aggregation
	Disparity selection

	Arithmetic simplification
	Cost construction
	Cost aggregation

	Memory optimization
	Disparity selection
	Weight precomputing

	Hardware optimization
	Truncation
	Census

	Results
	Quality Assessment
	Data Set
	Algorithm parameters

	Impact of approximations on quality
	Cost aggregation iterations
	Fixed point precision
	Speed

	Conclusion and perspectives
	References

