
HAL Id: hal-01101657
https://hal.science/hal-01101657v1

Submitted on 9 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Update Consistency for Wait-free Concurrent Objects
Matthieu Perrin, Achour Mostefaoui, Claude Jard

To cite this version:
Matthieu Perrin, Achour Mostefaoui, Claude Jard. Update Consistency for Wait-free Concurrent
Objects. IPDPS - IEEE International Parallel & Distributed Processing Symposium, May 2015,
Hyderabad, India. �hal-01101657�

https://hal.science/hal-01101657v1
https://hal.archives-ouvertes.fr

Update Consistency for Wait-free Concurrent Objects

Matthieu Perrin, Achour Mostefaoui, and Claude Jard

LINA – University of Nantes, Nantes, France

Email: [firstname.lastname]@univ-nantes.fr

Abstract—In large scale systems such as the Internet,
replicating data is an essential feature in order to provide
availability and fault-tolerance. Attiya and Welch proved
that using strong consistency criteria such as atomicity is
costly as each operation may need an execution time linear
with the latency of the communication network. Weaker
consistency criteria like causal consistency and PRAM con-
sistency do not ensure convergence. The different replicas
are not guaranteed to converge towards a unique state.
Eventual consistency guarantees that all replicas eventually
converge when the participants stop updating. However, it
fails to fully specify the semantics of the operations on
shared objects and requires additional non-intuitive and
error-prone distributed specification techniques.

This paper introduces and formalizes a new consis-
tency criterion, called update consistency, that requires
the state of a replicated object to be consistent with a
linearization of all the updates. In other words, whereas
atomicity imposes a linearization of all of the operations,
this criterion imposes this only on updates. Consequently
some read operations may return out-dated values. Update
consistency is stronger than eventual consistency, so we
can replace eventually consistent objects with update con-
sistent ones in any program. Finally, we prove that update
consistency is universal, in the sense that any object can be
implemented under this criterion in a distributed system
where any number of nodes may crash.

Keywords-Abstract Data Types; Consistency Criteria;
Eventual Consistency; Replicated Object; Sequential Con-
sistency; Shared Set; Update Consistency;

I. INTRODUCTION

Reliability of large scale systems is a big challenge
when building massive distributed applications over
the Internet. At this scale, data replication is essential
to ensure availability and fault-tolerance. In a perfect
world, distributed objects should behave as if there is
a unique physical shared object that evolves following
the atomic operations issued by the participants1. This
is the aim of strong consistency criteria such as lin-
earizability and sequential consistency. These criteria
serialize all the operations so that they look as if they
happened sequentially, but they are costly to imple-
ment in message-passing systems. If one considers a
distributed implementation of a shared register, the

1We use indifferently participant or process to designate the
computing entities that invoke the distributed object.

worst-case response time must be proportional to the
latency of the network either for the reads or for the
writes to be sequentially consistent [1] and for all
the operations for linearizability [2]. This generalizes
to many objects [2]. Moreover, the availability of the
shared object cannot be ensured in asynchronous sys-
tems where more than a minority of the processes of
a system may crash [3]. In large modern distributed
systems such as Amazon’s cloud, partitions do occur
between data centers, as well as inside data centers
[4]. Moreover, it is economically unacceptable to sac-
rifice availability. The only solution is then to provide
weaker consistency criteria. Several weak consistency
criteria have been considered for modeling shared
memory such as PRAM [1] or causality [5]. They expect
the local histories observed by each process to be
plausible, regardless of the other processes. However,
these criteria do not impose that the data eventually
converges to a consistent state. Eventual consistency [4]
is another weak consistency criterion which requires
that when all the processes stop updating then all
replicas eventually converge to the same state.

This paper follows the long quest of the (a) strongest
consistency criterion (there may exist several incom-
parable criteria) implementable for different types of
objects in an asynchronous system where all but one
process may crash (wait-free systems [6]). A contribu-
tion of this paper consists in proving that weak consis-
tency criteria such as eventual consistency and causal
consistency cannot be combined is such systems. This
paper chooses to explore the enforcement of eventual
consistency. The relevance of eventual consistency has
been illustrated many times. It is used in practice
in many large scale applications such as Amazon’s
Dynamo highly available key-value store [7]. It has
been widely studied and many algorithms have been
proposed to implement eventually consistent shared
object. Conflict-free replicated data types (CRDT) [8]
give sufficient conditions on the specification of objects
so that they can be implemented. More specifically, if
all the updates made on the object commute or if the
reachable states of the object form a semi-lattice then
the object has an eventually consistent implementation
[8]. Unfortunately, many useful objects are not CRDTs.

The limitations of eventual consistency led to the
study of stronger criteria such as strong eventual con-
sistency [9]. Indeed, eventual consistency requires the
convergence towards a common state without specifying
which states are legal. In order to prove the correctness
of a program, it is necessary to fully specify which
behaviors are accepted for an object. The meaning of
an operation often depends on the context in which it
is executed. The notion of intention is widely used to
specify collaborative editing [10], [11]. The intention of
an operation not only depends on the operation and
the state on which it is done, but also on the intentions
of the concurrent operations. In another solution [12],
it is claimed that, it is sufficient to specify what the
concurrent execution of all pairs of non-commutative
operations should give (e.g. an error state). This result,
acceptable for the shared set, cannot be extended to
other more complicated objects. In this case, any partial
order of updates can lead to a different result. This
approach was formalized in [13], where the concurrent
specification of an object is defined as a function
of partially ordered sets of updates to a consistent
state leading to specifications as complicated as the
implementations themselves. Moreover, a concurrent
specification of an object uses the notion of concurrent
events. In message-passing systems, two events are
concurrent if they are produced by different processes
and each process produced its event before it received
the notification message from the other process. In
other words, the notion of concurrency depends on
the implementation of an object not on its specifica-
tion. Consequently, the final user may not know if
two events are concurrent without explicitly tracking
the underlying messages. A specification should be
independent of the system on which it is implemented.

Contributions of the paper: for not restricting this
work to a given data structure, this paper first de-
fines a class of data types called UQ-ADT for update-
query abstract data type. This class encompasses all data
structures where an operation either modifies the state
of the object (update) or returns a function on the
current state of the object (query). This class excludes
data types such as a stack where the pop operation
removes the top of the stack and returns it (update
and query at the same time). However, such operations
can always be separated into a query and an update
(lookup top and delete top in the case of the stack)
which is not a problem as, in weak consistency models,
it is impossible to ensure atomicity anyway. This paper
has three main contributions.

• It proves that in a wait-free asynchronous system,
it is not possible to implement eventual and causal
consistency for all UQ-ADTs.

• It introduces update consistency, a new consistency
criterion stronger than eventual consistency and
for which the converging state must be consistent
with a linearization of the updates.

• Finally, it proves that for any UQ-ADT object with
a sequential specification there exists an update
consistent implementation by providing a generic
construction.

The remainder of this paper is organized as follows.
Section II formalizes the notion of consistency crite-
ria and the type of objects we target in this paper.
Section III recalls the definition of (strong) eventual
consistency. Section IV proves that eventual consis-
tency cannot be combined with causal consistency in
wait-free systems. Section V introduces (strong) update
consistency and compares it with (strong) eventual
consistency. Section VI compares, through the exam-
ple of the set, the expressiveness of strong update
consistency and strong eventual consistency. Section
VII presents a generic construction for any UQ-ADT
object with a sequential specification. Finally, Section
VIII concludes the paper.

II. ABSTRACT DATA TYPES AND CONSISTENCY

CRITERIA

Before introducing the new consistency criterion,
this section formalizes the notion of object and how a
consistency criterion is defined. In distributed systems,
sharing objects is a way to abstract message-passing
communication between processes. The abstract type
of these objects has a sequential specification, defined
in this paper by a transition system that character-
izes the sequential histories allowed for this object.
However, shared objects are implemented in a dis-
tributed system using replication and the events of
the distributed history generated by the execution of a
distributed program is a partial order [14]. The consis-
tency criterion makes the link between the sequential
specification of an object and a distributed execution
that invokes it. This is done by characterizing the
partially ordered histories of the distributed program
that are acceptable. The formalization used in this
paper is explained with more details in [15].

An abstract data type is specified using a transition
system very close to Mealy machines [16] except that
infinite transition systems are allowed as many objects
have an unbounded specification. As stated in the
Introduction, this paper focuses on ”update-query”
objects. On the one hand, the updates have a side-
effect that usually affects the state of the object (hence
all processes), but return no value. They correspond
to transitions between abstract states in the transition
system. On the other hand, the queries are read-only
operations. They produce an output that depends on

the state of the object. Consequently, the input alphabet
of the transition system is separated into two classes
of operations (updates and queries).

Definition 1 (Update-query abstract data type). An
update-query abstract data type (UQ-ADT) is a tuple
O = (U,Qi, Qo, S, s0, T,G) such that:

• U is a countable set of update operations;
• Qi and Qo are countable sets called input and

output alphabets; Q = Qi × Qo is the set of
query operations. A query operation (qi, qo) ∈ Q
is denoted qi/qo (query qi returns value qo).

• S is a countable set of states;
• s0 ∈ S is the initial state;
• T : S × U → S is the transition function;
• G : S ×Qi → Qo is the output function.

A sequential history is a sequence of operations. An
infinite sequence of operations (wi)i∈N ∈ (U ∪ Q)ω is
recognized by O if there exists an infinite sequence of
states (si)i≥1 ∈ Sω (note that s0 is the initial state)
such that for all i ∈ N, T (si, wi) = si+1 if wi ∈ U or
si = si+1 and G(si, qi) = qo if wi = qi/qo ∈ Q. The set of
all infinite sequences recognized by O and their finite
prefixes is denoted by L(O). Said differently, L(O) is
the set of all the sequential histories allowed for O.

Along the paper, replicated sets are used as the key
example. Three kinds of operations are possible: two
update operation by element, namely insertion (I) and
deletion (D) and a query operation read (R) that returns
the values that belong to the set. Let Val be the support
of the replicated set (it contains the values that can be
inserted/deleted). At the beginning, the set is empty
and when an element is inserted, it becomes present
until it is deleted. More formally, it corresponds to the
UQ-ADT given in Example 1.

Example 1 (Specification of the set). Let Val be a
countable set, called support. The set object SVal is the
UQ-ADT (U,Qi, Qo, S, ∅, T,G) with:

• U = {I(v),D(v) : v ∈ Val};
• Qi = {R}, and Qo = S = P<∞(Val) contain all the

finite subsets of Val ;
• for all s ∈ S and v ∈ Val , G(s,R) = s,

T (s, I(v)) = s ∪ {v} and T (s,D(v)) = s \ {v}.

The set U of updates is the set of all insertions and
deletions of any value of Val . The set of queries Qi

contains a unique operation R, a read operation with
no parameter. A read operation may return any value
in Qo, the set of all finite subsets of Val . The set S of
the possible states is the same as the set of possible
returned values Qo as the read query returns the
content of the set object. I(v) (resp. D(v)) with v ∈ Val

denotes an insertion (resp. a deletion) operation of the

value v into the set object. R/s denotes a read operation
that returns the set s representing the content of the set.

During an execution, the participants invoke an
object instance of an abstract data type using the asso-
ciated operations (queries and updates). This execution
produces a set of partially ordered events labelled by
the operations of the abstract data type. This repre-
sentation of a distributed history is generic enough
to model a large number of distributed systems. For
example, in the case of communicating sequential pro-
cesses, an event a precedes an event b in the program
order if they are executed by the same process in that
sequential order. It is also possible to model more
complex modern systems in which new threads are
created and destroyed dynamically, or peer-to-peer
systems where peers may join and leave.

Definition 2 (Distributed History). A distributed his-
tory is a tuple H = (U,Q,E,Λ, 7→):

• U and Q are disjoint countable sets of update and
query operations, and all queries q ∈ Q are in the
form q = qi/qo;

• E is a countable set of events;
• Λ : E → U ∪Q is a labelling function;
• 7→⊂ E × E is a partial order called program order,

such that for all e ∈ E, {e′ ∈ E : e′ 7→ e} is finite.

Let H = (U,Q,E,Λ, 7→) be a history. The sets UH =
{e ∈ E : Λ(e) ∈ U} and QH = {e ∈ E : Λ(e) ∈ Q}
denote its sets of update and query events respectively.
We also define some projections on the histories. The
first one allows to withdraw some events: for F ⊂ E,
HF = (U,Q, F,Λ|F , 7→ ∩(F × F)) is the history that
contains only the events of F . The second one allows
to substitute the order relation: if → is a partial order
that respects the definition of a program order (7→),
H→ = (U,Q,E,Λ,→ ∩(E×E)) is the history in which
the events are ordered by →. Note that the projections
commute, which allows the notation H→

F .

Definition 3 (Linearizations). Let H = (U,Q,E,Λ, 7→)
be a distributed history. A linearization of H corre-
sponds to a sequential history that contains the same
events as H in an order consistent with the program
order. More precisely, it is a word Λ(e0) . . .Λ(en) . . .
such that {e0, . . . , en, . . .} = E and for all i and j, if
i < j, ej 67→ ei. We denote by lin(H) the set of all
linearizations of H .

Definition 4 (Consistency criterion). A consistency
criterion C characterizes which histories are allowed
for a given data type. It is a function C that associates
with any UQ-ADT O, a set of distributed histories
C(O). A shared object (instance of an UQ-ADT O) is
C-consistent if all the histories it allows are in C(O).

III. EVENTUAL CONSISTENCY

In this section, we recall the definitions of eventual
consistency [4] and strong eventual consistency [9].
Fig. 1 illustrates these two consistency criteria on small
examples. In the remaining of this article, we consider
an UQ-ADT O = (U,Qi, Qo, S, s0, T,G) and a history
H = (U,Q,E,Λ, 7→).

Eventual consistency: eventual consistency requires
that, if all the participants stop updating, all the repli-
cas eventually converge to the same state. In other
word, H is eventually consistent if it contains an infi-
nite number of updates (i.e. the participants never stop
writing) or if there exists a state (the consistent state)
compatible with all but a finite number of queries.

Definition 5 (Eventual consistency). A history H is
eventually consistent (EC) if UH is infinite or there
exists a state s ∈ S such that the set of queries
that return non consistent values while in the state s,
{qi/qo ∈ QH : G(s, qi) 6= qo}, is finite.

All the histories presented in Fig. 1 are eventu-
ally consistent. The executions represent two processes
sharing a set of integers. In Fig. 1a, the first process
inserts value 1 and then reads twice the set and gets
respectively {2} and {1}; afterwards, it executes an
infinity of read operations that return the empty set
(ω in superscript denotes the operation is executed an
infinity of times). In the meantime, the second process
inserts a 2 then reads the set an infinity of times. It gets
respectively {1} and {2} the two first times, and empty
set an infinity of times. Both processes converge to the
same state (∅), so the history is eventually consistent.
However, before converging, the processes can read
anything a finite but unbounded number of times.

Strong eventual consistency: strong eventual consis-
tency requires that two replicas of the same object con-
verge as soon as they have received the same updates.
The problem with that definition is that the notions
of replica and message reception are inherent to the
implementation, and are hidden from the programmer
that uses the object, so they should not be used in
its specification. A visibility relation is introduced to
model the notion of message delivery. This relation is
not an order since it is not required to be transitive.

Definition 6 (Strong eventual consistency). A history
H is strong eventually consistent (SEC) if there exists

an acyclic and reflexive relation
vis
−−→ (called visibility

relation) that contains 7→ and such that:

• Eventual delivery: when an update is viewed by
a replica, it is eventually viewed by all replicas, so
there can be at most a finite number of operations
that do not view it:
∀u ∈ UH , {e ∈ E, u 6

vis
−−→ e} is finite;

• Growth: if an event has been viewed once by a
process, it will remain visible forever:

∀e, e′, e′′ ∈ E, (e
vis
−−→ e′ ∧ e′ 7→ e′′)⇒ (e

vis
−−→ e′′);

• Strong convergence: if two query operations view
the same past of updates V , they can be issued in
the same state s: ∀V ⊂ UH , ∃s ∈ S, ∀qi/qo ∈ QH ,

V = {u ∈ UH : u
vis
−−→ qi/qo} ⇒ G(s, qi) = qo.

The history of Fig. 1a is not strong eventually con-
sistent because the I(1) must be visible by all the
queries of the first process (by reflexivity and growth),
so there are only two possible sets of visible updates
({I(1)} and{I(1), I(2)}) for these events, but the queries
are done in three different states ({1}, {2} and ∅);
consequently, at least two of these queries see the same
set of updates and thus need to return the same value.
Fig. 1c, on the contrary, is strong eventually consistent:
the replicas that see {I(1)} are in state ∅ and those that
see {I(1), I(2)} are in state {1, 2}.

IV. PIPELINED CONVERGENCE

A straightforward way to strengthen eventual con-
sistency is to compose it with another consistency
criterion that imposes restrictions on the values that
can be returned by a read operation. Causality is often
cited as a possible candidate to play this role [10]. As
causal consistency is well formalized only for memory,
we will instead consider Pipelined Random Access
Memory (PRAM) [1], a weaker consistency criterion.
As the name suggests, PRAM was initially defined for
memory. However, it can be easily extended to all UQ-
ADTs. Let’s call this new consistency criterion pipelined
consistency (PC). In a pipelined consistent computation,
each process must have a consistent view of its local
history with all the updates of the computation. More
formally, it corresponds to Def. 7. Pipelined consistency
is local to each process, as different processes can see
concurrent updates in a different order.

Definition 7. A history H is pipelined consistent (PC)
if, for all maximal chains (i.e. sets of totally ordered
events) p of H , lin (HUH∪p) ∩ L(O) 6= ∅.

Pipelined consistency can be implemented at a very
low cost in wait-free systems. Indeed, it only requires
FIFO reception. However, it does not imply conver-
gence. For example, the history given in Figure 2 is
pipelined consistent but not eventually consistent. In
this history, two processes p1 and p2 share a set of
integers. Process p1 first inserts 1 and then 3 in the set
and then reads the set forever. Meanwhile, process p2
inserts 2, deletes 3 and reads the set forever. The words
w1 and w2 are correct linearizations for both processes,
with regard to Definition 7 so the history is pipelined
consistent, but after stabilization, p2 sees the element
3 whereas p1 does not.

•
I(1)

•
R/{2}

•
R/{1}

•
R/∅ω

•
I(2)

•
R/{1}

•
R/{2}

•
R/∅ω

(a) EC but not SEC nor UC

•
I(1)

•
D(2)

•
R/{1, 2}ω

•
I(2)

•
D(1)

•
R/{1, 2}ω

(b) SEC but not UC

•
I(1)

•
R/∅

•
R/{1, 2}ω

•
I(2)

•
R/{1, 2}ω

(c) SEC and UC but not SUC

•
I(1)

•
R/{1}

•
I(2)

•
R/{1, 2}ω

•
R/{2}

•
R/{1, 2}ω

(d) SUC but not PC

Figure 1: Four histories for an instance of SN (cf. example 1), with different consistency criteria. The arrows
represent the program order, and an event labeled ω is repeated an infinite number of times.

•a
I(1)

•b
I(3)

•c
R/{1, 3}

•d
R/{1, 2, 3}

•e
R/{1, 2}ω

•f
I(2)

•g
D(3)

•h
R/{2}

•i
R/{1, 2}

•j
R/{1, 2, 3}ω

w1 = I(1)·I(3)·R/{1, 3}·I(2)·R/{1, 2, 3}·D(3)·R/{1, 2}ω

w2 = I(2) ·D(3) ·R/{2} · I(1) ·R/{1, 2} · I(3) ·R/{1, 2, 3}ω

Figure 2: PC but not EC

Proposition 1 (Implementation). Pipelined convergence,
that imposes both pipelined consistency and eventual con-
sistency, cannot be implemented in a wait-free system.

Proof: We consider the same program as in Figure
2, and we suppose the shared set is pipelined conver-
gent. By the same argument as developed in [2], it is
not possible to prevent the processes from not seeing
each other’s first update at their first reads. Indeed,
if p1 did not receive any message from process p2, it
is impossible for p1 to make the difference between
the case where p2 crashed before sending any message
and the case where all its messages were delayed. To
achieve availability, p1 must compute the return value
based solely on its local knowledge, so it returns {1, 3}.
Similarly, p2 returns {2}. To circumvent this impossi-
bility, it is necessary to make synchrony assumption
on the system (e.g. bounds on transmission delays) or
to assume the correctness of a majority of processes.

If the first read of p1 returns {1, 3}, as the set is
pipelined consistent, there must exist a linearization
for p1 that contains all the updates, R/{1, 3} and
an infinity of queries. As 2 6∈ {1, 3}, the possible
linearizations are defined by the ω-regular language
I(1)·I(3)·R/{1, 3}+ ·I(2)·R/{1, 2, 3}⋆ ·D(3)·R/{1, 2}ω, so
any history must contain an infinity of events labelled
R/{1, 2}ω. Similarly, if p2 starts by reading {2}, it
will eventually read {1, 2, 3} an infinity of times. This
implies that pipelined convergence cannot be provided
in wait-free systems.

Consequently causal consistency, that is stronger
than pipelined consistency, cannot be satisfied together
with eventual consistency in a wait-free system.

V. UPDATE CONSISTENCY

In this section, we introduce two new consistency
criteria: update consistency and strong update consis-
tency2, and we compare them to eventual consistency
and strong eventual consistency. Fig. 1 illustrates these
four consistency criteria on four small examples.

Update consistency: eventual consistency and
strong eventual consistency are not interested in defin-
ing the states that are reached during the histories (the
same updates have to lead to the same state whatever
is the state). They do not depend on the sequential
specification of the object, so they give very little
constraints on the histories. For example, an implemen-
tation that ignores all the updates is strong eventually
consistent, as all the queries return the initial state.
In update consistency, we impose the existence of a
total order on the updates, that contains the program
order and that leads to the consistent state according
to the abstract data type. Another equivalent way to
approach update consistency is that, if the number
of updates is finite, it is possible to remove a finite
number of queries such that the history is sequentially
consistent.

Definition 8 (Update consistency). A history H is
update consistent (UC) if UH is infinite or if there
exists a finite set of queries Q′ ⊂ QH such that
lin

(

HE\Q′

)

∩ L(O) 6= ∅.

The history of Fig. 1c is update consistent because
the sequence of operations I(1)I(2) is a possible ex-
planation for the state {1, 2}. The history of Fig. 1b is
not update consistent because any linearization of the
updates would position a deletion as the last event.
Only three consistent states are actually possible: state
∅, e.g. for the linearization I(1) · I(2) ·D(1) ·D(2), state
{1} for the linearization I(2) ·D(1) · I(1) ·D(2) and state
{2} for the linearization I(1) ·D(2) · I(2) ·D(1). Update
consistency is incomparable with strong eventual con-
sistency.

2These consistency criteria were previously presented as a brief
announcement in DISC 2014 [17].

Strong update consistency: strong update consis-
tency is a strengthening of both update consistency and
strong eventual consistency. The relationship between
update consistency and strong update consistency is
analogous to the relation between eventual consistency
and strong eventual consistency.

Definition 9 (Strong update consistency). A history H
is strong update consistent (SUC) if there exists (1) an

acyclic and reflexive relation
vis
−−→ that contains 7→ and

(2) a total order ≤ that contains
vis
−−→ such that:

• Eventual delivery:

∀u ∈ UH , {e ∈ E, u 6
vis
−−→ e} is finite;

• Growth:
∀e, e′, e′′ ∈ E,

(

e
vis
−−→ e′ ∧ e′ 7→ e′′

)

⇒
(

e
vis
−−→ e′′

)

;

• Strong sequential convergence: A query views an

update if this update precedes it according to
vis
−−→.

Each query is the result of the ordered execution,
according to ≤, of the updates it views:

∀q ∈ QH , lin
(

H≤
V (q)∪{q}

)

∩ L(O) 6= ∅

where V (q) = {u ∈ UH : u
vis
−−→ q}.

Fig. 1d shows an example of strong update con-
sistent history: nothing prevents the second process
from seeing the insertion of 2 before that of 1. Strong
eventual consistency and update consistency does not
imply strong update consistency: in the history of Fig.
1c, after executing event I(1), the only three possible
update linearizations are I(1), I(1) · I(2) and I(2) · I(1)
and none of them can lead to the state ∅ according
to the sequential specification of a set object. So the
history of Fig. 1c is not strong update consistent, while
it is update consistent and strong eventually consistent.

Proposition 2 (Comparison of consistency criteria). If
a history H is update consistent, then it is eventually
consistent. If H is strong update consistent, then it is both
strong eventually consistent and update consistent.

Proof: Suppose H is update consistent. If H con-
tains an infinite number of updates, then it is even-
tually consistent. Otherwise, there exists a finite set
Q′ ⊂ QH and a word w ∈ lin

(

HEH\Q′

)

∩ L(O). As
the number of updates is finite, there is a finite prefix
v of w that contains them all. v ∈ L(O), so it labels
a path between s0 and a state s in the UQ-ADT. All
the queries that are in w but not in v return the same
state s, and the number of queries in Q′ and v is finite.
Hence, H is eventually consistent.

Suppose H is strong update consis-
tent with a finite number of updates.
Q′ =

⋃

u∈UH
{q ∈ QH , q ≤ u} is finite, and lin (EH \Q

′)
contains only one word that is also contained into
L(O). Obviously, H is update consistent

Now, suppose H is strong update consistent. Strong
update consistency respects both eventual delivery
and growth properties. Let V ⊂ UH . As the rela-
tion ≤ is a total order, there is a unique word w in

lin
(

H≤
V

)

∩ L(O). Let us denote s the state obtained

after the execution of w. For all q ∈ QH such that V =

{u ∈ UH : u
vis
−−→ q}, lin

(

H≤
Eq∪{q}

)

∩L(O) = {w ·Λ(q)},

so q = qi/qo with G(s, qi) = qo. Consequently, H is
strong eventually consistent.

VI. EXPRESSIVENESS OF UPDATE CONSISTENCY: A

CASE STUDY

The set is one of the most studied eventually con-
sistent data structures. Different types of sets have
been proposed as extensions to CRDTs to implement
eventually consistent sets even though the insert and
delete operations do not commute. The simplest set
is the Grow-Only Set (G-Set) [9], in which it is only
possible to insert elements. As the insertion of two
elements commute, G-Set is a CRDT. Using two G-Set,
a white list for inserted elements and a black list for
the deleted ones, it is possible to build a Two-Phases
Set (2P-Set, a.k.a. U-Set, for Unique Set) [18], in which
it is possible to insert and remove elements, but never
insert again an element that has already been deleted.
Other implementations such as C-Set [19] and PN-Set,
add counters on the elements to determine if they
should be present or not. The Observe-Remove Set
(OR-Set) [9], [20] is the best documented algorithm for
the set. It is very close to the 2P-Set in its principles, but
each insertion is timestamped with a unique identifier,
and the deletion only black-lists the identifiers that
it observes. It guaranties that, if an insertion and
a deletion of the same element are concurrent, the
insertion will win and the element will be added
to the set. Finally, the last-writer-wins element set
(LWW-element-Set) [9] attaches a timestamp to each
element to decide which operation should win in case
of conflict. All these sets, and the eventually consistent
objects in general, have a different behavior when they
are used in distributed programs.

The above mentioned implementations are even-
tually consistent. However, as eventual consistency
does not impose a semantic link between updates and
queries, it is hazardous to say anything on the confor-
mance to the specification of the object. Burckhardt et
al. [13] propose to specify the semantics of a query by a
function on its concurrent history, called visibility, that
corresponds to the visibility relation in strong eventual
consistency, and a linearization of this history, called
arbitration. In comparison, sequential specifications are
restricted to the arbitration relation. It implies that

fewer update consistent objects than eventually consis-
tent objects can be specified. Although the variety of
objects with a distributed specification seems to be a
chance that compensates the lower level of abstraction
it allows, an important bias must be taken into account:
from the point of view of the user, the visibility of an
operation is not an a priori property of the system, but
an a posteriori way to explain what happened. If one
only focuses on the final state, an update consistent ob-
ject is appropriate to be used instead of an eventually
consistent object, since the final state is the same as if
no operations were concurrent.

By adding further constraints on the histories, con-
current specifications strengthen the consistency cri-
teria. Even if strong update consistency is stronger
than strong eventual consistency, we cannot say in
general that a strong update consistent object can al-
ways be used instead of its strong eventually consistent
counterpart. We claim that this is true in practice for
reasonable objects, and we prove this in the case of
the Insert-wins set (the concurrent specification of the
OR-set). The arbitration relation is not used for the
OR-set, and the visibility relation has already been
defined for strong eventual consistency. The concurrent
specification only adds one more constraint on this
relation: an element is present in the set if and only
if it was inserted and is not yet deleted.

Definition 10 (Strong eventual consistency for the
Insert-wins set). A history H is strong eventu-
ally consistent for the Insert-wins set on a sup-
port Val if it is strong eventually consistent for

the set SVal and the visibility relation
vis
−−→ veri-

fies the following additional property. For all x ∈
Val and q ∈ QH , with Λ(q) = R/s, x ∈ s ⇔
(

∃u ∈ vis(q, I(x)), ∀u′ ∈ vis(q,D(x)), u 6
vis
−−→ u′

)

, where

for all o ∈ U , vis(q, o) = {u ∈ UH : u
vis
−−→ q∧Λ(u) = o}.

The OR-Set implementation of a set is not update
consistent. The history on Fig. 1b is not update consis-
tent, as the last operation must be a deletion. However,
if the updates made by a process are not viewed by
the other process before it makes its own updates,
the insertions will win and the OR-set will converge
to {1, 2}. On the contrary, a strong update consistent
implementation of a set can always be used instead of
an Insert-wins set, as it only forbids more histories.

Proposition 3 (Comparison with Insert-wins set). Let
H = (U,Q,E,Λ, 7→) be a history that is strong update
consistent for SVal . Then H is strong eventually consistent
for the Insert-wins set.

Proof: Suppose H is strong update consistent for

SVal . We define the new relation
IW
−−→ such that for all

e, e′ ∈ E, e
IW
−−→ e′ if one of the following conditions

holds:

• e
vis
−−→ e′;

• e and e′ are two updates on the same element and
e ≤ e′;

• e′ is a query, and there is an update e′′ such that

e
IW
−−→ e′′ and e′′

IW
−−→ e′.

The relation
IW
−−→ is acyclic because it is included in

≤, its growth and eventual delivery properties are

ensured by the fact that it contains
vis
−−→. Moreover,

no two updates for the same element are concurrent

according to
IW
−−→ and the last updates are also the last

for the ≤ relation, consequently H is strong eventually
consistent for the Insert-wins set.

This result implies that an OR-set can always be
replaced by an update consistent set, because the guar-
anties it ensures are weaker than those of the update
consistent set. It does not mean that the OR-set is
worthless. It can be seen as a cache consistent set [21]
that, in some cases may have a better space complexity
than update consistency.

VII. GENERIC CONSTRUCTION OF STRONG UPDATE

CONSISTENT OBJECTS

In this section, we give a generic construction of
strong update consistent objects in crash-prone asyn-
chronous message-passing systems. This construction
is not the most efficient ever as it is intended to
work for any UQ-ADT object in order to prove the
universality of update consistency. For a specific object
an ad hoc implementation on a specific system may be
more suitable.

A. System Model

We consider a message-passing system composed of
finite set of sequential processes that may fail by halting.
A faulty process simply stops operating. A process
that does not crash during an execution is correct. We
make no assumption on the number of failures that
can occur during an execution. Processes communi-
cate by exchanging messages using a communication
network complete and reliable. A message sent by a
correct process to another correct process is eventually
received. The system is asynchronous; there is no
bound on the relative speed of processes nor on the
message transfer delays. In such a situation a process
cannot wait for the participation of any a priori known
number of processes as they can fail. Consequently,
when an operation on a replicated object is invoked

Algorithm 1: a generic UQ-ADT (code for pi)

1 object (U,Qi, Qo, S, s0, T,G)
2 var clocki ∈ N← 0;
3 var updatei ⊂ (N× N× U)← ∅;
4 fun update (u ∈ U)
5 clocki ← clocki + 1;
6 broadcast message (clocki, i, u);
7 end
8 on receive message (cl ∈ N, j ∈ N, u ∈ Q)
9 clocki ← max(clocki, cl);

10 updatei ← updatei ∪ {(cl, j, u)};
11 end
12 fun query (q ∈ Qi) ∈ Qo

13 clocki ← clocki + 1;
14 var statei ∈ S ← s0;
15 for (cl, j, u) ∈ updatei sorted on (cl, j) do
16 statei ← T (statei, u);
17 end
18 return G(statei, q);
19 end
20 end

locally at some process, it needs to be completed based
solely on the local knowledge of the process. We call
this kind of systems wait-free asynchronous message-
passing system.

We model executions as histories made up of the se-
quences of events generated by the different processes.
As we focus on shared objects and their implemen-
tation, only two kinds of actions are considered: the
operations on shared objects, that are seen as events in
the distributed history, and message receptions.

B. A universal implementation

Now, we prove that strong update consistency is
universal, in the sense that every UQ-ADT has a
strong update consistent implementation in a wait-
free asynchronous system. Algorithm 1 presents an
implementation of a generic UQ-ADT. The principle
is to build a total order on the updates on which all
the participants agree, and then to rewrite the history
a posteriori so that every replica of the object eventu-
ally reaches the state corresponding to the common
sequential history. Any strategy to build the total order
on the updates would work. In Algorithm 1, this order
is built from a Lamport’s clock [14] that contains the
happened-before precedence relation. Process order is
hence respected. A logical Lamport’s clock is a pre-
total order as some events may be associated with the
same logical time. In order to have a total order, the
events are timestamped with a pair composed of the
logical time and the id of the process that produced it

(process ids are assumed unique and totally ordered).
The algorithm actions performed by a process pi are
atomic and totally ordered by an order 7→i. The union
of these orders for all processes is the program order
7→.

At the application level, a history is composed of
update and query operations. In order to allow only
strong update consistent histories, Algorithm 1 pro-
poses a procedure update() and a function query().
A history H is allowed by the algorithm if update(u)
is called each time a process performs an update u,
and query(qi) is called and returns qo when the event
qi/qo appears in the history. The code of Algorithm 1
is given for process pi. Each process pi manages its
view clocki of the logical clock and a list updatesi of
all timestamped update events process pi is aware of.
The list updatesi contains triplets (cl, j, u) where u is
an update event and (cl, j) the associated timestamp.
This list is sorted according to the timestamps of the
updates: (cl, j) < (cl′, j′) if (cl < cl′) or (cl = cl′ and
j < j′).

The algorithm timestamps all events (updates and
queries). When an update is issued locally, process
pi informs all the other processes by reliably broad-
casting a message to all other processes (including
itself). Hence, all processes will eventually be aware
of all updates. When a message(cl, j, u) is received,
pi updates its clock and inserts the event to the list
updatesi. When a query is issued, the function query()
replays locally the whole list of update events pi is
aware of starting from the initial state then it executes
the query on the state it obtains.

Whenever an operation is issued, its is completed
without waiting for any other process. This corre-
sponds to wait-free executions in shared memory dis-
tributed systems and implies fault-tolerance.

Proposition 4 (Strong update consistency). All histories
allowed by Algorithm 1 are strong update consistent.

Proof: Let H = (U,Q,E,Λ, 7→) be a distributed
history allowed by Algorithm 1. Let e, e′ ∈ EH be
two operations invoked by processes pi and pi′ , on
the states (update,clock) and (update′,clock′),
respectively. We pose:

• e
vis
−−→ e′ if e ∈ UH and pi′ received the message

sent during the execution of e before it starts
executing e′, or e ∈ QH and e 7→ e′. As the mes-
sages are received instantaneously by the sender,
vis
−−→ contains 7→. It is growing because the set of
messages received by a process is growing with
time.

• e ≤ e′ if c < c′ or c = c′ and i < i′. This
lexical order is total because two operations on
the same process have a different clock. Moreover

it contains
vis
−−→ because when pi′ received the

message sent by e, it executed line 9 and when
it executed e′, it executed line 5, so c′ ≥ c + 1.
Moreover, the history of e contains at most c×n+i
events, where n is the number of processes, so it
is finite.

Let q ∈ QH and Eq = {u ∈ UH : u
vis
−−→ q}. Lines

15 to 18 build an explicit sequential execution, that is

in lin
(

H≤
Eq∪{q}

)

by definition of ≤ and in L(O) by

definition of O.

C. Complexity

Algorithm 1 is very efficient in terms of network
communication. A unique message is broadcast for
each update and each message only contains the infor-
mation to identify the update and a timestamp com-
posed of two integer values, that only grow logarithmi-
cally with the number of processes and the number of
operations. Moreover, this algorithm is wait-free and
its execution does not depend on the latency of the
network.

This algorithm re-executes all past updates each time
a new query is issued. In an effective implementation,
a process can keep intermediate states. These interme-
diate states are re-computed only if very late message
arrive. The algorithm does not look space efficient also
as the whole history must be kept in order to rebuild a
sequential history. Because data space is cheap and fast
nowadays, compared to bandwidth, many applications
can afford this complexity and would keep this infor-
mation anyway. For example, banks keep track of all
the operations made on an account for years for legal
reasons. In databases systems, it is usual to record all
the events in log files. Moreover, asynchrony is used
as a convenient abstraction for systems in which trans-
mission delays are actually bounded, but the bound is
too large to be used in practice. This means that after
some time old messages can be garbage collected.

The proposed algorithm is a theoretical work whose
goal is to prove that any update-query object has a
strong update consistent implementation. This gener-
icity prevents an effective implementation that may
take benefit from the nature and the specificity of
the actual object. The best example of this are pure
CRDTs like the counter and the grow-only set. If all the
update operations commute in the sequential specifi-
cation, all linearizations would lead to the same state
so a naive implementation, that applies the updates
on a replica as soon as the notification is received,
achieves update consistency. In [22], Karsenty and

Algorithm 2: the shared memory (code for pi)

1 object UC mem(X,V, v0)
2 var clocki ∈ N← 0;
3 var memi ∈ mem(X, (N2 × V), (0, 0, v0));
4 fun write (x ∈ X, v ∈ V)
5 clocki ← clocki + 1;
6 broadcast msg (clocki, i, x, v);
7 end
8 on receive msg (cl ∈ N, j ∈ N, x ∈ X, v ∈ V)
9 clocki ← max(clocki, cl);

10 var (cl′, j′, v′) ∈ N
2 × V ← memi.read(x);

11 if (cl
′, j′) < (cl, j) then

12 memi.write(x, (cl, j, v))
13 end
14 end
15 fun read (x ∈ X) ∈ V
16 var (cl, j, v) ∈ N

2 × V ← memi.read(x);
17 return v;
18 end
19 end

Beaudouin-Lafon propose an algorithm to implement
objects such that each update operation u contains
an undo u−1 such that for all s, T (T (s, u), u−1) = s.
This algorithm is very close to ours as it builds the
convergent state from a linearization of the updates
stored by each replica. They use the undo operations
to position newly known updates at their correct place,
which saves computation time. As it is a very frequent
example in distributed systems, we now focus on the
shared memory object.

Algorithm 2 shows an update consistent implemen-
tation of the shared memory object. A shared memory
offers a set X of registers that contain values taken
from a set V . The query operation read(x), where
x ∈ X , returns the last value v ∈ V written by
the update operation write(x, v), or the initial value
v0 ∈ V if x was never written. Algorithm 2 orders the
updates exactly like Algorithm 1. As the old values can
never be read again, it is not necessary to store them
forever, so the algorithm only keeps in memory the last
known value of each register and its timestamp in a
local memory memi, implemented with an associative
array. When a process receives a notification for a
write, it updates its local state if the value is newer
that the current one, and the read operations just
return the current value. This implementation only
needs constant computation time for both the reads
and the writes, and the complexity in memory only
grows logarithmically with time and the number of
participants.

VIII. CONCLUSION

This paper proposes a new consistency criterion,
update consistency, that is stronger than eventual con-
sistency and weaker than sequential consistency. Our
approach formalizes the intuitive notions of sequential
specification for an abstract data type and distributed
history. This formalization first allowed to prove that
eventual consistency when associated with causal con-
sistency or PRAM consistency can no more be imple-
mented in an asynchronous distributed system where
all but one process may crash.

This paper formalizes the new consistency criterion
and proves that (1) it is strictly stronger than eventual
consistency and (2) that it is universal in the sense
that allowed any update consistent object can be im-
plemented in wait-free systems. The latter has been
proved through a generic construction that implement
all considered data types.

ACKNOWLEDGMENT

This work has been partially supported by a French
government support granted to the CominLabs ex-
cellence laboratory (Project DeSceNt: Plug-based Decen-
tralized Social Network) and managed by the French
National Agency for Research (ANR) in the ”Investing
for the Future” program under reference Nb. ANR-10-
LABX-07-01. This work was partially funded by the
French ANR project SocioPlug (ANR-13-INFR-0003).

REFERENCES

[1] R. J. Lipton and J. S. Sandberg, PRAM: A scalable shared
memory. Princeton University, Department of Com-
puter Science, 1988.

[2] H. Attiya and J. L. Welch, “Sequential consistency
versus linearizability,” ACM Transactions on Computer
Systems (TOCS), vol. 12, no. 2, pp. 91–122, 1994.

[3] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory
robustly in message-passing systems,” J. ACM, vol. 42,
no. 1, pp. 124–142, 1995.

[4] W. Vogels, “Eventually consistent,” Queue, vol. 6, no. 6,
pp. 14–19, 2008.

[5] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto, “Causal memory: Definitions, implementation,
and programming,” Distributed Computing, vol. 9, no. 1,
pp. 37–49, 1995.

[6] M. Herlihy, “Wait-free synchronization,” in ACM Trans-
actions on Programming Languages and Systems, 1991, pp.
124–149.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly
available key-value store,” in ACM SIGOPS Operating
Systems Review, vol. 41. ACM, 2007, pp. 205–220.

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” in Stabilization,
Safety, and Security of Distributed Systems. Springer, 2011,
pp. 386–400.

[9] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski et al.,
“A comprehensive study of convergent and commuta-
tive replicated data types,” INRIA, Tech. Rep., 2011.

[10] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen,
“Achieving convergence, causality preservation, and
intention preservation in real-time cooperative editing
systems,” ACM Transactions on Computer-Human Interac-
tion (TOCHI), vol. 5, no. 1, pp. 63–108, 1998.

[11] D. Li, L. Zhou, and R. R. Muntz, “A new paradigm
of user intention preservation in realtime collaborative
editing systems,” in International Conference on Parallel
And Distributed Systems. IEEE, 2000, pp. 401–408.

[12] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro,
C. Baquero, V. Balegas, and S. Duarte, “An op-
timized conflict-free replicated set,” arXiv preprint
arXiv:1210.3368, 2012.

[13] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski,
“Replicated data types: specification, verification, opti-
mality,” in Proceedings of the 41st symposium on Principles
of programming languages. ACM, 2014, pp. 271–284.

[14] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Communications of the ACM,
vol. 21, no. 7, pp. 558–565, 1978.

[15] M. Perrin, M. Petrolia, C. Jard, and A. Mostéfaoui,
“Consistent shared data types: Beyond memory,” LINA,
Université de Nantes, Tech. Rep., 2014.

[16] G. H. Mealy, “A method for synthesizing sequential
circuits,” Bell System Technical Journal, vol. 34, no. 5, pp.
1045–1079, 1955.

[17] M. Perrin, A. Mostéfaoui, and C. Jard, “Brief announce-
ment: Update consistency in partitionable systems,” in
Proceedings of the 28th International Symposium on Dis-
tributed Computing. Springer, 2014, p. 546.

[18] G. T. Wuu and A. J. Bernstein, “Efficient solutions to
the replicated log and dictionary problems,” Operating
systems review, vol. 20, no. 1, pp. 57–66, 1986.

[19] K. Aslan, P. Molli, H. Skaf-Molli, S. Weiss et al., “C-set: a
commutative replicated data type for semantic stores,”
in RED: Fourth International Workshop on REsource Dis-
covery, 2011.

[20] M. Mukund, G. Shenoy, and S. Suresh, “Optimized or-
sets without ordering constraints,” in Distributed Com-
puting and Networking. Springer, 2014, pp. 227–241.

[21] J. R. Goodman, Cache consistency and sequential consis-
tency. University of Wisconsin-Madison, Computer
Sciences Department, 1991.

[22] A. Karsenty and M. Beaudouin-Lafon, “An algorithm
for distributed groupware applications,” in ICDCS,
1993.

