A compactness result for an elliptic equation in dimension 2.
Samy Skander Bahoura

To cite this version:
Samy Skander Bahoura. A compactness result for an elliptic equation in dimension 2.. 2015. hal-01101650v1

HAL Id: hal-01101650
https://hal.science/hal-01101650v1
Preprint submitted on 9 Jan 2015 (v1), last revised 29 Oct 2018 (v8)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A COMPACTNESS RESULT FOR AN ELLIPTIC EQUATION IN DIMENSION 2.

SAMY SKANDER BAHOURA

ABSTRACT. We give a blow-up analysis for the solutions of an elliptic equation under some conditions on the prescribed curvature. Also, we derive a compactness result for this elliptic equation under a Lipschitz condition.

Mathematics Subject Classification: 35J60 35B45 35B50

Keywords: quantization, blow-up, boundary, elliptic equation, a priori estimate, Lipschitz condition.

1. INTRODUCTION AND MAIN RESULTS

We consider the following equation:

\[(P_\epsilon) \begin{cases} -\Delta u - \epsilon(x_1\partial_1 u + x_2\partial_2 u) = Ve^u \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega. \end{cases} \]

Here, we assume that:

- \(\Omega \) starshaped,

and,

- \(u \in W^{1,1}_0(\Omega), \ e^u \in L^1(\Omega), \ 0 \leq V \leq b, \ \epsilon \geq 0. \)

When \(\epsilon = 0 \), the previous equation was studied by many authors, with or without the boundary condition, also for Riemann surfaces, see [1,18], we can find some existence and compactness results.

Among other results, we can see in [4] the following important Theorem,

Theorem. (Brezis-Merle [4]). If \((u_i)\) and \((V_i)\) are two sequences of functions relatively to the problem \((P_0)\) with, \(\epsilon = 0 \) and \(0 < a \leq V_i \leq b < +\infty \), then, for all compact set \(K \) of \(\Omega \),

\[\sup_K u_i \leq c = c(a, b, m, K, \Omega). \]

Date: January 9, 2015.
We can find in [4] an interior estimate if we assume \(a = 0 \), but we need an assumption on the integral of \(e^{u_i} \).

If we assume \(V \) with more regularity, we can have another type of estimates, a \(\sup + \inf \) type inequalities. It was proved by Shafrir see [15], that, if \((u_i), (V_i)\) are two sequences of functions solutions of the previous equation without assumption on the boundary and, \(0 < a \leq V_i \leq b < +\infty \), then we have the following interior estimate:

\[
C \left(\frac{a}{b} \right) \sup_K u_i + \inf_{\Omega} u_i \leq c(a, b, K, \Omega).
\]

We can see in [7] an explicit value of \(C \left(\frac{a}{b} \right) = \sqrt{\frac{a}{b}} \). In his proof, Shafrir has used the Stokes formula and an isoperimetric inequality, see [2]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose \((V_i)\) uniformly Lipschitzian with \(A \) the Lipschitz constant, then, \(C(a/b) = 1 \) and \(c = c(a, b, A, K, \Omega) \), see Brézis-Shafrir [5]. This result was extended for Hölderian sequences \((V_i)\) by Chen-Lin, see [7]. Also, we can see in [12], an extension of the Brezis-Shafrir result to compact Riemann surface without boundary. We can see in [13] explicit form, \((\delta \pi m, m \in \mathbb{N}^* \text{ exactly}) \), for the numbers in front of the Dirac masses when the solutions blow-up. Here, the notion of isolated blow-up point is used. Also, we can see in [8] and [18] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

Here we give the behavior of the blow-up points on the boundary and a new proof of Brezis-Merle conjecture with Lipschitz condition.

The Brezis-Merle Conjecture (see [4]) is:

Conjecture. Suppose that \(V_i \rightarrow V \) in \(C^0(\bar{\Omega}) \) with \(0 \leq V_i \leq b \) for some positive constant \(b \). Also, we consider a sequence of solutions \((u_i)\) of \((P_0)\) relatively to \((V_i)\) such that,

\[
\int_{\Omega} e^{u_i} dx \leq C,
\]

is it possible to have:

\[
\|u_i\|_{L^\infty} \leq C = C(b, \Omega, C)?
\]

Here, we give a blow-up analysis on the boundary when the prescribed curvature are nonegative and bounded and on the other hand, if we add the assumption that these curvature are uniformly Lipschitzian, we have a compactness of the solutions of the problem \((P_\epsilon)\) for \(\epsilon \) small enough. (In particular we can take a sequence of \(\epsilon_i \) tending to 0):

For the behavior of the blow-up points on the boundary, the following condition is enough,
0 \leq V_i \leq b,

The condition $V_i \to V$ in $C^0(\bar{\Omega})$ is not necessary.

But for the compactness of the solutions we add the following condition:

$$||\nabla V_i||_{L^\infty} \leq A.$$

We have the following characterization of the behavior of the blow-up points on the boundary.

Theorem 1.1. Assume that $\max_{\Omega} u_i \to +\infty$, Where (u_i) are solutions of the problem (P_{ϵ_i}) with:

$$0 \leq V_i \leq b, \quad \text{and} \quad \int_{\Omega} e^{u_i} dx \leq C, \quad \epsilon_i \to 0,$$

then, after passing to a subsequence, there is a function u, there is a number $N \in \mathbb{N}$ and N points $x_1, \ldots, x_N \in \partial\Omega$, such that,

$$\partial_{\nu} u_i \to \partial_{\nu} u + \sum_{j=1}^{N} \alpha_j \delta_{x_j}, \quad \alpha_j \geq 4\pi, \quad \text{weakly in the sense of measure } L^1(\partial \Omega).$$

$$u_i \to u \text{ in } C^{1}_{\text{loc}}(\bar{\Omega} - \{x_1, \ldots, x_N\}).$$

In the following theorem, we have a compactness result:

Theorem 1.2. Assume that (u_i) are solutions of (P_{ϵ_i}) relatively to (V_i) with the following conditions:

$$||\nabla V_i||_{L^\infty} \leq A \quad \text{and} \quad \int_{\Omega} e^{u_i} \leq C, \quad \epsilon_i \to 0.$$

Then, we have:

$$||u_i||_{L^\infty} \leq c(b, A, C, \Omega),$$

2. **Proof of the Theorems**

Proof of theorem 1.1:

First of all, remark that, we have for two positive constants $C_q = C(q, \Omega)$ and $C_1 = C_1(\Omega)$:
\[\|\nabla u_i\|_{L^q} \leq C_q \|\Delta u_i\|_{L^1} \leq (C'_q + \epsilon C_1 \|\nabla u_i\|_{L^1}), \quad \forall\; i \text{ and } 1 < q < 2. \]

Thus, if \(\epsilon > 0 \) is small enough and by the Holder inequality, we have the following estimate:

\[\|\nabla u_i\|_{L^q} \leq C''_q, \quad \forall\; i \text{ and } 1 < q < 2. \]

Step 1: interior estimate

First of all remark that, if we consider the following equation:

\[
\begin{cases}
-\Delta w_i = -\epsilon_i (x_1 \partial_1 u_i + x_2 \partial_2 u_i) \in L^q, \quad 1 < q < 2 \text{ in } \Omega \\
w_i = 0 \text{ on } \partial \Omega.
\end{cases}
\]

We have by the elliptic estimates that \(w_i \in W^{2,1+\epsilon} \subset L^\infty \), and we can write the equation of the Problem as:

\[
\begin{cases}
-\Delta (u_i - w_i) = \tilde{V}_i e^{u_i - w_i}, \quad \text{in } \Omega \\
u_i - w_i = 0 \text{ on } \partial \Omega.
\end{cases}
\]

with,

\[0 \leq \tilde{V}_i = V_i e^{w_i} \leq \tilde{b}, \int_{\Omega} e^{u_i - w_i} \leq \tilde{C}. \]

We apply the Brezis-Merle theorem to \(u_i - w_i \) to have:

\[u_i - w_i \in L^\infty_{\text{loc}}(\Omega), \]

and, thus:

\[u_i \in L^\infty_{\text{loc}}(\Omega). \]

Step 2: boundary estimate

Now, we have:

\[\int_{\partial \Omega} \partial_{\nu} u_i d\sigma \leq C, \]

\[4 \]
Without loss of generality, we can assume that \(\partial_{\nu} u_i > 0 \). Thus, (using the weak convergence in the space of Radon measures), we have the existence of a positive Radon measure \(\mu \) such that,

\[
\int_{\partial \Omega} \partial_{\nu} u_i \varphi d\sigma \to \mu(\varphi), \quad \forall \ \varphi \in C^0(\partial \Omega).
\]

We take an \(x_0 \in \partial \Omega \) such that, \(\mu(x_0) < 4\pi \). Without loss of generality, we can assume that the following curve, \(B(x_0, \epsilon) \cap \partial \Omega := I_\epsilon \) is an interval. (In this case, it is more simple to construct the following test function \(\eta_\epsilon \)). We choose a function \(\eta_\epsilon \) such that,

\[
\begin{cases}
\eta_\epsilon \equiv 1, \ & \text{on } I_\epsilon, \ 0 < \epsilon < \delta/2, \\
\eta_\epsilon \equiv 0, \ & \text{outside } I_{2\epsilon}, \\
0 \leq \eta_\epsilon \leq 1, \\
\|\nabla \eta_\epsilon\|_{L^\infty(I_{2\epsilon})} \leq \frac{C_0(\Omega, x_0)}{\epsilon}.
\end{cases}
\]

We take a \(\tilde{\eta}_\epsilon \) such that,

\[
\begin{cases}
-\Delta \tilde{\eta}_\epsilon = 0 \ & \text{in } \Omega \\
\tilde{\eta}_\epsilon = \eta_\epsilon \ & \text{on } \partial \Omega.
\end{cases}
\]

We use the following estimate, see [3, 11, 17],

\[||\nabla u_i||_{L^q} \leq C_q, \ \forall \ i \ \text{and} \ 1 < q < 2. \]

We deduce from the last estimate that, \((u_i) \) converge weakly in \(W^{1,q}_0(\Omega) \), almost everywhere to a function \(u \geq 0 \) and \(\int_{\Omega} e^u < +\infty \) (by Fatou lemma). Also, \(V_i \) weakly converge to a nonnegative function \(V \) in \(L^\infty \). The function \(u \) is in \(W^{1,q}_0(\Omega) \) solution of:

\[
\begin{cases}
-\Delta u = V e^u \in L^1(\Omega) \ & \text{in } \Omega \\
u = 0 \ & \text{on } \partial \Omega.
\end{cases}
\]

According to the corollary 1 of Brezis-Merle result, see [4], we have \(e^{ku} \in L^1(\Omega), k > 1 \). By the elliptic estimates, we have \(u \in C^1(\Omega) \).

We can write,

\[
-\Delta((u_i - u)\tilde{\eta}_\epsilon) = (V_i e^{u_i} - V e^u)\tilde{\eta}_\epsilon - 2 < \nabla(u_i - u)|\nabla\tilde{\eta}_\epsilon >. \quad (1)
\]

We use the interior estimate of Brezis-Merle, see [4].
Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between $\tilde{\eta} \epsilon$ and u, we obtain,

$$\int_{\Omega} V e^{u} \tilde{\eta} d x = \int_{\partial \Omega} \partial_{\nu} u \eta d \sigma \leq 4 \epsilon \|\partial_{\nu} u\|_{L^\infty} = C \epsilon$$ \hspace{1cm} (2)

We have,

$$\begin{cases}
-\Delta u_i = V_i e^{u_i} & \text{in } \Omega \\
 u_i = 0 & \text{on } \partial \Omega.
\end{cases}$$ \hspace{1cm} (3)

From (2) and (3) we have for all $\epsilon > 0$ there is $i_0 = i_0(\epsilon)$ such that, for $i \geq i_0$,

$$\int_{\Omega} \left| (V_i e^{u_i} - V e^{u}) \tilde{\eta} \right| d x \leq 4 \pi - \epsilon_0 + C \epsilon$$ \hspace{1cm} (4)

Step 2.1: Estimate of integral of the second term of the right hand side of (1).

Let $\Sigma_\epsilon = \{ x \in \Omega, d(x, \partial \Omega) = \epsilon^2 \}$ and $\Omega_{\epsilon^2} = \{ x \in \Omega, d(x, \partial \Omega) \geq \epsilon^2 \}, \epsilon > 0$. Then, for ϵ small enough, Σ_ϵ is hypersurface.

The measure of $\Omega - \Omega_{\epsilon^2}$ is $k_2 \epsilon^2 \leq \mu_L(\Omega - \Omega_{\epsilon^2}) \leq k_1 \epsilon^2$.

Remark: for the unit ball $B(0, 1)$, our new manifold is $B(0, 1 - \epsilon^2)$.

We write,

$$\int_{\Omega} \left| \nabla (u_i - u) \right| \nabla \tilde{\eta} > |d x| = \int_{\Omega_{\epsilon^2}} \left| \nabla (u_i - u) \right| \nabla \tilde{\eta} > |d x| + \int_{\Omega - \Omega_{\epsilon^2}} \left| \nabla (u_i - u) \right| \nabla \tilde{\eta} > |d x|.$$ \hspace{1cm} (5)

Step 2.1.1: Estimate of $\int_{\Omega - \Omega_{\epsilon^2}} \left| \nabla (u_i - u) \right| \nabla \tilde{\eta} > |d x|$.

First, we know from the elliptic estimates that $\|\nabla \tilde{\eta}\|_{L^\infty} \leq C_1/\epsilon$, C_1 depends on Ω.
We know that \((|\nabla u_i|)_i\) is bounded in \(L^q, 1 < q < 2\), we can extract from this sequence a subsequence which converge weakly to \(h \in L^q\). But, we know that we have locally the uniform convergence to \(|\nabla u|\) (by Brezis-Merle theorem), then, \(h = |\nabla u|\) a.e. Let \(q'\) be the conjugate of \(q\).

We have, \(\forall f \in L^{q'}(\Omega)\)

\[
\int_{\Omega} |\nabla u_i| f dx \to \int_{\Omega} |\nabla u| f dx
\]

If we take \(f = 1_{\Omega - \Omega_{\epsilon, 2}}\), we have:

for \(\epsilon > 0 \exists i_1 = i_1(\epsilon) \in \mathbb{N}, i \geq i_1, \int_{\Omega - \Omega_{\epsilon, 2}} |\nabla u_i| \leq \int_{\Omega - \Omega_{\epsilon, 2}} |\nabla u| + \epsilon^2\).

Then, for \(i \geq i_1(\epsilon)\),

\[
\int_{\Omega - \Omega_{\epsilon, 2}} |\nabla u_i| \leq \text{mes}(\Omega - \Omega_{\epsilon, 2}) ||\nabla u||_{L^\infty} + \epsilon^2 = \epsilon^2 (k_1 ||\nabla u||_{L^\infty} + 1).
\]

Thus, we obtain,

\[
\int_{\Omega - \Omega_{\epsilon, 2}} |<\nabla (u_i - u)|\nabla \eta_\epsilon| dx \leq \epsilon C_1 (2k_1 ||\nabla u||_{L^\infty} + 1) \quad (6)
\]

The constant \(C_1\) does not depend on \(\epsilon\) but on \(\Omega\).

\textbf{Step 2.1.2:} Estimate of \(\int_{\Omega_{\epsilon, 2}} |<\nabla (u_i - u)|\nabla \eta_\epsilon| dx \).

We know that, \(\Omega_{\epsilon} \subset \subset \Omega\), and (because of Brezis-Merle’s interior estimates) \(u_i \to u\) in \(C^1(\Omega_{\epsilon, 2})\). We have,

\[
||\nabla (u_i - u)||_{L^\infty(\Omega_{\epsilon, 2})} \leq \epsilon^2, \text{ for } i \geq i_3 = i_3(\epsilon).
\]

We write,

\[
\int_{\Omega_{\epsilon, 2}} |<\nabla (u_i - u)|\nabla \eta_\epsilon| dx \leq ||\nabla (u_i - u)||_{L^\infty(\Omega_{\epsilon, 2})} ||\nabla \eta_\epsilon||_{L^\infty} \leq C_1 \epsilon \text{ for } i \geq i_3,
\]

For \(\epsilon > 0\), we have for \(i \in \mathbb{N}, i \geq \max\{i_1, i_2, i_3\} \).
\[\int_{\Omega} \left| \nabla (u_i - u) \right| \nabla \tilde{\eta} \, dx \leq \epsilon C_1 (2k_1 \| \nabla u \|_{L^\infty} + 2) \quad (7) \]

From (4) and (7), we have, for \(\epsilon > 0 \), there is \(i_3 = i_3(\epsilon) \in \mathbb{N}, i_3 = \max \{ i_0, i_1, i_2 \} \) such that,

\[\int_{\Omega} |\Delta [(u_i - u) \tilde{\eta}]| \, dx \leq 4\pi - \epsilon_0 + \epsilon 2C_1 (2k_1 \| \nabla u \|_{L^\infty} + 2 + C) \quad (8) \]

We choose \(\epsilon > 0 \) small enough to have a good estimate of (1). Indeed, we have:

\[
\begin{cases}
-\Delta [(u_i - u) \tilde{\eta}] = g_{i, \epsilon} & \text{in } \Omega, \\
(u_i - u) \tilde{\eta} = 0 & \text{on } \partial \Omega.
\end{cases}
\]

with \(\| g_{i, \epsilon} \|_{L^1(\Omega)} \leq 4\pi - \epsilon_0 \).

We can use Theorem 1 of [4] to conclude that there is \(q > 1 \) such that:

\[\int_{V_i(x_0)} e^{q(u_i - u)} \, dx \leq \int_{\Omega} e^{q(u_i - u)\tilde{\eta}} \, dx \leq C(\epsilon, \Omega). \]

where, \(V_i(x_0) \) is a neigbourhood of \(x_0 \) in \(\bar{\Omega} \).

Thus, for each \(x_0 \in \partial \Omega - \{ \bar{x}_1, \ldots, \bar{x}_m \} \) there is \(\epsilon_{x_0} > 0, q_{x_0} > 1 \) such that:

\[\int_{B(x_{00}, \epsilon_{x_0})} e^{q_{x_0}u_i} \, dx \leq C, \quad \forall i. \]

Now, we consider a cutoff function \(\eta \in C^\infty(\mathbb{R}^2) \) such that:

\[\eta \equiv 1 \text{ on } B(x_0, \epsilon_{x_0}/2) \text{ and } \eta \equiv 0 \text{ on } \mathbb{R}^2 - B(x_0, 2\epsilon_{x_0}/3). \]

We write,

\[-\Delta (u_i \eta) = V_i e^{u_i \eta} - 2 < \nabla u_i \nabla \eta > -u_i \Delta \eta. \]

By the elliptic estimates, \((u_i \eta)_i \) is uniformly bounded in \(W^{2,q_1}(\Omega) \) and also, in \(C^1(\Omega) \).

Finally, we have, for some \(\epsilon > 0 \) small enough,
\[\|u_i\|_{C^1,B(x_0,\epsilon)} \leq c_3 \ \forall \ i. \]

We have proved that, there is a finite number of points \(\bar{x}_1, \ldots, \bar{x}_m \) such that the sequence \((u_i)_i \) is locally uniformly bounded in \(\Omega - \{ \bar{x}_1, \ldots, \bar{x}_m \} \).

Proof of theorem 1.2:

The Pohozaev identity gives:

\[
\int_{\partial\Omega} x|\nu| (\partial_{\nu} u_i)^2 d\sigma + \epsilon \int_{\Omega} (x|\nabla u_i|)^2 dx + \epsilon \int_{\partial\Omega} x|\nu| V_i e^{u_i} d\sigma = \int_{\Omega} (x|\nabla V_i| + 2V_i) e^{u_i} dx
\]

We use the boundary condition and the fact that \(\Omega \) is starshaped and the fact that \(\epsilon > 0 \) to have that:

\[
\int_{\partial\Omega} (\partial_{\nu} u_i)^2 dx \leq c_0(b, A, C, \Omega).
\]

Thus we can use the weak convergence in \(L^2(\partial\Omega) \) to have a subsequence \(\partial_{\nu} u_i \), such that:

\[
\int_{\partial\Omega} \partial_{\nu} u_i \phi dx \to \int_{\partial\Omega} \partial_{\nu} u \phi dx, \ \forall \ \phi \in L^2(\partial\Omega),
\]

Thus, \(\alpha_j = 0, j = 1, \ldots, N \) and \((u_i) \) is uniformly bounded.

References

Département de Mathématiques, Université Pierre et Marie Curie, 2 place Jussieu, 75005, Paris, France.

E-mail address: samybahoura@yahoo.fr