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Abstract: An infinite urn scheme is defined by a probability mass function
(pj)j≥1 over positive integers. A random allocation consists of a sample of
N independent drawings according to this probability distribution where
N may be deterministic or Poisson-distributed. This paper is concerned
with occupancy counts, that is with the number of symbols with r or at
least r occurrences in the sample, and with the missing mass that is the
total probability of all symbols that do not occur in the sample. Without
any further assumption on the sampling distribution, these random quan-
tities are shown to satisfy Bernstein-type concentration inequalities. The
variance factors in these concentration inequalities are shown to be tight
if the sampling distribution satisfies a regular variation property. This reg-
ular variation property reads as follows. Let the number of symbols with
probability larger than x be ~ν(x) = |{j : pj ≥ x}|. In a regularly varying
urn scheme, ~ν satisfies limτ→0 ~ν(τx)/~ν(τ) = x−α for α ∈ [0, 1] and the
variance of the number of distinct symbols in a sample tends to infinity
as the sample size tends to infinity. Among other applications, these con-
centration inequalities allow us to derive tight confidence intervals for the
Good-Turing estimator of the missing mass.

Keywords and phrases: Concentration, regular variation, occupancy,
missing mass, rare species.

1. Introduction

From the 20th century to the 21st, various disciplines have tried to infer some-
thing about scarcely observed events: zoologists about species, cryptologists
about cyphers, linguists about vocabularies, and data scientists about almost
everything. These problems are all about ‘small data’ within possibly much
bigger data. Can we make such inference?
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Problem setting

To move into a concrete setting, let U1, U2, · · · , Un be i.i.d. observations from
a fixed but unknown distribution (pj)

∞
j=1 over a discrete set of symbols N∗ =

N \ {0}. We consider each j in N∗ as a discrete symbol devoid of numerical
significance. The terminology of ‘infinite urn scheme’ comes from the analogy
to n independent throws of balls over an infinity of urns, pj being the prob-
ability of a ball falling into urn j, at any i-th throw. We alternatively adhere
to the symbols or the urns perspective, based on which carries the intuition
best. Species, cyphers, and vocabularies all being discrete, are well modeled as
such. The sample size n may be fixed in advance; we call this the binomial set-
ting. It may be randomly set by the duration of an experiment; this gives rise
to the Poisson setting. More precisely, in the latter case we write it as N , a
Poisson random variable independent of (Ui) and with expectation t. We index
all Poisson-setting quantities by t and write them with functional notations,
instead of subscripts used for the fixed-n scheme.

For each j, n ∈ N∗, let Xn,j =
∑n
i=1 I{Ui=j} be the number of times symbol j

occurs in a sample of size n, and Xj(t) =
∑N(t)
i=1 I{Ui=j} the Poisson version . In

questions of underrepresented data, the central objects are sets of symbols that
are repeated a small number r of times. The central quantities are the occupancy
counts Kn,r [respectively Kr(t) for the Poisson setting], defined as the number
of symbols that appear exactly r times in a sample of size n:

Kn,r = |{j,Xn,j = r}| =
∞∑
j=1

I{Xn,j=r}.

The collection (Kn,r)r≥1 [resp. (Kr(t))r≥1] has been given many names, such
as the “profile” (in information theory [Orlitsky et al., 2004]) or the “fingerprint”
(in theoretical computer science [Batu et al., 2001, Valiant and Valiant, 2011]) of
the probability distribution (pj)j∈N. Here we refer to them by occupancy counts
individually, and occupancy process all together.

The occupancy counts then combine to yield the cumulated occupancy counts
Kn,r [respectively Kr(t)] and the total number of distinct symbols in the sample,
or the total number of occupied urns, often called the coverage and denoted by
Kn [respectively K(t)]:

Kn,r = |{j,Xn,j ≥ r}| =
∞∑
j=1

I{Xn,j≥r} =
∑
s≥r

Kn,s ,

and

Kn = |{j,Xn,j > 0}| =
∞∑
j=1

I{Xn,j>0} =
∑
r≥1

Kn,r .

In addition to the occupancy numbers and the number of distinct symbols,
we also address the rare (or small-count) probabilities Mn,r [respectively Mr(t)],
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defined as the probability mass corresponding to all symbols that appear exactly
r times:

Mn,r = P({j,Xn,j = r}) =

∞∑
j=1

pjI{Xn,j=r} .

In particular, we focus on Mn,0 =
∑∞
j=1 pjI{Xn,j=0}, which is called the missing

mass, and which corresponds to the probability of all the unseen symbols.
Explicit formulas for the moments of the occupancy counts and masses can

be derived in the binomial and Poisson settings. The occupancy counts’ expec-
tations are given by

EKn =

∞∑
j=1

(1− (1− pj)n) EK(t) =

∞∑
j=1

(1− e−npj )

EKn,r =

∞∑
j=1

(
n

r

)
prj(1− pj)n−r EKr(t) =

∞∑
j=1

e−npj
(npj)

r

r!

EMn,r =

∞∑
j=1

(
n

r

)
pr+1
j (1− pj)n−r EMr(t) =

∞∑
j=1

e−npjpj
(npj)

r

r!
.

Formulas for higher moments can also be computed explicitly but their expres-
sion, especially in the binomial setting where a lot of dependencies are involved,
often has an impractical form.

This classical occupancy setting naturally models a host of different appli-
cation areas, including computational linguistics, ecology, and biology. Urns
may represent species, and we are interested in the number of distinct species
observed in a sample (the ecological diversity) or in the probability of the un-
observed species. In linguistics, urns may represent words. In both of these
applications, the independence assumption of the random variables {Ui}i=1...n

may seem unrealistic. For instance in a sentence, the probability of appearance
of a word strongly depends on the previous words, both for grammatical and
semantic reasons. Likewise, the nucleotides in a DNA sequence do not form
an i.i.d. sample. In n-gram models, independence is only conditional and the
observations are assumed to satisfy a Markovian hypothesis: the probability of
occurrence of a word depends on the n − 1 previous words. But the i.i.d. case,
although very simple, yields results that are interesting in themselves, and upon
which a more sophisticated framework may be built.

Many practical questions may now be formulated in this setting. If we double
the duration of a first experiment, how many yet unobserved specimens would
we find (how does K2n,r compare to Kn,r [resp. Kr(2t) to Kr(t)]) Fisher et al.
[1943]? If certain cypher keys have been observed, what is the probability for the
next to be different (how does one estimate Mn,0)? For instance, Good [1953]
and Turing observed that (n+ 1)EMn,0 = EKn+1,1 for all n ≥ 1, and proposed
to estimate the missing mass using the Jackknife estimator Gn,0 = Kn,1/n (the
proportion of symbols seen just once).
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Contributions

To study the Good-Turing estimator or other quantities that depend signifi-
cantly on the small-count portion of the observations, we need to understand
the occupancy counts well. Our contribution here is to give sharp concentra-
tion inequalities with explicit and reasonable constants, for Kn, Kn,r, and Mn,0

[resp. K(t), Kr(t), M0(t)]. We give distribution-free results, and then exhibit a
vast domain where these results are tight, namely the domain of distributions
with a heavier tail than the geometric. In this domain, the non-asymptotic ex-
ponential concentration properties that we establish are sharp in the sense that
the exponents are order-optimal, precisely capturing the scale of the variance.
For this reason, we dedicate a portion of the paper to establishing bounds on
various variances.

Organization

The paper is organized as follows. In Section 2, we present our terminology
and give a concise summary of the results. In Section 3 we present our variance
bounds and concentration results for the occupancy counts and the missing mass
in great generality. In Section 4 we specialize these results to regularly varying
distributions, the aforementioned domain of distributions where concentration
can be characterized tightly. We then elaborate on some applications in Section
5, and conclude with a discussion of the results and possible extensions in Section
6. We group all proofs in the end, in Section 7.

2. Summary of results

Terminology

Our concentration results mostly take the form of bounds on the log-Laplace
transform. Our terminology follows closely [Boucheron et al., 2013]. We say that
the random variable Z is sub-Gaussian on the right tail (resp. on the left tail)
with variance factor v if, for all λ ≥ 0 (resp. λ ≤ 0),

logEeλ(Z−EZ) ≤ vλ2

2
. (2.1)

We say that a random variable Z is sub-Poisson with variance factor v if, for
all λ ∈ R,

logEeλ(Z−EZ) ≤ vφ(λ) , (2.2)

with φ : λ 7→ eλ − λ− 1.
We say that a random variable Z is sub-gamma on the right tail with variance

factor v and scale parameter c if

logEeλ(X−EX) ≤ λ2v

2(1− cλ)
for every λ such that 0 ≤ λ ≤ 1/c . (2.3)
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The random variable Z is sub-gamma on the left tail with variance factor v and
scale parameter c, if −Z is sub-gamma on the right tail with variance factor
v and scale parameter c. If Z is sub-Poisson with variance factor v, then it is
sub-Gaussian on the left tail with variance factor v, and sub-gamma on the right
tail with variance factor v and scale parameter 1/3.

These log-Laplace upper bounds then imply exponential tail bounds: Inequal-
ity (2.3) results in a Bernstein-type inequality for the right tail, that is, for s > 0
our inequalities have the form:

P{Z > E[Z] +
√

2vs+ cs} ≤ e−s,

while Inequality (2.1) for all λ ≤ 0 entails

P{Z < E[Z]−
√

2vs} ≤ e−s .

We present such results first without making distributional assumptions, be-
yond the structure of those quantities themselves. These concentrations then
specialize in various settings, such as that of regular variation.

Main results

We proceed by giving a coarse description of our main results. In the Poisson
setting, for each r ≥ 1, (I{Xj(t) = r})j≥1 are independent, hence Kr(t) is a sum
of independent Bernoulli random variables, and it is not too surprising that it
satisfies sub-Poisson, also known as Bennett, inequalities. For λ ∈ R, we have:

logEeλ(Kr(t)−EKr(t)) ≤ var(Kr(t))φ(λ) ≤ E[Kr(t)]φ(λ) .

The proofs are elementary and are based on the careful application of Efron-
Stein-Steele inequalities and the entropy method [Boucheron et al., 2013].

As for the binomial setting, the summands are not independent but we can
use negative association arguments [Dubhashi and Ranjan, 1998] (see Section 7)
to obtain Bennett inequalities for the cumulated occupancy counts Kn,r. These
hold either with the Jackknife variance proxy given by the Efron-Stein inequal-
ity, rEKn,r or with the variance proxy stemming from the negative correlation
of the summands, EKn,r. Letting vn,r = min(rEKn,r,EKn,r), we have, for all
λ ∈ R:

logEeλ(Kn,r−EKn,r) ≤ vn,rφ(λ) .

This in turn implies a concentration inequality for Kn,r. Letting

vn,r = 2 min ((rEKn,r) ∨ ((r + 1)EKn,r+1)),EKn,r) ,

we have, for all s ≥ 0,

P
{
|Kn,r − EKn,r| ≥

√
4vn,rs+ 2s/3

}
≤ 4e−s .
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We obtain distribution-free bounds on the log-Laplace transform of Mn,0,
which result in sub-Gaussian concentration on the left tail, sub-gamma con-
centration on the right tail with scale proxy 1/n. More precisely, letting v−n =
2EK2(n)/n2 and v+

n = 2EK2(n)/n2, we show that, for all λ ≤ 0,

logEeλ(Mn,0−EMn,0) ≤ v−n
λ2

2
,

and, for all λ ≥ 0,

logEeλ(Mn,0−EMn,0) ≤ v+
n

λ2

2(1− λ/n)
.

Indeed, these results are distribution-free. But though the variance factor
v−n is a sharp bound for the variance of the missing mass, v+

n may be much
bigger. This leads us to look for distribution-specific conditions ensuring that
v+
n captures the right order for the variance, such as by using a tail asymptotic

stability condition as in extreme value theory.
Karlin [1967] pioneered such a condition by assuming that the function ~ν :

(0, 1] → N, defined by ~ν(x) = |{j ∈ N∗, pj ≥ x}| satisfies a regular variation
assumption, namely ~ν(1/n) ∼ nα`(n) near +∞, with α ∈ (0, 1] [see also Gnedin
et al., 2007, Ohannessian and Dahleh, 2012]. Here ` is a slowly varying function
at ∞, i.e. for all x, `(τx)/`(τ) → 1 as τ → ∞. This condition allows us to
compare the asymptotics of the various occupancy scores. In particular, in this
framework EK2(n) and EK2(n) have the same order of growth, and, divided
by n2 they both are of the same order as the variance of the missing mass.
Hence, the regular variation provides a framework in which our concentration
inequalities are order-optimal.

To handle the case α = 0, we move from Karamata to de Haan theory,
and take ~ν to have an extended regular variation property, with the additional
assumption that EK1(n) tends to +∞. This domain corresponds to light-tailed
distributions which are still heavier than the geometric. In this case, we manage
to show the sub-gamma concentration of the missing mass only for n large
enough, that is, that there exists n0 such that for all n ≥ n0, for λ > 0, we have
logEeλ(Mn,0−EMn,0) ≤ (vnλ

2)/2(1− λ/n), with vn � VarMn,0.
Back to our examples of applications, considerable insight may be gained

from these concentration results. For instance, heavy tails lead to multiplica-
tive concentration for Mn,0 and the consistency of the Good-Turing estimator:
Gn,0
Mn,0

p−→ 1. Generally, new estimators can be derived and shown to be consistent

in a unified framework, once one is able to estimate α consistently. For instance,
when ~ν(1/.) is regularly varying with index α, α̂ = Kn,1/Kn is a consistent
estimator of α. Then, to estimate the number of new species in a sample twice

the size of the original, we immediately get that K̂2n = Kn + 2α̂−1
α̂ Kn,1 is a

consistent estimator of K2n. This methodology is very similar to extreme value
theory [Beirlant et al., 2006]: harnessing limiting expressions and tail parameter
estimation. These results strengthen and extend the contribution of [Ohannes-
sian and Dahleh, 2012], which is restricted to power-laws and implicit constants
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in the inequalities. Beyond consistency results, we also obtain confidence in-
tervals for the Good-Turing estimator in the Poisson setting, using empirical
quantities.

Historical notes and related work

There exists a vast literature on the occupancy scheme, as formulated here and in
many other variations. The most studied problems are the asymptotic behavior
of Kn and Kn,r. This is done often in a finite context, or a scaling model where
probabilities remain mostly uniform. Of particular relevance to this paper, we
mention the work of Karlin [1967], who built on earlier work by Bahadur [1960],
credited as one of the first to study the infinite occupancy scheme. Karlin’s main
results were to establish central limit theorems in an infinite setting, under a
condition of regular variation. He also derived strong laws of large numbers.
Gnedin et al. [2007] present a general review of these earlier results, as well as
more contemporary work on this problem. The focus continues to be central
limit theorems, or generally asymptotic results. For example the work of Hwang
and Janson [2008] (effectively) provides a local limit theorem for Kn provided
that the variance tends to infinity. Somewhat less asymptotic results have also
been proposed, in the form of normal approximations, such as in the work of
Barbour and Gnedin [2009].

Besides occupancy counts analysis, a distinct literature investigates the num-
ber of species and missing mass problems. These originated in the works of
Fisher et al. [1943], Good [1953], and Good and Toulmin [1956], and generated
a long line of research to this day [Bunge and Fitzpatrick, 1993]. Here, instead
of characterizing the asymptotic behavior of these quantities, one is interested
in estimating Kλn − Kn for a λ > 1, that is the number of discoveries when
the sample size is multiplied by λ, or estimating Mn,0: estimators are proposed,
and then their statistical properties are studied. One recently studied property
by McAllester and Schapire [2000] and McAllester and Ortiz [2003], is that
of concentration, which sets itself apart from the CLT-type results in that it is
non-asymptotic in nature. Based on this, Ohannessian and Dahleh [2012] showed
that in the regular variation setting of Karlin, one could show multiplicative con-
centration, and establish strong consistency results. Conversely, characterizing
various aspects of concentration allows one to systematically design new esti-
mators. For example, this was illustrated in Ohannessian and Dahleh [2012] for
the estimation of rare probabilities, to both justify and extend Good’s [Good,
1953] work that remains relevant in some of the aforementioned applications,
especially computational linguistics.
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3. Concentration

3.1. Occupancy counts

3.1.1. Variance bounds

In order to understand the fluctuations of occupancy counts Kn, K(t), Kn,r,
Kr(t), we start by reviewing and stating variance bounds. We start with the
Poisson setting where occupancy counts are sums of independent Bernoulli ran-
dom variables with possibly different success probabilities, and thus variance
computations are straightforward. Exact expressions may be derived [see for
example Gnedin et al., 2007, Equation (4)], but ingenuity may be used to derive
more tractable and tight bounds. We start by stating a well-known connection
between the variance of the number of occupied urns and the expected number
of singletons [Gnedin et al., 2007][Karlin, 1967]. In the binomial setting, similar
bounds can be derived using the Efron-Stein-Steele inequalities [see Boucheron
et al., 2013, Section 3.1].

Proposition 3.1. In the Poissonized setting,

EK1(2t)

2
≤ Var(K(t)) ≤ EK1(t) .

In the binomial setting,

Var(Kn) ≤ E [Kn,1(1−Mn,0)] ≤ EKn,1 .

The upper bounds in these two propositions parallel each other, but in the
binomial setting, we cannot hope to establish lower bounds like EKcn,1/c ≤
Var(Kn) for some constant c > 0 in full generality. To see this, consider the
following example which shows that the variance of K(t) and of Kn may differ
significantly, and that the variance ofKn may be much smaller than the expected
value of Kn,1.

Example 1. In the so-called birthday paradox scenario, n balls are thrown inde-
pendently into n2 urns with uniform probabilities 1/n2. In the Poisson setting
for time t = n, since we have EK(n) =

∑
j(1 − e−npj ) = n2(1 − e−1/n), using

an upper and lower Taylor expansion we can obtain the bounds:

n− 1
2 ≤ EK(n) ≤ n− 1

2 + 1
6n .

Since Var(K(n)) =
∑
j e−npj (1− e−npj ) = EK(2n)− EK(n), it follows that:

n− 1

6n
≤ Var(K(n)) ≤ n+

1

12n
.

Meanwhile, we have E[K1(n)] =
∑
j npje

−npj = ne−1/n, which can be bounded
similarly:

n− 1 ≤ E[K1(n)] ≤ n− 1 +
1

2n
.
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We can thus see that the Poisson birthday paradox satisfies the spirit of Propo-
sition 3.1, if not its letter (because of being outside of our fixed-p setting).
Namely, the Poisson quantities Var(K(n)) and EK1(n) are of the same order of
magnitude, roughly n.

On the other hand, in the binomial setting, since 1−Mn,0 = Kn/n
2,

Var(Kn) ≤ E [Kn,1(1−Mn,0)] = E
[
Kn,1

Kn

n2

]
≤ 1

n
EKn,1 ≤ 1,

where we have used the same variance bound as in the proof of Proposition 3.1
(Section 7.2.1). While this implies that the upper bound Var(Kn) ≤ EKn,1 is
satisfied, it also shows that a lower bound of the kind of EKcn,1/c ≤ Var(Kn)
is not possible, since similarly to EK1(n), we have EKn,1 =

∑
j npj(1− pj)n =

n(1− 1
n2 )n ≥ n− 1. �

Another straightforward bound on Var(Kn) comes from the fact that the
Bernoulli variables (I{Xn,j>0})j≥1 are negatively correlated. Thus, ignoring the
covariance terms, we get

Var(Kn) ≤
∞∑
j=1

Var(I{Xn,j>0}) =

∞∑
j=1

(1− pj)n(1− (1− pj)n) = EK2n − EKn .

Let us denote this bound by Varind(Kn) = EK2n−EKn, as it is a variance proxy
obtained by considering that the summands in Kn are independent. One can
observe that the expression of Varind(Kn) is very similar to the variance in the
Poissonized setting, Var(K(t)) = EK(2t) − EK(t). It is insightful to compare
the true variance, the Poissonized proxy, and the negative correlation proxy, to
quantify the price one pays by resorting to the latter two as an approximation
for the first. We revisit this in more detail in Section 6.1.

We now investigate the fluctuations of the individual occupancy counts Kn,r

and Kr(t), and that of the cumulative occupancy counts Kn,r =
∑
j≥rKn,j and

Kr(t) =
∑
j≥rKj(t).

Proposition 3.2. In the Poisson setting, for r ≥ 1, t ≥ 0,

Var(Kr(t)) ≤ min (rEKr(t),EKr(t)) .

In the binomial setting, for r, n ≥ 1,

Var(Kn,r) ≤ min (rEKn,r,EKn,r) .

For each setting, the first bound follows from Efron-Stein-Steele inequalities,
the second from negative correlation. These techniques are presented briefly in
Sections 7.1.1 and 7.1.2 respectively.

Remark 3.1. Except for r = 1, there is no clear-cut answer as to which of these
two bounds is the tightest. In the regular variation scenario with index α ∈]0, 1]
as explored in [Gnedin et al., 2007], the two bounds are asymptotically of the
same order, indeed,

rEKn,r

EKn,r
∼

n→+∞
α ,
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see Section 4 for more on this. �

Bounds on Var(Kr(t)) can be easily derived as Kr(t) is a sum of independent
Bernoulli random variables, however, noticing that Kn,r = Kn,r −Kn,r+1 and
that Kn,r and Kn,r+1 are positively correlated, the following bound is immedi-
ate.

Proposition 3.3. In the Poisson setting, for r ≥ 1, t ≥ 0,

Var(Kr(t)) ≤ EKr(t) .

In the binomial setting, for r, n ≥ 1,

Var(Kn,r) ≤ min
(
rEKn,r + (r + 1)EKn,r+1,EKn,r + EKn,r+1

)
≤ 2 min ((rEKn,r) ∨ ((r + 1)EKn,r+1)),EKn,r) .

3.1.2. Concentration inequalities

Concentration inequalities refine variance bounds. These bounds on the logarith-
mic moment generating functions are indeed Bennett (sub-Poisson) inequalities
with the variance upper bounds stated in the preceding section. For Kn,r, the
next proposition gives a Bernstein inequality where the variance factor is, up to
a constant factor, the Efron-Stein upper bound on the variance.

Proposition 3.4. Let r ≥ 1, and let vn,r = min(rEKn,r,EKn,r). Then, for all
λ ∈ R,

logEeλ(Kn,r−EKn,r) ≤ vn,rφ(λ) ,

with φ : λ 7→ eλ − λ− 1.

It is worth noting that the variance bound EKn,r in this concentration in-
equality can also be obtained using a variant of Stein’s method known as sized-
bias coupling [Bartroff et al., 2014, Chen et al., 2010].

A critical element of the proof of Proposition 3.4 is to use the fact that each
Kn,r is a sum of negatively associated random variables (Section 7.1.2). This is
not the case for Kn,r, and thus negative association cannot be invoked directly.
To deal with this, we simply use the observation of Ohannessian and Dahleh
[2012] that since Kn,r = Kn,r −Kn,r+1, the concentration of Kn,r follows from
that of those two terms. We can show the following.

Proposition 3.5. Let

vn,r = 2 min ((rEKn,r) ∨ ((r + 1)EKn,r+1)),EKn,r) .

Then, for s ≥ 0,

P
{
|Kn,r − EKn,r| ≥

√
4vn,rs+ 2s/3

}
≤ 4e−s .

3.2. Missing mass
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3.2.1. Variance bound

Recall that Mn,0 =
∑∞
j=1 pjI{Xn,j=0} =

∑∞
j=1 pjYj , and we can readily show

that the summands are negatively associated weighted Bernoulli random vari-
ables (Section 7.1.2). This results in a handy upper bound for the variance of
the missing mass.

Proposition 3.6. In the Poisson setting,

Var(M0(t)) = 2EK2(t)/t2 − EK2(2t)/2t2 ≤ 2EK2(t)/t2 ,

while in the binomial setting,

Var(Mn,0) ≤
∞∑
j=1

p2
jVar(Yj) ≤

2EK2(n)

n2
.

Note that whereas the expected value of the missing mass is connected to the
number of singletons, its variance may be upper bounded using the number of
doubletons (in the Poisson setting). This connection was already pointed out in
[Good, 1953] and [Esty, 1982].

3.2.2. Concentration of the left tail

Moving on to the concentration properties of the missing mass, we first note
that as a sum of weighted sub-Poisson random variables (following [Boucheron
et al., 2013]), the missing mass is itself a sub-gamma random variable on both
tails. It should not come as a surprise that the left tail of Mn,0 is sub-Gaussian
with the variance factor derived from negative association. This had already
been pointed out by McAllester and Schapire [2000] and McAllester and Ortiz
[2003].

Proposition 3.7. [McAllester and Ortiz, 2003] In the Poisson setting, the missing
mass M0(t) is sub-Gaussian on the left tail with variance factor the effective
variance Var(M0(t)) =

∑∞
j=1 p

2
je
−tpj (1− e−tpj ).

In the binomial setting, the missing mass Mn,0 is sub-Gaussian on the left
tail with variance factor v =

∑∞
j=1 p

2
jVar(Yj) or v−n = 2EK2(n)/n2.

For λ ≤ 0,

logE
[
eλ(Mn,0−EMn,0)

]
≤ vλ2

2
≤ 2v−n λ

2

2

3.2.3. Concentration of the right tail

The following concentration inequalities for the missing mass mostly rely on the
observation that, for all λ > 0,

logE
[
eλ(Mn,0−EMn,0)

]
≤
∞∑
r=2

(
λ

n

)r
EKr(n) . (3.1)
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This suggests that if we have a uniform control on the expected occupancy
scores (EKr(t))r≥2, then the missing mass has a sub-gamma right tail, with
some more or less accurate variance proxy, and scale factor 1/n.

The next theorem shows that the missing mass is sub-gamma on the right
tail with variance proxy 2EK2(n)/n2 and scale proxy 1/n. Despite its simplicity
and its generality, this bound exhibits an intuitively correct scale factor: if there
exist symbols with probability of order 1/n, they offer the major contribution
to the fluctuations of the missing mass.

Theorem 3.8. In the binomial as well as in the Poisson setting, the missing
mass is sub-gamma on the right tail with variance factor v+

n = 2EK2(n)/n2 and
scale factor 1/n. For λ ≥ 0,

logE
[
eλ(Mn,0−EMn,0)

]
≤ v+

n λ
2

2(1− λ/n)
.

If the sequence (EKr(n))r≥2 is non-increasing, the missing mass is sub-gamma
on the right tail with variance factor v−n = 2EK2(n)/n2 and scale factor 1/n,

logE
[
eλ(Mn,0−EMn,0)

]
≤ v−n λ

2

2(1− λ/n)
.

Remark 3.2. McAllester and Ortiz [2003] and Berend and Kontorovich [2013]
point out that for each Bernoulli random variable Yj , for all λ ∈ R

logEeλ(Yj−EYj) ≤ λ2

4cls(EYj)
,

where cls(p) = log(p/(1− p))/(1− 2p) (or 2 if p = 1/2) is the optimal logarith-
mic Sobolev constant for Bernoulli random variables with success probability
p (this sharp and non-trivial result has been proved independently by a num-
ber of people: Hoeffding [1963, Theorem 1, second inequality], Kearns and Saul
[1998], Berend and Kontorovich [2013], Raginsky and Sason [2013]). From this
observation, thanks to the negative association of the (Yj)j≥1, it follows that
the missing mass is sub-Gaussian with variance factor

v =
∞∑
j=1

p2
j

2cls((1− pj)n)
≤
∞∑
j=1

p2
j

2 log((1− pj)−n)
≤
∞∑
j=1

p2
j

2npj
≤ 1

2n
.

This variance factor is usually larger than 2EK2(n)/n2. In the scenarios dis-
cussed in Section 4, (2EK2(n)/n2)/(1/2n) even tends to 0 as n tends to infinity.
�

4. Regular variation

Motivation

Are the variance bounds in the concentration results of Section 3 tight? To
see that in some pathological examples this may not be the case, consider the
following example (which revisits Example 1).
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Example 2. We may challenge the tail bounds offered by Proposition 3.7 and
Theorem 3.8 in the simplest setting where all N symbols have equal probabilities
1/N . Then the missing mass is 1 −Kn/N , its variance is Var(Kn)/N2. In the
birthday paradox setting (N = n2), Var(Mn,0) ≤ 1/n4, and the variance bound
2EK2(n)/n2 is not tight. Indeed, one can verify that EK2(n) ≥ 1

2

(
1− 1

n

)
so

that v+
n ≥ 1

n2 − 1
n3 . However, in what is called the central domain in [Kolchin

et al., 1978], that is when N → ∞ while n/N → t ∈ R+, the tail bounds
become relevant. The variance of Kn is equivalent to Ne−t(1 − e−t) while its
expectation is equivalent to N(1−e−t). Note that in this setting all EKr(n) and
EKn,r are of the same order of magnitude as EKn, indeed EKr(n)/EK(n) →
e−ttr/(r!(1− e−t)).

These examples are illustrative although they do not fall in the fixed p regime
we are considering in this paper. We use them because they have tractable ex-
pressions, and they provide informative diagnostics. To parallel the phenomenon
of mismatched variance proxies in our setting, one can simply look at the geo-
metric distribution for a concrete example. If (pk)k≥1 defines a geometric dis-
tribution pk = (1− q)k−1q, then EK2(n) remains bounded, while EK2(n) scales
like log n as n tends to infinity. �

In particular, we may conjecture that Theorem 3.8 is likely to be sharp when
the first terms of the sequence (EKr(n))r≥2 grow at the same rate as EK(n),
or at least as EK2(n), which is not the case in the birthday paradox setting
of Example 2. We see in what follows that the regular variation framework
introduced by Karlin [1967] leads to such asymptotic equivalents. The most
useful aspect of these equivalent growth rates is a simple characterization of
the variance of various quantities, particularly relative to their expectation. We
focus on the right tail of the missing mass, which exhibits the highest sensitivity
to this asymptotic behavior, by trying to specialize Theorem 3.8 under regular
variation.

Definition

To state the regular variation hypothesis, we first introduce some notation.
Following [Karlin, 1967], [Gnedin et al., 2007] and [Ohannessian and Dahleh,
2012], we consider the counting measure on [0, 1]

ν(dx) =

∞∑
j=1

δpj (dx) ,

where δx is the Dirac mass at x.
This assumption is made on the counting function ~ν, defined for all x > 0 by

~ν(x) = ν[x, 1] = |{j : j ≥ 1, pj ≥ x}| .

Following Karlin [1967], we say that frequencies pj are regularly varying with
index α ∈ [0, 1], if

~ν(x) ∼
0+

x−α`(1/x) ,
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where ` is a slowly varying function, that is, for all x > 0, lim
τ→+∞

`(τx)

`(τ)
= 1. In

other words, this means that means that the function ~ν(1/·) is regularly varying
with index α ∈ [0, 1], which is denoted by ~ν(1/·) ∈ RVα.

In what follows, we treat three cases separately: the nominal regular varia-
tion case with α ∈ (0, 1) strictly, the fast variation case with α = 1, and the
slow variation case with α = 0.

In the latter case, that is if frequencies pj are regularly varying with index
0, we find that the mere regular variation hypothesis is not sufficient to obtain
asymptotic formulas. For this reason, we introduce further control in the form
of an extended regular variation hypothesis (given by Definition 1 of Section
4.3).

Remark 4.1. Before we proceed, as further motivation, we note that the regular
variation hypothesis is very close to being a necessary condition for exponential
concentration. For example, considering inequality (3.1), we see that if the sam-
pling distribution is such that the ratio EK2(t)/EK2(t) remains bounded, then
we are able to capture the right variance proxy. Now, defining the shorthand
Φ2(t) = EK2(t) and Φ2(t) = EK2(t) following the notation of [Gnedin et al.,
2007], we have

Φ′
2
(t) =

2Φ2(t)

t
.

Hence, Φ2(t)/Φ2(t) = 2Φ2(t)/tΦ′
2
(t), and if instead of boundedness, we further

require that this ratio converges to some finite limit, then, by the converse part
of Karamata’s Theorem [see de Haan and Ferreira, 2006, Theorem B.1.5], we
find that Φ2 (and then Φ2) is regularly varying, which in turn implies that ~ν(1/t)
is regularly varying. �

4.1. Case α ∈ (0, 1)

We first consider the case 0 < α < 1. The next theorem states that when the
sampling distribution is regularly varying with index α ∈ (0, 1), the variance
factors in the Bernstein inequalities of Proposition 3.7 and Theorem 3.8 are of
the same order as the variance of the missing mass.

Theorem 4.1. Assume that the counting function ~ν satisfies the regular vari-
ation condition with index α ∈ (0, 1), then the missing mass Mn,0 (or M0(n))
is sub-Gaussian on the left tail with variance factor v−n = 2EK2(n)/n2 and sub-
gamma on the right tail with variance factor v+

n = 2EK2(n)/n2. The variance
factors satisfy

lim
n

v−n
Var(Mn,0)

=
1

1− 2α−2
,

lim
n

v+
n

Var(Mn,0)
=

2

α(1− 2α−2)
,
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and thus

lim
n

v−n
v+
n

=
α

2
.

The second ratio deteriorates when α approaches 0, implying that the vari-
ance factor for the right tail gets worse when the distribution has a lighter tail.
We do not prove Theorem 4.1 as the asymptotics are a consequence of Kar-
lin’s results surveyed in [Gnedin et al., 2007, Ohannessian and Dahleh, 2012].
In particular, we need Proposition 3.7, Theorem 3.8, and:

Theorem 4.2. [Karlin, 1967] If the counting function ~ν is regularly varying
with index α ∈ (0, 1), for all r ≥ 1,

- Kn
a.s.∼ EKn ∼

+∞
Γ(1− α)nα`(n) ,

- Kn,r
a.s.∼ EKn,r ∼

+∞
αΓ(r−α)

r! nα`(n) ,

- Var(Mn,0) ∼ αΓ(2− α)(1− 2α−2)nα−2`(n)

and the same hold for the corresponding Poissonized quantities.

Note that all expected occupancy counts are of the same order, and the
asymptotic for EK2(n) follows directly from the difference between EK(n) and
EK1(n).

4.2. Fast variation, α = 1

We refer to the regular variation regime with α = 1 as fast variation1. From
the perspective of concentration, this represents a relatively “easy” scenario. In
a nutshell, this is because the variance of various quantities grows much slower
than their expectation.

We first start by noting that Theorem 4.1 continues to hold as is for α = 1.
However, the rationale is slightly different. Moreover, the occupancy counts
in this case present some singular behaviors which justify treating this case
separately. We first note the following asymptotics that asserts that in this
case, the number of occupied boxes Kn and the number of singletons Kn,1

are asymptotically equivalent, and that they dominate all the Kn,r, for r ≥ 2.
Intuitively, almost all the symbols of the sample are distinct and their probability
lies around 1/n, but a significant fraction of them has a probability smaller than
1/n.

Theorem 4.3. [Karlin, 1967] Assume ~ν(1/x) = x−1`(x) with ` ∈ RV0 (note
that ` tends to 0 at ∞). Define `1 : [1,∞)→ R+ by

`1(y) =

∫ ∞
y

u−1`(u)du .

Then `1 ∈ rv0 and limt→∞ `1(t)/`(t) =∞ and the following asymptotics hold:

1This is also referred to sometimes as rapid variation, as in Gnedin et al. [2007], but we
avoid that terminology as it also has a different connotation in the regular variation literature.
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- Kn
a.s.∼ EKn ∼

+∞
n`1(n),

- Kn,1
a.s.∼ EKn,1 ∼

+∞
EKn,

- Kn,r
a.s.∼ EKn,r ∼

+∞
1

r(r−1)n`(n) , r ≥ 2,

and the same hold for the corresponding Poissonized quantities.

We can now see that the expected missing mass scales like EK1(n)/n while its
variance scales like EK2(n)/n2. That said, it is not immediately clear that the
variance factor 2EK2(n)/n2 is of the same order as Var(Mn,0). As EK(n) and
EK1(n) are asymptotically equivalent, Theorem 4.3 is not sufficient to obtain
the asymptotics for EK2(n). This is given by the next proposition, which is in
fact sufficient to prove Theorem 4.1 for both 0 < α < 1 and α = 1.

Proposition 4.4. Assume that the counting function ~ν satisfies the regular vari-
ation condition with index α ∈ (0, 1], then for all r ≥ 2,

Kr(n) ∼
+∞

Γ(r − α)

(r − 1)!
~ν(1/n) a.s. .

Thus, when α = 1, the cumulated occupancy counts EKr(n), for r ≥ 2, are
of the order of n`(n), and thus each is dominated by EK(n) and EK1(n). In
particular, EK2(n) is of order n`(n) and our variance proxy still captures the
right order for the variance of the missing mass.

Remark 4.2. Whereas in the case 0 < α < 1, 2EK(n)/n2 would also have been
a good variance proxy, here when α = 1 we really need to remove the singletons
and take 2EK2(n)/n2 to get the right order.

We also note that when α = 1, the missing mass is even more stable. If we
let vn denote 2EK2(n)/n2 or 2EK2(n)/n2, then

√
vn

EMn,0
∼

c(α).n−α/2
√
`(n)

`(n) for 0 < α < 1 ,

c.
n−1/2

√
`(n)

`1(n) for α = 1 . �

4.3. Slow variation, α = 0

The setting where the counting function ~ν satisfies the regular variation con-
dition with index 0 represents a challenge. We refer to this regime simply as
slow variation. Recall that this means that ~ν(z/n)/~ν(1/n) converges to 1 as n
goes to infinity, yet to deal with this case we need to control the speed of this
convergence, exemplified by the notion of extended regular variation that was
introduced by de Haan [See Bingham et al., 1989, de Haan and Ferreira, 2006].
As we illustrate in the end of this section, one may face rather irregular behavior
without such a hypothesis.

Definition 1. A measurable function ` : R+ → R+ has the extended slow
variation property, if there exists a non-negative measurable function a : R+ →
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R+ such that for all x > 0

lim
τ→∞

`(τx)− `(τ)

a(τ)
→
τ→∞

log(x) .

The function a(·) is called an auxiliary function. When a function ` has the
extended slow variation property with auxiliary function a, we denote it by
` ∈ Πa.

Note that the auxiliary function is always slowly varying and satisfies limτ→∞ `(τ)/a(τ) =
∞, that is it grows slower than the original function. Furthermore, any two pos-
sible auxiliary functions are asymptotically equivalent, that is if a1 and a2 are
both auxiliary functions for `, then limt→∞ a1(t)/a2(t) = 1.

The notion of extended slow variation and the auxiliary function give us the
aforementioned control needed to treat the α = 0 case on the same footing as
the 0 < α < 1 case. In particular, in what follows in this section we assume
that ~ν(1/.) ∈ Πa, with the additional requirement that the auxiliary function a
tends to +∞.

Remark 4.3. This domain corresponds to light-tailed distributions just above
the geometric distribution (the upper-exponential part of Gumbel’s domain).
For the geometric distribution with frequencies pj = (1 − q)qk−1, j = 1, 2, . . . ,
the counting function satisfies ~ν(1/n) ∼∞ log1/q(n) ∈ RV0, but the auxiliary
function a(n) = log(1/q) does not tend to infinity. Frequencies of the form
pj = cq

√
j on the other hand do fit this framework. �

Theorem 4.5. [Gnedin et al., 2007] Assume that ` defined by `(t) = ~ν(1/t) is
in Πa where a is slowly varying and tends to infinity. The following asymptotics
hold for each r ≥ n

- Kn
P∼ EKn ∼

+∞
`(n)

- Kn,r
P∼ EKn,r ∼

+∞
a(n)
r

- Kn,r̄
P∼ EKn,r̄ ∼

+∞
`(n)

- Mn,r
P∼ EMn,r ∼

+∞
a(n)
n .

and the same equivalents hold for the corresponding Poissonized quantities.

Remark 4.4. In this case, the expectations (EKn,r)r≥1 are of the same order
but are much smaller than EKn, and the variables Kn and Kn,s are all almost
surely equivalent to `(n). It is also remarkable that all the expected masses
(EMn,r)r≥1 are equivalent. �

As EK2(n) ∼ EK(n) ∼ `(n), whereas the variance of the missing mass is of
order a(n)/n2, upper bounding EKr(n), r ≥ 2 by EK2(n), is no longer sufficient
to capture the right order for the variance. However, exploiting more carefully
the regular variation hypothesis, we manage to get a uniform control over the
EKr(n), which is valid for large enough n.
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Theorem 4.6. Assume that ` defined by `(x) = ~ν(1/x) is in Πa where the
slowly varying function a tends to infinity, then

1. letting vn = 12a(n)/n2,

vn � Var(Mn,0) ∼ 3a(n)

4n2

2. there exists n0 ∈ N that depends on ~ν such that for all n > n0, for all
λ > 0,

logE
[
eλ(Mn,0−EMn,0)

]
≤ vnλ

2

2(1− λ/n)
.

For all s ≥ 0, n ≥ n0,

P
{
Mn,0 ≥ EMn,0 +

√
2vns+

s

n

}
≤ e−s .

The same results hold for M0(t).

4.3.1. Too slow variation

We conclude this section by motivating why it is crucial to have a heavy-enough
tail in order to obtain meaningful concentration. For example, even under regu-
lar variation when α = 0, but ~ν is not in a de Haan class Πa with a(n)→∞, the
behavior of the occupancy counts and their moments may be quite irregular.
In this section, we collect some observations on those light-tailed distributions.
We start with the geometric distribution which represents in many respects a
borderline case.

The geometric case is an example of slow variation: ~ν(1/·) ∈ RV0. Indeed,
with pk = (1− q)k−1q, 0 < q < 1, we have

~ν(x) =

+∞∑
k=1

I{pk≥x}

= |k ∈ N∗, (1− q)k−1q ≥ x|

= 1 +

⌊
log(x/q)

log(1− q)

⌋
,

and thus ~ν(x) ∼
x→0

`(1/x), with ` slowly varying.

In this case, Var(K(n)) = EK(2n)− EK(n)→ log(2)
log(1/1−q) .

Proposition 4.7. When the sampling distribution is geometric with parameter
q ∈ (0, 1), letting Mn = max(X1, . . . , Xn),

EMn ≥ EKn ≥ EMn −
1− q
q2

.
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In the case of geometric frequencies, the missing mass can fluctuate widely
with respect to its expectation, and one cannot expect to obtain sub-gamma
concentration with both the correct variance proxy and scale factor 1/n. In-
deed, intuitively, the symbol which primarily contributes to the missing mass’
fluctuations, is the quantile of order 1 − 1/n. With F (k) =

∑k
j=1 pj , and F←

the generalized inverse of F ,

j∗ = F←(1− 1/n) = inf{j ≥ 1, F (j) ≥ 1− 1/n}
= inf{j ≥ 1,

∑
k>j

pk ≤ 1/n} .

Omitting the slowly varying functions, when ~ν(1/·) ∈ RVα, 0 < α < 1, j∗

is of order n
α

1−α and pj∗ is of order n−
1

1−α . The closer to 1 is α, the smaller
the probability of j∗. When α goes to 0, this probability becomes 1/n. With

geometric frequencies, j∗ is log(n)
log(1/1−q) and pj∗ is q

n(1−q) . Hence, around the

quantile of order 1− 1/n, there are symbols which may contribute significantly
to the missing mass’ fluctuations.

Another interesting case consists of distributions which are very light-tailed,
in the sense that pk+1

pk
→ 0 when k → ∞. An example of these is the Poisson

distribution P(λ), for which pk+1

pk
= λ

k −→k→+∞
0 . The next proposition shows that

for such concentrated distributions, the missing mass essentially concentrates on
two points.

Proposition 4.8. In the infinite urns scheme with probability mass function
(pk)k∈N, if pk > 0 for all k and limk→∞

pk+1

pk
= 0, then there exists a sequence

of integers (un)n∈N such that

lim
n→∞

P
{
Mn,0 ∈ {F (un), F (un + 1)}

}
= 1 ,

where F (k) =
∑
j>k pj .

5. Applications

5.1. Estimating the regular variation index

When working in the regular variation setting, the most basic estimation task
is to estimate the regular variation index α. We already mentioned in Section 2
the fact that, when ~ν ∈ rvα, α ∈ (0, 1), the ratio Kn,1/Kn provides a consistent
estimate of α. This is actually only one among a family of estimators of α that
one may construct. The next result shows this, and is a direct consequence of
Proposition 4.4.

Proposition 5.1. If ~ν ∈ rvα, α ∈]0, 1], then for all r ≥ 1

rKn,r

Kn,r

is a strongly consistent estimator of α.
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Thus, writing kn = max {r,Kn,r > 0}, at time n, we can have up to kn non-
trivial estimators of α.

5.2. Estimating the missing mass

The Good-Turing estimation problem [Good, 1953] is that of estimating Mn,r

from the observation (X1, X2, · · · , Xn). For large scores r, designing estimators
for Mn,r is straightforward, we assume that the empirical distribution mimics

the sampling distribution, and that the empirical probabilities
rKn,r
n are likely to

be good estimators. The question is more delicate for rare events. In particular,
for r = 0, it may be a bad idea to assume that there is no missing mass Mn,0 = 0,
that is to assign a zero probability to the symbols that do not appear in the
sample. Various “smoothing” techniques were developed, in order to adjust the
maximum likelihood estimator and obtain more accurate probabilities.

Good-Turing estimators attempt to estimate (Mn,r)r from (Kn,r)r for all r.
They are defined as

Gn,r =
(r + 1)Kn,r+1

n
·

The rationale for this choice comes from the following observations.

EGn,0 =
E [Kn,1]

n
= EMn−1,0 = EMn,0 +

EMn,1

n
, (5.1)

and

EGn,r =
(r + 1)EKn,r+1

n
= EMn−1,r . (5.2)

In the Poisson setting, there is no bias: EGr(t) = (r + 1)EKr+1(t)
t = EMr(t).

Here, we primarily focus on the estimation of the missing masses Mn,0 and
M0(t), though most of the methodology extends also to r > 0, with the ap-
propriate concentration results. From (5.1) and (5.2), Good-Turing estimators
look like slightly biased estimators of the relevant masses. In particular, the bias
EGn,0 − EMn,0 is always positive but smaller than 1/n. It is however far from
obvious to determine scenarios where these estimators are consistent and where
meaningful confidence regions can be constructed.

When trying to estimate the missing mass Mn,0 or EMn,0, consistency needs
to be redefined since the estimand is not a fixed parameter of interest but a
random quantity whose expectation further depends on n. Additive consistency,
that is bounds on M̂n,0 −Mn,0 is not a satisfactory notion, because, as Mn,0

tends to 0, the trivial constant estimator 0 would be universally asymptotically
consistent. Relative consistency, that is control on (M̂n,0 −Mn,0)/Mn,0 looks
like a much more reasonable notion. It is however much harder to establish.

In order to establish relative consistency of a missing mass estimator, we have
to check that E[M̂n,0 −Mn,0] is not too large with respect to EMn,0, and that

both M̂n,0 and Mn,0 are concentrated around their mean values.
As shown in [Ohannessian and Dahleh, 2012], the Good-Turing estimator of

the missing mass is not universally consistent in this sense. This occurs princi-
pally in very light tails, such as those described in Section 4.3.1.
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Proposition 5.2. [Ohannessian and Dahleh, 2012] When the sampling distri-
bution is geometric with small enough q ∈ (0, 1), there exists η > 0, and a
subsequence ni such that for i large enough, Gni,0/Mni,0 = 0 with probability
no less than η.

On the other hand, the concentration result of Corollary 4.1 entails a law of
large numbers for Mn,0 (by a direct application of the Borel-Cantelli lemma),
which in turns entails the strong multiplicative consistency of the Good-Turing
estimate.

Corollary 5.3. We have the following two regimes of consistency for the Good-
Turing estimator of the missing mass.

(i) If the counting function ~ν is such that EKn,2/EKn,1 remains bounded
and EKn,1 → +∞ (in particular, when ~ν is regularly varying with index
α ∈ (0, 1] or α = 0 and ~ν ∈ Πa with a→∞),

Mn,0

EMn,0

P−→ 1 ,

and the Good-Turing estimator of Mn,0 defined by Gn,0 = Kn,1/n, is
multiplicatively consistent in probability:

Gn,0
Mn,0

P−→ 1 .

(ii) If furthermore EKn,2/EKn,1 remains bounded and if, for all c > 0,∑∞
n=0 exp(−cEKn,1) <∞ (in particular, when ~ν is regularly varying with

index α ∈ (0, 1]), then these two convergences occur almost surely.

Consistency is a desirable property, but the concentration inequalities provide
us with more power, in particular in terms of giving confidence intervals that are
asymptotically tight. For brevity, we focus here on the Poisson setting to derive
concentration inequalities which in turn yield confidence intervals. A similar, but
somewhat more tedious, methodology yields confidence intervals in the binomial
setting as well.

5.2.1. Concentration inequalities for G0(t)−M0(t)

In the Poisson setting, the analysis of the Good-Turing estimator is illuminat-
ing. As noted in earlier, the first pleasant observation is that the Good-Turing
estimator is an unbiased estimator of the missing mass. Second, the variance of
G0(t)−M0(t) is simply related to occupancy counts:

Var(G0(t)−M0(t)) =
1

t2
(EK1(t) + 2EK2(t)) . (5.3)

Third, simple yet often tight concentration inequalities can be obtained for
G0(t)−M0(t).
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Proposition 5.4. The random variable G0(t)−M0(t) is sub-gamma on the right
tail with variance factor Var(G0(t)−M0(t)) and scale factor 1/t, and sub-gamma
on the left tail with variance factor 3EK(t)/t2 and scale factor 1/t.

For all λ ≥ 0,

(i) logEeλ(G0(t)−M0(t)) ≤ Var(G0(t)−M0(t))t2φ
(
λ
t

)
, and

(ii) logEeλ(M0(t)−G0(t)) ≤ 3EK(t)
2t2

λ2

1−λ/t .

We are now in a position to build confidence intervals for the missing mass.

Proposition 5.5. With probability larger than 1− 4δ, the following hold

M0(t) ≤ G0(t) +
1

t

(√
6K(t) log

1

δ
+ 5 log

1

δ

)
.

M0(t) ≥ G0(t)− 1

t

(√
2(K1(t) + 2K2(t)) log

1

δ
+ 4 log

1

δ

)
.

To see that these confidence bounds are asymptotically tight, consider the fol-
lowing central limit theorem. A similar results can be paralleled in the binomial
setting.

Proposition 5.6. If the counting function ~ν is regularly varying with index α ∈
(0, 1], the following central limit theorem holds for the ratio G0(t)/M0(t):

EK1(t)√
EK1(t) + 2EK2(t)

(
G0(t)

M0(t)
− 1

)
 N (0, 1) .

Remark 5.1. Note that when α = 1, this convergence occurs faster: the speed
is of order

√
n`1(n) instead of

√
nα`(n). �

5.3. Estimating the number of species

Fisher’s number of species problem Fisher et al. [1943] consists of estimating
K(1+τ)n −Kn for τ > 0, the number of distinct new species one would observe
if the data collection runs for an additional fraction τ of time. This was posed
primarily within the Poisson model in the original paper Fisher et al. [1943]
and later by [Efron and Thisted, 1976], but the same question may also be
asked in the binomial model. The following estimates come from straightforward
computations on the asymptotics given in Theorems 4.2, 4.3 and 4.5.

Proposition 5.7. If the counting function ~ν is regularly varying with index α ∈
(0, 1], letting α̂ be any of the estimates rKn,r/Kn,r of α from Proposition 5.1,
then any of the following quantities

(τ α̂ − 1)Kn ,
τ α̂ − 1

α̂
Kn,1 , and

(
r∏

k=2

k

k − 1− α̂

)
τ α̂ − 1

α̂
Kn,r , r ≥ 2 ,
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is a strongly consistent estimate of Kτn −Kn, the number of newly discovered
species when the sample size is multiplied by τ .

If the counting function ~ν is in Πa, with a(n)→ +∞, then, for each r ≥ 1,

log(τ)rKn,r

is an estimate of Kτn −Kn, consistent in probability.

6. Discussion

To conclude the paper, we review our results in a larger context, and propose
some connections, extensions, and open problems.

6.1. The cost of Poissonization and negative correlation

Resorting to Poissonization or negative correlation may have a price. It may
lead to variance overestimates. [Gnedin et al., 2007, Lemma 1] asserts that for
some constant c

|Var(K(n))−Var(Kn)| ≤ c

n
max

(
1,EK1(n)2

)
This bound conveys a mixed message. As EK1(n)/n tends to 0, it asserts that

|Var(K(n))−Var(Kn)| /EK1(n)

tends to 0. But there exist scenarios where EK1(n)2/n tends to infinity. It is
shown in [Gnedin et al., 2007] that EK1(n)2/(nVar(K(n))) tends to 0, so that,
as soon as nVar(K(n)) tends to infinity (which might not always be the case),
the two variances Var(Kn) and Var(K(n)) are asymptotically equivalent.

It would be interesting to find the necessary and sufficient conditions under
which there is equivalence. Though these aren’t generally known, it is instruc-
tive to compare Var(K(n)), Var(Kn) and Varind(Kn) the variance upper bound
obtained from negative correlation by bounding their differences. For instance,
one can show that for any sampling distribution we have:

EK2(2n)

n
≤ Var(K(n))−Varind(Kn) ≤ 2EK2(n)

n
,

and

0 ≤ Varind(Kn)−Var(Kn) ≤ (EKn,1)2

n
− EK2n,2

2n− 1
.

These bounds are insightful but, without any further assumptions on the sam-
pling distribution, they are not sufficient to prove asymptotic equivalence.
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6.2. Extensions of regular variation

The regular variation hypothesis is an elegant framework, allowing one to de-
rive, thanks to Karamata and Tauberian Theorems, simple and comprehensible
equivalents for various moments. As we have seen, it comes very close to being
a necessary condition for exponential concentration. It may however seem too
stringent. Without getting too specific about it, let us mention that other less
demanding hypotheses also yield the asymptotic relative orders that work in
favor of the concentration of the missing mass. For instance, referring back to
Remark 4.1, one could ask instead that:

0 < lim inf
t→∞

Φ2(t)

Φ2(t)
≤ lim sup

t→∞

Φ2(t)

Φ2(t)
<∞ .

Recalling that Φ′
2
(t) = 2Φ2(t)

t , and applying Corollary 2.6.2. of Bingham et al.
[1989], one obtains that Φ2 is in the class OR of O-regularly varying functions
and Φ2 is in the class ER of extended regularly varying functions, that is, for
all λ ≥ 1

0 < lim inf
t→∞

Φ2(λt)

Φ2(t)
≤ lim sup

t→∞

Φ2(λt)

Φ2(t)
<∞ ,

and

λd ≤ lim inf
t→∞

Φ2(λt)

Φ2(t)
≤ lim sup

t→∞

Φ2(λt)

Φ2(t)
≤ λc ,

for some constants c and d. Observe that this result, which is the equivalent
of Karamata’s Theorem, differs from the regular variation setting, in the sense
that the control on the derivative Φ2 is looser than the one on Φ2, whereas,
in Karamata Theorem, both the function and its derivative inherit the regular
variation property.

We can in turn show that Φ(t) = EK(t) is in the class OR and, by Theorem
2.10.2 of Bingham et al. [1989], this is equivalent to ~ν(1/·) ∈ OR, as Φ is the
Laplace-Stieltjes transform of ~ν.

6.3. Random measures

As noted by [Gnedin et al., 2007], the asymptotics for the moments of the occu-
pancy counts in the regular variation setting is still valid when the frequencies
(pj)j≥1 are random, in which case the measure ν is defined by

E

 ∞∑
j=1

f(pj)

 =

∫ 1

0

f(x)ν(dx) ,

for all functions f ≥ 0. We can also define the measure ν1 by

E

 ∞∑
j=1

pjf(pj)

 =

∫ 1

0

f(x)ν1(dx) ,
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for all functions f ≥ 0. This measure corresponds to the distribution of the
frequency of the first discovered symbol.

For instance, when (pj)j≥1 are Poisson-Dirichlet(α,0) with 0 < α < 1, the
measure ν1(dx) is the size-biased distribution of PD(α, 0), that is Beta B(1 −
α, α) [see Pitman and Yor, 1997]. Thus we have:

ν1[0, x] =
1

B(1− α, α)

∫ x

0

t−α(1− t)α−1dt

∼
x→0

x1−α

(1− α)B(1− α, α)

and, by [Proposition 13 Gnedin et al., 2007], this is equivalent to

~ν(x) ∼
x→0

1

αB(1− α, α)
x−α .

Thus, denoting by N(x) the random number of frequencies pj which are
larger than x, the expectation ~ν(x) = EN(x) is regularly varying. One can also
show that the mass-partition mechanism of the distribution PD(α, 0) almost
surely generates N(x) to be regularly varying. To see this,refer to [Proposition
10 Pitman and Yor, 1997] or to [Proposition 2.6 Bertoin, 2006] which assert that
the limit

L := lim
n→∞

npαn

exists almost surely. This is equivalent to

N(x) ∼
x→0

x−αL a.s. .

The PD(α, 0) distribution can be generated through a Poisson process with
intensity measure ν([x,∞]) = cx−α. Without entering into further detail, let us
mention that similar almost sure results hold even when the intensity measure
ν is not a strict power, but satisfies the property

ν([x,∞]) ∼
x→0

x−α`(x) ,

with ` slowly varying, [Section 6 Gnedin, 2010]. Working with a regular variation
hypothesis thus gives us more flexibility than assuming specific Bayesian priors.

7. Proofs

7.1. Fundamental techniques

7.1.1. Efron-Stein-Steele inequalities

Our variance bounds mostly follow from the Efron-Stein-Steele Inequality [Efron
and Stein, 1981], which states that when a random variable is expressed as a
function of many independent random variables, its variance can be controlled
by the sum of the local fluctuations.
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Theorem 7.1. Let X be some set, (X1, X2, · · · , Xn) be independent random
variables taking values in X , f : Xn → R be a measurable function of n variables,
and Z = f(X1, X2, · · · , Xn).

For all i ∈ {1, · · · , n}, let X(i) = (X1, · · · , Xi−1, Xi+1, · · · , Xn) and E(i)Z =
E[Z|X(i)]. Then, letting v =

∑n
i=1 E[(Z − E(i)Z)2],

Var[Z] ≤ v .

If X ′1, · · · , X ′n are independent copies of X1, · · · , Xn, then letting
Z ′i = f(X1, · · · , Xi−1, X

′
i, Xi+1, · · · , Xn),

v =

n∑
i=1

E[(Z − Z ′i)2
+] ≤

n∑
i=1

E[(Z − Zi)2] ,

where the random variables Zi are arbitrary X(i)-measurable and square-integrable
random variables.

7.1.2. Negative association

The random variablesKn,Kn,r, andMn,r are sums or weighted sums of Bernoulli
random variables. These summands depends on the scores (Xn,j)j≥1 and there-
fore are not independent. Transforming the fixed-n binomial setting into a con-
tinuous time Poisson setting is one way to circumvent this problem. This is
the Poissonization method. In this setting, the score variables (Xj(n))j≥1 are
independent Poisson variables with respective means npj . Results valid for the
Poisson setting can then be transferred to the fixed-n setting, up to approxima-
tion costs. For instance, [Gnedin et al., 2007] (Lemma 1) provide bounds on the
discrepancy between expectations and variances in the two settings. (See also
our discussion in Section 6.1).

Another approach to deal with the dependence is to invoke the notion of
negative association, which provides a systematic comparison between moments
of certain monotonic functions of the occupancy scores. In the bins and balls
setting, this approach is mostly used to obtain bounds on the logarithmic mo-
ment generating function, and thus exponential concentration for the occupancy
counts [see Dubhashi and Ranjan, 1998, Shao, 2000, McAllester and Schapire,
2000, Ohannessian and Dahleh, 2012]. We use this notion throughout the proofs,
and therefore present it here formally.

Definition 2 (negative association). Real-valued random variables Z1, . . . , ZK
are said to be negatively associated if, for any two disjoint subsets A and B of
{1, . . . ,K}, and any two real-valued functions f : R|A| 7→ R and g : R|B| 7→ R
that are both either coordinate-wise non-increasing or coordinate-wise non-
decreasing, we have:

E [f(ZA).g(ZB)] ≤ E [f(ZA)] .E [g(ZB)] .
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In particular, as far as concentration properties are concerned, sums of neg-
atively associated variables can only do better than sums of independent vari-
ables.

Theorem 7.2. [Dubhashi and Ranjan, 1998] For each n ∈ N, the occupancy
scores (Xn,j)j≥1 are negatively associated.

As any monotonic functions of negatively associated variables are also nega-
tively associated, the variables (I{Xn,j>0})j≥1 (respectively (I{Xn,j=0})j≥1) are
negatively associated as increasing (respectively decreasing) functions of (Xn,j)j≥1.
This is of pivotal importance for our proofs of concentration results for Kn and
Mn,0. For r ≥ 1, the variables (I{Xn,j=r})j≥1 appearing in Kn,r are not nega-
tively associated. However, following [Ohannessian and Dahleh, 2012], one way
to deal with this problem is to observe that

Kn,r = Kn,r −Kn,r+1 ,

recalling that Kn,r =
∑∞
j=1 I{Xn,j≥r} is the number of urns that contain at

least r balls and that the Bernoulli variables appearing in Kn,r are negatively
associated.

7.1.3. Potter’s inequalities and its variants

One useful result from regular variation theory is provided by Potter’s inequality
[See Bingham et al., 1989, de Haan and Ferreira, 2006, for proofs and refine-
ments].

Theorem 7.3. (Potter-Drees inequalities.)

(i) If f ∈ rvγ , then for all δ > 0, there exists t0 = t0(δ), such that for all
t, x : min(t, tx) > t0,

(1− δ)xγ min
(
xδ, x−δ

)
≤ f(tx)

f(t)
≤ (1 + δ)xγ max

(
xδ, x−δ

)
(ii) If ` ∈ Πa, then for all δ1, δ2, there exists t0 such that for all t ≥ t0, for all

x ≥ 1,

(1− δ2)
1− xδ1
δ1

− δ2 <
`(tx)− `(t)

a(t)
< (1 + δ2)

xδ1 − 1

δ1
+ δ2 .

7.2. Occupancy counts

7.2.1. Variance bounds for occupancy counts

Proof of Proposition 3.1. Recall that in the Poisson setting,

dEK(t)

dt
=

EK1(t)

t
= EM0(t) .
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This entails

Var(K(t)) =

∞∑
j=1

e−tpj (1− e−tpj )

= EK(2t)− EK(t)

=

∫ 2t

t

EM0(s)ds .

Now, as EM0(s) is non-increasing,

EK1(2t)

2
= tEM0(2t) ≤ Var(K(t)) ≤ tEM0(t) = EK1(t) .

Moving on to the binomial setting, let Ki
n denote the number of occupied

urns when the ith ball is replaced by an independent copy. Then

Var(Kn) ≤ E

[
n∑
i=1

(Kn −Ki
n)2

+

]
,

where (Kn −Ki
n)+ denotes the positive part. Now, Kn −Ki

n is positive if and
only if ball i is moved from a singleton into in a non-empty urn. Thus Var(Kn) ≤
E [Kn,1(1−Mn,0)].

Proof of Proposition 3.2. The bound rEKn,r follows from the Efron-Stein in-

equality: denoting by K
(i)
n,r the number of cells with occupancy score larger than

r when ball i is removed, then

Kn,r −K(i)
n,r =

{
1 if ball i is in a r-ton

0 otherwise.

And thus, we get
∑n
i=1(Kn,r −K(i)

n,r)
2 = rKn,r.

The second bound follows from the negative association of the variables
(I{Xn,j≥r})j (negative correlation is actually sufficient):

Var

 ∞∑
j=1

I{Xn,j≥r}

 ≤ ∞∑
j=1

Var(I{Xn,j≥r}) ≤ EKn,r .

7.2.2. Concentration inequalities for occupancy counts

Proof of Proposition 3.4. Let Xn,j denote the occupancy score of cell j, j ∈ N,
then

Kn,r =

∞∑
j=1

I{Xn,j≥r} .
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As observed in [Ohannessian and Dahleh, 2012], Kn,r is a sum of negatively asso-
ciated Bernoulli random variables. Moreover, the Efron-Stein inequality implies
that for each j ∈ N,

Var(I{Xn,j≥r}) ≤ rEI{Xn,j=r} .
Thus we have

logEeλ(Kn,r−EKn,r) ≤
∞∑
j=1

logEeλ(I{Xn,j≥r}−EI{Xn,j≥r})

≤
∞∑
j=1

Var(I{Xn,j≥r})φ(λ)

≤ φ(λ)

∞∑
j=1

rEI{Xn,j=r}

= φ(λ)rEKn,r ,

where the first inequality comes from negative association, the second inequality
is Bennett’s inequality for Bernoulli random variables, and the last inequality
comes from the Efron-Stein inequality. The other bound comes from the fact
that Var(I{Xn,j≥r}) ≤ EI{Xn,j≥r}.

Proof of Proposition 3.5. As Kn,r = Kn,r −Kn,r+1,

{Kn,r ≥ EKn,r + x}

⊆
{
Kn,r ≥ EKn,r +

x

2

}
∪
{
Kn,r+1 ≤ EKn,r+1 −

x

2

}
.

By Proposition 3.4, Bernstein inequalities hold for both Kn,r and Kn,r+1, with
variance proxies ErKn,r (or EKn,r) and (r + 1)Kn,r+1 (or EKn,r+1 ≤ EKn,r)
respectively. Hence,

P {Kn,r ≥ EKn,r + x}

≤ exp

(
− x2/4

2(rEKn,r + x/6)

)
+ exp

(
− x2/4

2((r + 1)EKn,r+1)

)
≤ 2 exp

(
− x2/4

2((rEKn,r) ∨ ((r + 1)Kn,r+1) + x/6)

)
.

The same reasoning works for the alternative variance proxies and for the left
tails.

7.3. Missing mass

7.3.1. Variance bounds for the missing mass

Proof of Proposition 3.6. In the Poisson setting,

Var(M0(t)) =

∞∑
j=1

p2
je
−tpj

(
1− e−tpj

)
≤
∞∑
j=1

p2
je
−tpj =

2

t2
EK2(t) .
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In the binomial setting, by negative correlation,

Var(Mn,0) ≤
∞∑
j=1

p2
j (1− (1− pj)n) (1− pj)n ≤

∞∑
j=1

p2
je
−npj =

2

n2
EK2(n) .

7.3.2. Concentration inequalities for the missing mass

Proof of Proposition 3.7. For all λ ∈ R,

logE
[
eλ(Mn,0−EMn,0)

]
= logE

[
eλ

∑∞
j=1 pj(Yj−EYj)

]
≤

∞∑
j=1

logE
[
eλpj(Yj−E[Yj ])

]
≤

∞∑
j=1

(1− pj)n(1− (1− pj)n)φ(λpj) ,

where the first inequality comes from negative association, and the second is
Bennett’s inequality for Bernoulli random variables.

Noting that limλ→0− φ(λ)/λ2 = limλ→0+
φ(λ)/λ2 = 1/2, the function λ 7→

φ(λ)/λ2 has a continuous increasing extension on R. Hence, for λ ≤ 0, we have
φ(λ) ≤ λ2/2.

Thus, for λ < 0,

logE
[
eλ(Mn,0−EMn,0)

]
≤

∞∑
j=1

p2
j (1− pj)n(1− (1− pj)n)

λ2

2

=

∞∑
j=1

p2
jVar[Yj ]

λ2

2
.

Recall that
∑∞
j=1 p

2
jVar[Yj ] ≤ 2EK2(n)/n2 (Proposition 3.6).

Proof of Theorem 3.8. From the beginning of the proof of Proposition 3.7, that
is, thanks to negative association and to the fact that each Bernoulli random
variable satisfies a Bennett inequality,

logE
[
eλ(Mn,0−EMn,0)

]
≤

∞∑
j=1

e−npjφ(λpj) .

Now, using the power series expansion of φ,

∞∑
j=1

e−npjφ(λpj) =

∞∑
j=1

e−npj
∞∑
r=2

(λpj)
r

r!

=

∞∑
r=2

(
λ

n

)r ∞∑
j=1

e−npj
(npj)

r

r!
.
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We recognize that for each r,
∑∞
j=1 e−npj

(npj)
r

r! = EKr(n) and that for each
r ≥ 2, EKr(n) ≤ EK2(n),

∞∑
j=1

e−npjφ(λpj) =

∞∑
r=2

(
λ

n

)r
EKr(n)

≤ EK2(n)

∞∑
r=2

(
λ

n

)r
= λ2EK2(n)/n2

1− λ/n
,

which concludes the proof.

7.4. Regular variation

Proof of Proposition 4.4. By monotonicity of Kn,r, we have the following strong
law for any sampling distribution

Kn,r =

∞∑
s=r

Kn,s ∼
+∞

∞∑
s=r

EKs(n) a.s. ,

[see Gnedin et al., 2007, the discussion after Proposition 2]. Recall that Xj(n) ∼
P(npj) and that, if Y ∼ P(λ), then P [Y ≤ k] = Γ(k+1,λ)

k! , where Γ(z, x) =∫ +∞
x

e−ttz−1dt is the incomplete Gamma function. Hence

∞∑
s=r

EKs(n) =

∞∑
j=1

P [Xj(n) ≥ r]

=

∞∑
j=1

1

(r − 1)!

∫ npj

0

e−ttr−1dt

=
1

(r − 1)!

∫ 1

0

∫ nx

0

e−ttr−1dt · ν(dx)

=
1

(r − 1)!

∫ 1

0

ne−nx(nx)r−1~ν(x)dx

=
1

(r − 1)!

∫ +∞

0

e−zzr−1~ν(z/n)dz

∼
+∞

~ν(1/n)

(r − 1)!
Γ(r − α) .

In particular,

Kn,r ∼
+∞

rKn,r

α
a.s. .
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Proof of Theorem 4.6. Recall the beginning of the proof of Theorem 3.8:

logE
[
eλ(Mn,0−EMn,0)

]
≤
∞∑
r=2

(
λ

n

)r
EKr(n).

Now, bounding each EKr(n) by EK2(n) is not sufficient to get the right order
for the variance: EK2(n) is of order `(n) whereas VarMn,0 is of order a(n)/n2.

We explore more carefully the structure of EKr(n) and show that these quan-
tities are uniformly (in r) bounded by a function of order a(n) for large enough
n, that is, that there exists n∗ ∈ N and C ∈ R+ such that for all n ≥ n∗, for all
r ≥ 1, EKr(n) ≤ Ca(n).

Before going into the proof, we observe that for r ≥ n/a(n), the result is true.
Indeed, from the identity

∑∞
r=1 rEKr(n) = n, we deduce that rEKr(n) ≤ n, so

that for r ≥ n/a(n), EKr(n) ≤ a(n). Thus we assume that r ≤ n/a(n).
First, we easily deal with the contribution to EKr(n) of the symbols with

probability less than 1/n. Indeed

Ir1 :=

∫ 1/n

0

e−nx
(nx)r

r!
ν(dx) ≤

∫ 1/n

0

e−nx
(nx)2

2!
ν(dx) ≤ EK2(n) .

As EK2(n) ∼ a(n)/2, for all δ0, there exists n0 such that for all n ≥ n0, for
all r ≥ 1, Ir1 ≤ (1 + δ0)/2.

For the the contribution of the symbols with probability larger than 1/n,
integration by part and change of variable yield:

Ir2 :=

∫ 1

1/n

e−nx
(nx)r

r!
ν(dx)

=

[
e−nx

(nx)r

r!
(−~ν(x))

]1

1/n

+

∫ 1

1/n

e−nx
nr

r!
(rxr−1 − nxr)~ν(x)dx

=
~ν(1/n)e−1

r!
+

∫ ∞
1

e−z
(

zr−1

(r − 1)!
− zr

r!

)
~ν(z/n)dz .

As
∫∞

1
e−z

(
zr−1

(r−1)! −
zr

r!

)
dz = −P[P(1) = r] = −e−1/r!, we can rearrange

the previous expression:

Ir2 = a(n)

∫ ∞
1

e−z
(

zr−1

(r − 1)!
− zr

r!

)
~ν(z/n)− ~ν(1/n)

a(n)
dz .

Notice that when z ∈ [1, r], the integrand is negative, so we simply ignore
this part of the integral and restrict ourselves to

Ir3 :=

∫ ∞
r

e−z
(
zr

r!
− zr−1

(r − 1)!

)
~ν(1/n)− ~ν(z/n)

a(n)
dz ,

which we try to bound by a constant term for n greater than some integer that
does not depend on r.
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The main ingredient of our proof is the next version of the Potter-Drees
Inequality (see Theorem 7.3 in Section 7.1.3 and [de Haan and Ferreira, 2006,
point 4 of Corollary B.2.15]): for ` ∈ Πa, for arbitrary δ1, δ2, there exists t0 such
that for all t ≥ t0, and for all x ≤ 1 with tx ≥ t0,

(1− δ2)
1− x−δ1

δ1
− δ2 <

`(t)− `(tx)

a(t)
< (1 + δ2)

x−δ1 − 1

δ1
+ δ2 .

Thus, for arbitrary δ1, δ2, there exists n1 such that, for all n ≥ n1, for all
z ∈ [1, n/n1],

~ν(1/n)− ~ν(z/n)

a(n)
≤ (1 + δ2)

zδ1 − 1

δ1
+ δ2 .

As r ≤ n/a(n), taking, if necessary, n large enough so that a(n) ≥ n1, we
have r ≤ n/n1 and

Ir3 ≤
∫ n/n1

r

e−z
(
zr

r!
− zr−1

(r − 1)!

)(
(1 + δ2)

zδ1 − 1

δ1
+ δ2

)
dz

+

∫ ∞
n/n1

e−z
(
zr

r!
− zr−1

(r − 1)!

)
~ν(1/n)− ~ν(z/n)

a(n)
dz

=: Ir4 + Ir5 ,

with

Ir4 ≤ δ2 +
1 + δ2
δ1

∫ ∞
r

e−z
(
zr+δ1

r!
− zr

r!
+

zr−1

(r − 1)!
− zr−1+δ1

(r − 1)!

)
dz

≤ δ2 +
1 + δ2
δ1

∫ ∞
r

e−z
(
zr+δ1

r!
− zr−1+δ1

(r − 1)!

)
dz

= δ2 +
1 + δ2
δ1

(
Γ(r + 1 + δ1, r)

Γ(r + 1)
− Γ(r + δ1, r)

Γ(r)

)
,

where Γ(a, x) =
∫∞
x

e−tta−1dt is the incomplete Gamma function. Using the
fact that Γ(a, x) = (a− 1)Γ(a− 1, x) + xa−1e−x, we have

Ir4 ≤ δ2 +
1 + δ2

δ1Γ(r + 1)

(
Γ(r + 1 + δ1, r)− (r + δ1)Γ(r + δ1, r) + δ1Γ(r + δ1, r)

)
= δ2 +

1 + δ2
δ1

(
rr+δ1e−r

r!
+ δ1

Γ(r + δ1, r)

Γ(r + 1)

)
.

By Stirling’s inequality, for all r,

rr+δ1e−r

r!
≤ rδ1(2πr)−1/2 .

Thus, taking s δ1 = 1/4, the right-hand term is uniformly bounded by 1. And
Γ(r+δ1,r)

Γ(r+1) is also bounded by 1. Thus

Ir4 ≤ δ2 +
1 + δ2
δ1

(1 + δ1) ,
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and

Ir5 ≤ ~ν(1/n)

a(n)

∫ ∞
n/n1

e−z
(
zr

r!
− zr−1

(r − 1)!

)
dz

=
~ν(1/n)

a(n)
e−n/n1

(n/n1)r

r!

≤ ~ν(1/n)

a(n)
e−n/n1

(n/n1)bn/n1c

bn/n1c!
.

By Stirling’s inequality, this bound is smaller than ~ν(1/n)
a(n) (2π(n/n1))−1/2, which

tends to 0 as n → ∞. Thus there exists n2 such that for all n ≥ n2, and all
r ≤ n/n1, Ir5 ≤ δ2.

In the end, we get that for all δ0 ≥ 0, δ1 with 0 ≤ δ1 ≤ 1/4, and δ2 ≥ 0, there
exists n∗ = max(n0, n1, n2) such that for all n ≥ n∗, for all r ≥ 1,

EKr(n) ≤ a(n)

(
1 + δ0

2
+ δ2 +

1 + δ2
δ1

(1 + δ1) + δ2

)
.

Taking for instance δ1 = 1/4 and δ0 = δ2 = 1/15, we have that for large
enough n and for all r ≥ 1,

EKr(n) ≤ 6a(n) ,

and

logE
[
eλ(Mn,0−EMn,0)

]
≤ 12a(n)

n2
· λ2

2(1− λ/n)
.

Proof of Proposition 4.8. Under the condition of the Proposition 4.8, from [Grübel
and Hitczenko, 2009], with probability tending to 1, the sample is gap-free, hence
the missing mass is F (max(X1, . . . , Xn)).

The condition of the Proposition implies the condition described in [Ander-

son, 1970], i.e. limn→+∞
F (n+1)

F (n)
= 0, to ensure the existence of a sequence of

integers (un)n∈N such that

lim
n→∞

P {max(X1, . . . , Xn) ∈ {un, un + 1}} = 1 .

7.5. Applications

Proof of Corollary 5.3. Let us assume that EKn,1 → ∞. Using the fact that
0 ≤ EGn,0 − EMn,0 ≤ 1/n, we notice that as soon as EKn,1 → ∞, EGn,0 ∼

+∞
EMn,0. Now by Chebyshev Inequality,

P
[∣∣∣∣ Mn,0

EMn,0
− 1

∣∣∣∣ > ε

]
≤ Var(Mn,0)

ε2(EMn,0)2
≤ 2EK2(n)

ε2n2(EMn,0)2

∼ 2(EKn,2 + o(1))

ε2(EKn,1)2
,
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where we used that |EK2(n) − EKn,2| → 0 [see Lemma 1 Gnedin et al., 2007].
On the other hand,

P
[∣∣∣∣ Kn,1

EKn,1
− 1

∣∣∣∣ > ε

]
≤ Var(Kn,1)

ε2(EKn,1)2
≤ EKn,1 + 2EKn,2

ε2(EKn,1)2
,

showing that if, furthermore, EKn,2/EKn,1 remains bounded, the ratiosMn,0/EMn,0,
Gn,0/EGn,0 and thus Mn,0/Gn,0 converge to 1 in probability. To get almost sure
convergence, we use Theorem 3.8 to get that when EKn,1 →∞,

P
[∣∣∣∣ Mn,0

EMn,0
− 1

∣∣∣∣ > ε

]
≤ 2 exp

(
− ε2(EMn,0)2

2(2EK2(n)/n2 + EMn,0/n)

)
= 2 exp

(
− ε2(EKn,1 + o(EKn,1))2

2(2EKn,2 + EKn,1 + o(EKn,1))

)
.

If EKn,2/EKn,1 remains bounded, this becomes smaller than c1 exp
(
−c2ε2EKn,1

)
.

Hence, if exp(−cEKn,1) is summable for all c > 0, we can apply the Borel-
Cantelli lemma and obtain the almost sure convergence of Mn,0/EMn,0 to 1.
Moreover, by Proposition 3.5,

P
[∣∣∣∣ Kn,1

EKn,1
− 1

∣∣∣∣ > ε

]
≤ 4 exp

(
− ε2(EKn,1)2

2(4(EKn,1 ∨ 2EKn,2) + 2/3)

)
,

which shows that under these assumptions Kn,1/EKn,1 also tends to 1 almost
surely.

Proof of Proposition 5.4. The random variable G0(t)−M0(t) is a sum of inde-
pendent, centered and bounded random variables, namely

G0(t)−M0(t) =
1

t

∞∑
j=1

IXj(t)=1 − tpjIXj(t)=0 .

Bound (i) follows immediately from the observation that each IXj(t)=1 −
tpjIXj(t)=0 satisfies a Bennett inequality,

logEeλ(G0(t)−M0(t)) ≤
∞∑
j=1

Var(IXj(t)=1 − tpjIXj(t)=0)φ

(
λ

t

)

= Var(G0(t)−M0(t))t2φ

(
λ

t

)
.

Bound (ii) follows from the observation that each IXj(t)=0 − 1
tpj

IXj(t)=1 sat-
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isfies a Bennett inequality,

logEeλ(M0(t)−G0(t)) ≤
∞∑
j=1

Var

(
IXj(t)=0 −

1

tpj
IXj(t)=1

)
φ (λpj)

=

∞∑
j=1

(
1 +

1

tpj

)
e−tpjφ(λpj)

=
∑
r≥2

(
λ

t

)r ∞∑
j=1

(
1 +

1

tpj

)
e−tpj

(tpj)
r

r!

=
∑
r≥2

(
λ

t

)r (
EKr(t) +

1

r
EKr−1(t)

)

≤
∑
r≥2

(
λ

t

)r
3EK(t)

2
,

which concludes the proof.

Proof of Proposition 5.5. With probability greater than 1− 2δ, by Proposition
5.4,

G0(t)−M0(t) ≤ 1

t

√
2(EK1(t) + 2EK2(t)) log

1

δ
+

log 1
δ

3t

and

G0(t)−M0(t)) ≥ −1

t

√
6EK(t) log

1

δ
−

log 1
δ

t
.

We may now invoke concentration inequalities for K1(t) + 2K2(t) and K(t).

Indeed, with probability greater than 1 − δ, K(t) ≥ EK(t) −
√

2EK(t) log 1
δ

which entails
√
EK(t) ≤

√
K(t) +

log 1
δ

2 +

√
log 1

δ

2 .

We have 2K2(t) +K1(t) ≥ 2EK2(t) +EK1(t)−
√

4(2EK2(t) + EK1(t)) log 1
δ

with probability greater than 1− δ, which entails

√
2EK2(t) + EK1(t) ≤

√
(2K2(t) +K1(t)) + log

1

δ
+

√
log

1

δ
,

which concludes the proof.

Proof of Proposition 5.6. The covariance matrix Cov(t) of (G0(t),M0(t)) can
be written in terms of the expected occupancy counts as

Cov(t) =
1

t2

(
EK1(t) 0

0 2EK2(t)

)
− EK2(2t)

2t2

(
1 1
1 1

)
.

From [Karlin, 1967], we have

Cov(t)−1/2

(
G0(t)− EG0(t)
M0(t)− EM0(t)

)
 N (0, I2) ,
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where I2 is the identity matrix, which can be rewritten as

Σ(t)−1/2

(
G0(t)
EG0(t) − 1
MO(t)
EM0(t) − 1

)
 N (0, I2) ,

with Σ(t) = (EG0(t))−2Cov(t).
The delta method applied to the function (x1, x2) 7→ x1/x2 yields(

(1− 1)Σ(t)

(
1
−1

))−1/2(
G0(t)

M0(t)
− 1

)
 N (0, 1) ,

and (
(1− 1)Σ(t)

(
1
−1

))−1/2

=
EK1(t)√

EK1(t) + 2EK2(t)
,

which concludes the proof.

Remark 7.1. The proof for the binomial setting is very similar, the only difficulty
being that EGn,0 and EMn,0 are no longer equal. However, the bias becomes

negligible with respect to the fluctuations, that is, for vn =
√
nα`(n) or

√
n`1(n)

vn

(
EGn,0
EMn,0

− 1

)
→

n→∞
0 . �
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