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Fast Calculation of Electromagnetic Scattering in Anisotropic Multilayers
and its Inverse Problem
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Electromagnetic modeling of fiber-based composite structures

=

Motivation

o Accurate computational models of complex anisotropic multilayered composite structures

o Robust, fast, end-user's friendly imaging procedures
v

Forward modeling
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F1GURE: Damaged structure with uniaxial dielectric

FIGURE: The transformation between the local and
(glass-based) or conductive (graphite-based) multilayers

global coordinates by rotation matrix
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Forward modeling

EM response of anisotropic multilayers to distributed sources

The state equation

d _ = _ -
= @(2)=An- 5 (2)+ 7 (2) :
z
based on the 4-component vector : =
~ &1 M
kx Hx (kx:kyy )JrkyHy (kmky: ) :Z #:
- k}’Fl (kX7kva)_ka (kka,WZ) :3 Mo
2 (kX’ k,V7 Z) = ~ ~ .
kxEx (kx, ky,z) + kyEy (k«, ky, 2)
k}’EX (kkaw )*kxEy (kx’k}ﬁ ) :Nfz Hy
:N—l Hy
ex Ho
v
The solution of the state equation
_ An(8n) | = Ant1 20(81)  F( ) ol
B (dnes) = M) () + | T M) 7
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Forward modeling

EM response of anisotropic multilayers to distributed sources

The new recurrence eq

@(dn):len~[ g: ]

New recurrence relations based on the propagator matrix method

To efficiently calculate the spectral response of the laminate

Capable of stably dealing with distributed source along z

More efficient compared to the traditional Green's function method

© © © ©

To numerically solve the state equation containing the tangential components of the fields
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Forward modeling

Two methods for calculating the scattered field

o Induced current integral equation (ICIE)

o windowing technique

o Padua interpolation-integration technique

v

o Lippman-Schwinger integral formula

o Polarization tensor

o Padua interpolation-integration technique
v

£ ]

En
FIGURE: Damaged structure with uniaxial dielectric (glass-based) or conductive (graphite-based) multilayers
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Forward modeling

Discretization of the integral equation - 1t method

Induced current integral equation (ICIE)

I(r)

X(r) - EM(r) e X(r) - iwpg J- a’(r; ) 1) dr

I
l‘
o)
o
|

By MoM

< inc -1 (u)
Z XU,W’"»"yPE\/;m,n,p == m/ n, /wm/ n’.p /(rm,n,p)
v=1 IWEO m’,n’,p’

3
- Z Xu,vim,n,p Z Z Z Nvi;p;p’;(m—m'),(n— "/)Il(n’)n’ /

v=1 k=1p’ m' n’
4

By fast Fourier transform (FFT)

€ K = (k)
gvn;p;p’ = Z nvn;p;p/;(mfm’),(nfn/)I,(n/?"l’p/ = IFFT {FFT {nvn;p;p’} ®FFT {(0) p’ }}

m’ n’

\
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Forward modeling

The techniques for calculating the impedance matrix - 15t method

The impedance matrix :

Nuripipt (%, ¥) = 410§ G [(x = X), (v = ¥"); 253 210005, (¢')dlF’

After detouring the integral path to avoid branch cuts or singularites for the integral involving

Tvip;p’ (Kxs ky), the DFT of %:m;p;p, (the windowed version of %m;p;pl) can be constructed as

A7 _ 1 ;2 .27
nvn;p;p’;a,ﬁ T 4n2AxAy exp <' MZTKXXS + INtAyy5>
O(ox,0y)
+ ~
Sg_gg dof“do;K s pip! [ox(crf‘,o?),oy(o?,gfu)] a(g;:g};{)
X y

+ i
{ S e2mlhs/Bx)+h(ys/Ay)] [% (ﬁt + 11) —ox (o}, 0%), % (N% + 12) —oy (05,0}3)]}

h,h=—00

v
2-D Hamming window

— Ax/2
wix,y) = {0.54 + 046 cos | X AX/AT
a
— Ay/2
X {0.54 + 0.46 cos w }

v
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Forward modeling

Padua interpolation-integration technique - calculating fast oscillating

integrals

o The goal is to compute the I-FT of fast oscillating spectrum in the kx — ky, plane

Gxy)=1> H Gokx, ky) el tikY) di, dk,
o Interpolation of the non-oscillating part at the Padua points with Chebyshev's polynomial
interpolant
n k 1
Ln Go (ke, ky) = g Z Ti (k) Tuej (ky) — S5m0 Ta (k) To (ky)

with weights ¢; x_; computed using 2

o Fourier transform of Chebyshev polynomials given by

1
f Tr(ky) exp(—ikex) dky
-1

are managed using 3

2. M. Caliari, S. De Marchi et al., Numer Algorithms, 56, 45-60, 2011
3. V. Dominguez, I. G. Graham et al., IMA J Numer Anal, 31, 1253-1280, 2011
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Forward modeling

Padua interpolation-integration technique - calculating fast oscillating

integrals

Alternative representation as self intersections and boundary contacts of the generating curve
v (t) = (—cos((n+1)t),—cos(nt), t e [0,n])

1 1
05— — 0,5 .
0 — 0 — -
0,5+ - 0,5 —| -
-1 * 1 4 * -1 T T T
-1 05 0 05 1 -1 05 0 05 1

FIGURE: The Padua points with their generating curve for n = 12 (left, 91 points) and n = 13 (right, 105
points), also as union of two Chebyshev-Lobatto sub-grids (red and blue bullets). Image taken from 5

M. Caliari, S. De Marchi et al., 5th European Congress of Mathematics - Amsterdam, July, 2008
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Forward modeling

Fast calculation of EM scattering problems - 2"¢ method

The Lippman-Sc|

where the contrast function
):( (I’) = —iweo . (g, — gb)

i is the permittivity tensor of an inclusion in the composite medium.
€ is the permittivity tensor of the composite medium in the global coordinate system.

1on

The incident field is defined as

| A\

E™(r) = iwpo J G (r,¢”) - Jo (¢') dr’

iwuoaee (r,¢) - Bl
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Forward modeling

Asymptotic formulation with polarization tensor - 2" method

The Lippman-S ger integral forn

When permittivity tensor of the inclusion & = Te; and its size is small enough, the scattered field
can be derived into the asymptotic formulation.

E?(r) = iwpoG* (r,rm) 5 E™ (rm)

y

The polarization tensor

The polarization tensor in the local coordinate for the inclusion with volume V is :

a 0 0
0= —iweV - 0 ar O
0 0 at
o — e € — €11
= ———
€11 + Ly (€ — enr)
€j — €22
at

n———F—
€2 + Lt (6 — €22)

o L; and L; are dependent on the shape of inclusion.
o For a cubic inclusion, L; = carctan (¢ /+/T+2c) and L = (1 —L;) /2, where ¢ = €11 / €22 .
v

6. W. S. Weiglhofer and A. Lakhtakia, Int. J. Infrared Millimeter Waves, 17, 1365-1376, 1996.
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Numerical examples

mparison of the scattered field by MoM and COMSOL - 1% Case

o COMSOL : =0
. E“T z 0.16 - R e e
0 Layer 4 o ]
0.14
< - 012 5{' Mt () -
1
0.3
s — 0 o E‘P
& MN{ - Layer 3 5 08
2 To2n o 5
0.8\ lo.zxo siod
_ o
z 3% 00
S % - ) I 2
x(Ag)
€ Layer 1 (a) Scattered electric fields along the x-axis.
FIGURE: The Configuration of the 1% Case”’
o freq=6 GHz
o € = egdiag[3,2,2], rotation angle
6> = 30°
o €3 = ¢pdiag[4,2.5,2.5], rotation angle
03 = 60°

=2 -1 0
y(%)
(b) Scattered electric fields along the y-axis.

7. Y. Zhong, P-P. Ding, M. Lambert, D. Lesselier, and X. Chen, Fast calculation of scattering by 3-D inhomogeneities in
uniaxial anisotropic multilayers, submitted to IEEE Trans. Antennas Propagat., 2014.
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Numerical examples

Comparison of the scattered field by MoM and asymptotic method - 2"

Case

60 | [—= oM .
- an s
f o 2w
| 05% z ) P
& ?
G I}
€0 Ty 61 ]
FIGURE: The Configuration of 2 3 4 5 6 7 8 9 10
the 2™ Case Receivers
a0 -
-+ Tasymptotic
” |y MoM
€ a i
freq=3 GHz z H
= & 3
&G = g
eo diag[2 4+ i0.3,3 +i0.1,3 + i
40
rotation angle 6 = 60° I 2 3 4 5 6 1 8 9 10
Receivers
11 electric dipole sources
with x/y/z polarization !
. . . - 2
O a cubic air scatterer with < 2
side length 0.1)\o 3 % s
B 1
6
Receivers Receivers

FIGURE: The scattered electric field with sources in x/y/z-polarization

[ DITT-R 2V = TS ZoW 1T, FER BT | ST R RS [T (BASYW Direct and Inverse Problem in Anisotropic Multilayers




Numerical examples

Comparison of the scattered field by MoM and asymptotic method - 3"

Case

dy z

¥ W e = —X— ¥ e =X =X X

source plane

free space d

» X
0 :[ 0

layer 1

layer 2

scatterer

FIGURE: The Configuration of the 3™ Case

o freq = 3GHz

[+] d1 = 0.5)\0; d2 = 0.2)\0; d3 = 0.35)\0; d4 = 0.2)\0
layer 1 : & = eodiag [2 +i0.3,3 + i0.1,3 + i0.1];
rotation angle 6; = 60°

o layer 2:
€ = eodiag [4.5 +i0.2,6 + /0.05,6 + i0.05] ;
rotation angle 6, = 45°

©

11 electric dipole sources with x polarization

©

a cubic air scatterer with side length 0.1

Ding, Rodeghiero, Zhong, Lambert, Lesselier
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real (Ex) by MoM

150 ——real (E2) by MoM
- -+ =-real (E2) by Asymptotic
100 R4 * A

250 ——imag(Ex) by MoM

-+ =imag(Ex) by Asympotic
imag(Ey) by MoM
- + =imag(Ey) by Asymptotic
L — imag(Ez) by MoM

-+ -imag(Ez) by Asymptotic

-1
501 8 9 10 "

5 6 7
Recevers
FIGURE: The scattered electric field with the
x-polarization source located at (0,0, 0.5X0)




Inverse problem

MUSIC (MUItiple Slgnal Classification) imaging method

lar value decomposition

Sources and receivers . )
‘_.--—----_,__‘Reg:lon of interest
e o
td
K=USV* v S
o . / N
o Multistatic response matrix K maps the F4 \
. \
currents at the source locations to the ! v
scattered fields measured at the detectors. H !
. . 1
o Subspace is spanned by the singular vectors ! ‘ H
corresponding to different singular values. 1 /
\ ,’
AY !
», ’
Y ,
s e
~ -
\'!..“- _"f’
y mth pixel
) P
rm

FI1GURE: Damaged structure with uniaxial dielectric

(glass-based) or conductive (graphite-based)
multilayers

Ding, Rodeghiero, Zhong, Lambert, Lesselier
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Inverse problem

MUSIC (MUItiple Slgnal Classification) imaging method

Formulations

Standard MUSIC imaging method 8 Enhanced MUSIC imaging method °
1 1
o(r) = PR o(r) = _ 3
Zo'j<o'L v=1 ‘uj ' GV(r)‘ 1- Zo-j>a'L u; - G(I’) * dtest
with
= 2
—x -
i Soymor [T G() 3|
dtest = arg max — ]
3 )G(r) : 5‘
v
Choice of oL Exemple for two scatterers T = 103
. 10° ! ;
o oj being ordered from the largest to the . + Noiseless
o 30 dB noise
lowest value o
10 j
o A threshold T arbitrarily chosen
-5
oL =T x max (o)) 1y "7 1
1
107107 |
T,
107" : : +
10° 10' 10°
Ding, Rodeghiero, Zhong, Lambert, Lesselier (L2S)
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Inverse problem

Configuration of interest

T4 2 ) 2 4 a4 s =2 ] 0 1 2 3 4 P
(a) Top view (b) Side view (c) 3D view

FIGURE: Testing configuration

Description of the configuration

Measurement configuration Region of interest (ROI)
@ location of sources = location of receivers 9 Nees = 21 x 21 x 21
(x/y/z polarization) o range of RO along z : [—2.35)9, —0.35)]

9 Nreceivers = 13 x 13

@ z position of receivers : 0.5\

o range of ROI in x-y plane : [—Xg, Ao]

o range of receivers in x-y plane : [—3Xg, 3)o]
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Inverse problem

The 15t case - one scatterer plane cut representation

2 =-0.35) 2= -0.45) 2= -0.55) 2= -0.65) 2= -0.75
0.9
0.8
0.7
z = -0.85\g z = -0.95\ z =-1.05)\ z=-1.15) 2 =-1.25)
0.6
0.5
0.4
2 =-1.35) 2 =-1.45) 2= -1.55) 2= -1.65) z=-1.75)\ 03
0.2
. . . . 0.1
2 =-1.85X 2 =-1.95) 2= -2.05) z=-2.15) 2=-2.25) 2= -2.35)
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Inverse problem

case - one scatterer Isosurface = 0.5

05 05 05 L s

FIGURE: Imaging results by MUSIC for noiseless case (left figure) and 30 dB noisy case (right figure)

Isosurface = 0.1

FIGURE: Influence of the
choice of the isosurface

'an June 2014 19/
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Inverse problem

The 2" case - two scatterers Isosurface =

FIGURE: Imaging results by MUSIC for noiseless case (left figure) and 30 dB noisy case (right figure)

Isosurface = 0.1

FIGURE: Influence of the
choice of the isosurface
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Inverse problem

case - three scatterers Isosurface = 0

FIGURE: Imaging results by MUSIC for noiseless case (left figure) and 30 dB noisy case (right figure)

Isosurface = 0.1

FIGURE: Influence of the
choice of the isosurface




Inverse problem

case - four scatterers Isosurface = 0.1

FIGURE: Imaging results by MUSIC for noiseless case (left figure) and 30 dB noisy case (right figure)

Isosurface = 0.1

FIGURE: Influence of the
choice of the isosurface




Conclusions

Conclusions

Achievements

o Generalized and complete formulation of EM response & Green dyads for undamaged
anisotropic multilayers (work at the whole range of frequency for all materials)

o Asymptotic formula-based calculation of EM response for 3-D damaged uniaxial multilayers

Challenges

o To speed up the interpolation and integration for large source-receiver arrays

o To handle delaminations at the interfaces as thin planar defects

o To extend NdT to detecting larger defects by using MUSIC as the first localization tool for
non-linearized procedures

o To check the size range of defects possibly detected by the first-order modeling

©

To put more endeavor on experiments for practical applications
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Thank you & Questions?
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