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Abstract

In this paper, a method to segment elongated objects is proposed.
It is based on attribute profiles and area stability. Images are rep-
resented as component trees using a threshold decomposition. Then,
some attributes are computed on each node of the tree. Finally, the
attribute profile is analyzed to identify important events useful for seg-
mentation tasks. In this work, a new attribute, combining geodesic
elongation and area stability is defined. This methodology is success-
fully applied to the segmentation of cells in multiphoton fluorescence
microscopy images of engineered skin. Quantitative results are pro-
vided, demonstrating the performance and robustness of the new at-
tribute. A comparison with MSER is also given.

keywords: mathematical morphology, segmentation, connected
component, attribute profile, elongation, area stability, multiphoton
microscopy.

1 Introduction

Filtering techniques, aiming at removing noise while preserving as much as
possible the desired information, are often essential prior to segmentation.
Mathematical Morphology [Mat75, Ser88] is a theory of non-linear oper-
ators based on a set approach in order to study the objects morphology.
Classically, it uses structuring elements. It has been shown that adaptive
approaches can lead to important improvements [LDM07, MV09, PD09,
Roe09, Ang11].

In this paper, we propose a method to segment elongated cells (melanocytes)
in multiphoton fluorescence microscopy images of engineered skin. Seg-
menting these images with standard methods fails since melanocytes are
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low contrasted and noisy. Moreover, it is proven that including shape prior
knowledge improves the segmentation results.

The proposed method is based on the analysis of the attribute profile over
the threshold decomposition of an image. We define a new attribute, called
area-stable elongation, that combines the geodesic elongation and the area
stability. In our experiments, we analyze important events in the evolution
of this attribute and we show its efficiency in segmenting elongated objects
while filtering out noisy structures.

This paper is organized as follows. Section 2 reviews related work in
the state of the art. Section 3 presents the threshold decomposition, the
attribute profile and introduces the new area-stable elongation attribute.
Section 4 illustrates an application segmenting elongated cells in fluores-
cence multiphoton microscopy images of engineered skin. Finally, Section 5
concludes the paper.

2 Related work

[Jon99] proposed connected filters using attributes signatures, i.e. the evo-
lution of an attribute on the component tree. He has successfully applied his
method to the segmentation of wood micrographs. [PB01] introduced mor-
phological profiles using the derivative of the residues from opening/closing
by reconstruction. Their method is well suited for images with low contrast
and low resolution. However, the maximal residue may not be the best
segmentation choice. Moreover, the computational cost increases when pro-
cessing large and homogeneous images. [Beu07] proposed the analysis of the
residue evolution through successive morphological operations. This evolu-
tion over each pixel of the image leads to interesting transformations such
as ultimate openings and quasi-distance functions. More recently, [OPS12]
proposed differential area profiles for efficient point-based multiscale feature
extraction in pattern analysis and image segmentation.

Maximally Stable Extremal Regions (MSER), proposed by [MCUP04], is
a well-known region detector. MSER are invariant to affine transformations
of both intensity and image coordinates. They have a high repeatability and
can be run in linear time with respect to the number of pixels in the image
(5 Mpix/s using a max-tree implementation [NS08]). However, the param-
eter selection remains its major drawback. Even when default parameters
perform well in many applications, some heuristics need to be applied in
order to yield appropriate regions. Moreover, MSER favors round regions,
as proved by [KZBB11], making it unsuitable to detect irregular shapes such
as elongated objects.

[FL07] computed SIFT descriptors on the MSER shape in order to char-
acterize each region of the image. This approach is proven to be robust to
illumination changes and nearby occlusions. They also proposed a pyrami-
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dal searching to reach scale invariability. The authors also suggested the use
of MSER for image segmentation. [For07] extended the MSER concept to
color images and [LBB12] defined stable volumetric features in deformable
shapes.

This paper is an extended version of [SM13] work. In that framework, the
attribute profile is built over increasing quasi-flat zones and three applica-
tion are presented: image segmentation, adaptive mathematical morphology
and feature extraction. In this paper, we extend the idea of analyzing the
attribute profile over the threshold decomposition of an image. Additionally,
we define an attribute profile based on a new attribute, called area-stable
elongation, to segment elongated objects.

3 Methodology

3.1 Threshold decomposition and attribute profile

A binary attribute can be extended to gray-scale through threshold decom-
position [WCG86, MZ90]. Let I be a digital gray-scale image I: D → V ,
with D ⊂ Z2 the image domain and V = [0, ..., R] the set of gray lev-
els. A decomposition of I can be obtained considering successive thresholds
Tt(I) = {p ∈ D|I(p) > t} for t = [0, ..., R− 1]. Since this decomposition sat-
isfies the inclusion property Tt(I) ⊆ Tt−1(I), ∀t ∈ [1, ..., R− 1], it is possible
to build a tree, called the component tree, with these level sets Tt(I). Each
branch of the tree represents the evolution of a single connected component
(CC) Xt. An attribute profile is the evolution of an attribute on a branch
of the tree.

Fig. 1 illustrates the threshold decomposition in the 1D case, its compo-
nent tree and attribute (width) profiles for the two maxima of the function
(pA and pB). Events on this attribute profile are useful to segment objects
[Jon99], extract features [PB01] and define adaptive structuring elements
[SM13].

In general, there are two types of attributes: increasing and non-increasing
[BJ96]. On the one hand, an attribute is increasing when its value is greater
or equal to the attribute computed on any subset of the object. The most
common increasing attribute is the area, which is used to compute area
openings and area stability, among others. On the other hand, an attribute
is non-increasing when the latter property is not reached. In general, shape
attributes –such as circularity, tortuousity, elongation– are not increasing.

3.2 Geodesic Elongation

In this work, we focus on geodesic elongation, simply called henceforth elon-
gation [LM84]. The elongation E(Xt) of an object Xt is a shape descriptor
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(a)

(b) (c)

Figure 1: 1D threshold decomposition (a), component tree (b), and attribute
profile (c).

useful to characterize long and thin structures. It is proportional to the ra-
tio between the square geodesic diameter L2(Xt) and the area of the object
A(Xt), as shown in Eq. 1. The geodesic diameter L(Xt) = supx∈Xt

{lx(Xt)}
is the length of the longest geodesic arc of Xt, i.e. the longest internal
segment lx(Xt) connecting the two end points of Xt [LB81].

E(Xt) =
π

4

L2(Xt)

A(Xt)
(1)

The longer and narrower the object, the higher the elongation. The
lowest bound is reached with the disk, where E(Xt) = 1. An example of
elongation for binary objects is presented in Fig. 2. The number on each
object corresponds to its approximated elongation. An efficient implemen-
tation can be found in [MDD13].

A feature image can be defined assigning to each pixel pin the maximum
attribute recorded over all CC Xt(pin) containing this pixel, i.e. the maxi-
mum of the attribute profile. Fig. 4(b) exemplifies the maximal elongation
image max{E(Xt)} on a synthetic example while Fig. 3 presents two real
cases. It has to be noted that this feature image is a partition in which
objects of an elongated shape are highlighted.
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Figure 2: Geodesic elongation for different binary objects. The elongation
values have been approximated to get integer values.

(a) Retina (b) max{E(Xt)}

(c) Bar codes (d) max{E(Xt)}

Figure 3: Maximal elongation images using threshold decomposition.

3.3 Maximally Stable Extremal Regions (MSER)

A simple but interesting attribute is the area A(Xt). When used to suppress
small CCs, it leads to the definition of the area opening [Vin94]. Since A(Xt)
is increasing, events in the area profile are analyzed instead of its global
maximum. For example, great changes in area are probably related to the
union of different objects while small ones are related to area stable regions,
as those detected by the MSER method [MCUP04].

The area stability Ψ of the region Xt is defined as the ratio between its
area A(Xt) and its area variation dA(Xt)

dt , as shown in Eq. 2:

Ψ(Xt) =
A(Xt)
dA(Xt)

dt

(2)

A MSER is a CC Xt with maximal area stability. In the original proposi-
tion, every local maximum is detected, thus making possible to have nested
regions. Then, some heuristics can be applied to only select the most im-
portant peaks.
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3.4 A new attribute: Area-stable elongation

Favoring regular (round) regions is one of the main limitations of MSER, as
proved by [KZBB11]. Thus, it is not suitable to detect irregular shapes, as
elongated objects. In order to detect elongated objects taking into account
their area stability, we propose a new attribute Φ(Xt), called area-stable
elongation. This attribute combines the area stability of a region Ψ(Xt)
with its elongation E(Xt), as defined in Eq. 3:

Φ(Xt) = Ψ(Xt)E(Xt) =
A(Xt)
dA(Xt)

dt

π

4

L2(Xt)

A(Xt)
=
π

4

L2(Xt)
dA(Xt)

dt

(3)

The area-stable elongation function Φ(Xt) is affine-invariant since Ψ(Xt)
and E(Xt) are preserved under affine transformation of intensity (domain
V ) and image coordinates (domain D), as stated by [MCUP04] and [FL07].
However, area-stable elongated regions are not invariant to blur. If blurring
invariance is required, e.g. for a matching application, two possible solutions
consist in weighting the stability function by the gradient magnitude along
its boundary or pre-processing the image with a deblurring filter, as proposed
by [KZBB11].

The maxima of Φ(Xt) represent area stable regions with a significant
elongation. We propose to build a feature image using the maximal Φ(Xt),
which implies: i) the feature image is a partition of the space, useful for seg-
mentation; ii) each pixel contains information about the shape and the area
stability of its neighborhood, which can be exploitable using prior knowl-
edge.

Let us explain this new attribute with a toy example. Consider the 9×9
image of Fig. 4. For this example, we have approximated the euclidean
distance on the 8-connectivity grid, i.e. the geodesic diameter of a pixel is
equal to 1, the distance between horizontal and vertical neighbors is equal
to 1, and the distance between diagonal neighbors is equal to

√
2. This toy

image contains 4 gray-levels enumerated from t0 to t3, and 6 CCs enumerated
from A to F. Fig. 4(e) presents the component tree, where A(X), E(X),
Ψ(X) and Φ(X) are the area, the elongation, the area stability and the
area-stable elongation of a given component X, respectively. Note that the
stability for the background (object A) is not defined since it is the root of
the component tree.

The component tree contains two branches. Let us suppose that we aim
at segmenting object C from the left branch, and object E+F from the right
one. Let us analyze each case separately.

First, object C is an elongated object nested on a spurious elongated
structure B. Analyzing the elongation profile, we can see that object B
(E(XB)=6.10) is more elongated than object C (E(XC)=4.60), as shown in
the maximal elongation image of Fig. 4(b). However, the stability of region
C (Ψ(XC)=2.43) is higher than that of region B (Ψ(XB)=1.27), as shown
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(a) Toy image (b) Max. elonga-
tion

(c) Max. area
stability

(d) Max. stable
elongation

(e) Component tree

Figure 4: Toy example: maximal attributes images and component tree.

in Fig. 4(c). Combining these two attributes, region C (Φ(XC)=11.18) has
a higher area-stable elongation than region B (Φ(XB)=7.71), as shown in
Fig. 4(d).

Second, object E is an elongated object that includes another elongated
object F. Analyzing the elongation profile, we can see that object E+F
(E(XE)=8.43) is more elongated than the single object F (E(XF )=3.14),
as shown in the maximal elongation image of Fig. 4(b). Since their area
stabilities are similar (Ψ(XE)=1.50 and Ψ(XF )=1.80, as shown in Fig. 4(c)),
the highest area-stable elongation is obtained for the union of these two
objects (Φ(XE)=12.65), as shown in Fig. 4(d).

It is noteworthy that applying a simple threshold (e.g. Φ(Xt) ≥ 8) in the
maximal area-stable elongation image (Fig. 4(d)), the objects C and E+F
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are correctly segmented, which is not possible on the original image nor on
the other two feature images (Figs. 4(b) and 4(c)).

Fig. 5 illustrates the behavior of our method on a real DNA image. The
goal is to segment the elongated and bright fiber from the noisy background.
Fig. 5(b) shows the maximal elongation image, where objects of an elongated
shape are highlighted. However, spurious objects can be merged at low levels
resulting in CC with high feature value, such as the porous structure in the
center of the image. The maximal area stability (Fig. 5(c)) keeps also many
noisy and non elongated structures in the background. Finally, Fig. 5(d)
shows the area-stable elongation image, where most of noisy structures have
been eliminated due to their low stability.

(a) DNA image (b) Maximal elongation
max{E(Xt)}

(c) Maximal area stability
max{Ψ(Xt)}

(d) Maximal area-stable elongation
max{Φ(Xt)}

Figure 5: Maximal elongation, maximal area stability and maximal area-
stable elongation on a real DNA image.

4 Application: cell segmentation

To illustrate the performance of our method, we apply it to segment elon-
gated cells in multiphoton fluorescence microscopy images. Images corre-
spond to reconstructed skin used in cosmetic research in applications such
as screening of de-pigmenting and pro-pigmenting agents (Fig. 6(a)). This
model contains two types of cells: keratinocytes and melanocytes. The lat-
ter are dendritic cells, more elongated and brighter than keratinocytes. An
accurate segmentation of melanocytes becomes crucial in order to quantify
the melanin in the skin. This value is used to assess the efficiency of the
cosmetic ingredient. Our goal here is to segment melanocytes, which appear
as bright elongated structures.

Segmenting these images with standard methods fails since melanocytes
are low contrasted and noisy, as shown in Fig. 6(a). A first simple solu-
tion may consist in applying automatic thresholding, e.g. Otsu method
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[Ots79]. However, it does not work because foreground and background
gray-distributions overlap, as shown in the histogram of Fig. 6(c). Thus,
cells and background are not separable with a global threshold.

(a) 511 × 511 pix-
els (resolution 0.26
µm/pixel).

(b) Ground truth
(melanocytes)

(c) Histogram of melanocytes and
background.

Figure 6: Foreground and brackground gray distributions on a multiphoton
image of engineered skin containing keratinocytes and melanocytes.

In this application, we propose a segmentation method using the com-
ponent tree in order to solve the problem of low contrasted cells. Besides,
the use of the area-stable elongation introduces shape prior knowledge and
offers robustness to noise. In such a case, each cell can be segmented if it
appears in the component tree, even if its gray-level is much lower than that
for other cells in the image. Moreover, thanks to prior knowledge about
melanocyte shape, the result is improved, justifying the use of our proposed
methodology.

In our experiments we have 8 manually annotated images of 511 × 511
pixels each. The spatial resolution is equal to 0.26 µm/pixel. The ground
truth definition has been carried out by experts from L’Oréal Research and
Innovation. Classical Precision (P ), Recall (R) and fmean = (2 × P ×
R)/(P + R) statistics are computed in order to evaluate our results. The
recall (or completeness) is defined as the number of correctly segmented
pixels divided by the number of pixels marked in the ground truth. The
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precision (or correctness) is defined as the number of correctly segmented
pixels divided by the total number of segmented pixels.

To exemplify our method, let us analyze the attribute profile for a single
pixel belonging to a melanocyte, called seed pixel and marked with a red
x in Fig. 7(a). Fig. 7(b) presents the ground truth provided by an expert.
Fig. 7(c) shows four attribute profiles: area A(Xt), elongation E(Xt), area
stability Ψ(Xt) and area-stable elongation Φ(Xt). For visualization pur-
poses, each attribute has been normalized dividing by its maximum value to
be in the range [0, 1]. Additionally, the fmean is plotted in order to define the
best possible segmentation for this cell. Figs. 7(d) to 7(i) show the evolution
of the CC Xt containing the seed pixel.

Segmentation methods using threshold decomposition are based on the
hypothesis that objects of interest exist at some level of the tree. In our
example, the best possible segmentation corresponds to Xt=34, for which
the highest fmean is obtained. Other good segmentations are in the range
Xt∈[34,30]. The whole melanocyte is not retrieved for Xt>34 and it is merged
with other structures for Xt<30.

Let us analyze each attribute profile, starting with A(Xt). Based on
a prior knowledge about melanocytes size, attributes for t < 15 are not
analyzed since they correspond to structures bigger than 75% of the whole
image. Analyzing Ψ(Xt), its global maximum represents the most stable
region Xt=42. This is an area-stable and round region but useless in such
a case since it does not match the entire melanocyte. Another interesting
attribute is E(Xt) since melanocytes are long and thin. Its global maximum
corresponds to a CC merging three different objects Xt=28. From an area-
stability viewpoint, this region is not stable because it is generated merging
three different objects in a small range t ∈ [30, 28]. Finally, the global
maximum of the area-stable elongation Φ(Xt) appears at Xt=34, which is
the best segmentation according to fmean.

Figs. 8 and 9 present two experimental results. Figs. 8(a) and 9(a)
show the two input images with their corresponding manual annotations in
Figs. 8(b) and 9(b). Figs. 8(c) and 9(c) present the max{E(Xt)} images.
Note that all melanocytes present a significant elongation, however some
post processing is required in order to eliminate porous structures on the
background. Most noisy regions are not area-stable, then the area-stable
elongation Φ(Xt) appears suitable for the segmentation of this kind of ob-
jects, as shown in Figs. 8(d) and 9(d). This example demonstrates the use
of our area-stable elongation in order to enhance elongated objects with
respect to a noisy background. Using this feature image, the melanocyte
segmentation becomes an easy task.

A simple three-fold segmentation algorithm is used for this purpose:
i) characterization: a feature image is computed using the maximal area-
stable elongation max{Φ(Xt)}; ii) filtering small objects: in the feature
image, small regions (smaller than 500 pixels) are eliminated using an area
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(a) Multiphoton
image.

(b) Ground truth.

(c) Attribute profiles. Xt<15 is not
considered because A(Xt) > 0.8

(d) Xt=42 (e) Xt=34 (f) Xt=31

(g) Xt=30 (h) Xt=28 (i) Xt=16

Figure 7: Attribute profiles for pixel marked with an x in the input image
(a). From (d) to (i) CC of Xt containing x, for diffent values of t.

opening followed by an area closing. This parameter is not critical since
the smallest cell in the database is approximatively 3000 pixels size; finally,
iii) filtering objects with low attribute value: a simple threshold removes
structures with low area-stable elongation. In our experiments we have used
a threshold equal to 11 for all images. However, this parameter is not critical
since several values produce similar results, as shown in the overall sensi-
bility curve of Fig. 10. It is noteworthy that thresholds between 7 and 16
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(a) Input image a (b) Ground truth

(c) max{E(Xt)} (d) max{Φ(Xt)}

Figure 8: Feature images using the global maximum in the attribute profile.

(a) Input image b (b) Ground truth (c) max{E(Xt)} (d) max{Φ(Xt)}

Figure 9: Feature images using the global maximum in the attribute profile.

produce an overall fmean over 70%.
Table 1 presents quantitative results and a comparison with respect to

the classical MSER by [MCUP04]. MSER regions have been computed us-
ing the algorithm directly provided by the authors [MTS+05]. The MSER
parameters have been consistently set with those used by our method, i.e.
the minimal MSER area has been set to 500 pixels and the threshold de-
composition has been carried out for all gray-levels (one by one) stopping
when the object area is greater than 75% of the whole image. Other MSER
parameters such as relative area and relative margins have been kept to their
default values 0.010 and false, respectively. Setting up these two parame-
ters is not intuitive and global improvements have not been obtained in our
tests. Using our method, this kind of parameters is not required, which is an
advantage with respect to MSER. MSER results may be also improved using
some pre-processing step. However, it would require the setting up and the
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Figure 10: Overall sensibility curves: threshold to eliminate objects with
low area-stable elongation.

Table 1: Comparison with respect to MSER. In each column, numbers on the
left correspond to the proposed method, and numbers between parentheses
to MSER.

Image Precision Recall fmean

a 0.84 (0.83) 0.61 (0.36) 0.71 (0.51)
b 0.74 (0.89) 0.84 (0.42) 0.78 (0.57)
c 0.71 (0.52) 0.84 (0.38) 0.77 (0.44)
d 0.78 (0.84) 0.78 (0.53) 0.78 (0.65)
e 0.85 (0.73) 0.90 (0.40) 0.87 (0.52)
f 0.84 (0.72) 0.68 (0.48) 0.75 (0.57)
g 0.62 (0.52) 0.92 (0.26) 0.74 (0.34)
h 0.83 (0.50) 0.86 (0.41) 0.84 (0.45)

Overall: 0.78 (0.69) 0.80 (0.41) 0.78 (0.51)

selection of the appropriate filter to do it. Another advantage of our method
is that pre-processing is not used since the noise robustness is included in
the area-stable elongation itself, as aforementioned in Section 3.4.

Figs. 11 and 12 present our experimental results showing the input im-
age, the ground truth, the MSER result and our segmentation result. It
is noteworthy that in most cases, melanocytes are correctly segmented by
our method. Some problems are shown in Fig. 11(l) where a clearly non-
elongated melanocyte in the upper left part of the image has not been seg-
mented, and in Fig. 12(r) where a melanocyte in the lower left part has not
been detected; given its low contrast, it is mixed with the background. Note
that our method presents much better results than MSER for all images.
As aforementioned, MSER favors round and regular regions. Thus, only a
partial segmentation is possible. In fact, MSER corresponds in several cases
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to the cell nuclei.

(j) Image a (k) Image b (l) Image c

Figure 11: Segmentation of melanocytes using area-stable elongation. First
row: input image; second row: ground truth; third row: MSER; fourth row:
our segmentation result.

5 Conclusions

We have presented a method to segment elongated objects using attribute
profiles. Images are represented as component trees using threshold decom-
position. Then, the attribute profile is analyzed and important events are
recorded. In this work, the geodesic elongation and the area stability are
combined to define a new attribute: the area-stable elongation. The behavior
of this new attribute in relation to noise, blur and geometrical distortions
is discussed. The global maximum of this attribute is computed for each
pixel of the input image and a feature image is built. This image is a spatial
partition where objects of interest can be easily extracted using a simple
threshold.

This method can be interpreted as an extension of MSER favoring ob-
jects of a given shape. Another main difference with the classical MSER is
that only the global maximum of the attribute profile is chosen, thus only
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(p) Image d (q) Image e (r) Image f (s) Image g (t) Image h

Figure 12: Segmentation of melanocytes using area-stable elongation. First
row: input image; second row: ground truth; third row: MSER; fourth row:
our segmentation result.

the most stable and elongated region is kept. More generally, this work con-
firms the interest of attribute profiles for image analysis and segmentation.
Our method has been successfully used in a cosmetic application aiming at
segmenting melanocytes cells that appear as bright and elongated structures
in multiphoton images. Standard methods fail because melanocytes are low
contrasted and noisy. Better segmentations are obtained providing a prior
knowledge about cells shape. One of the method limitations, common to
all methods based on threshold decompositions, is that it can only segment
CCs present in the component tree.

The analysis based on attribute profiles can be extended to other at-
tributes and to other hierarchical partitions. For example, [SM13] compute
attribute profiles on increasing quasi-flat zones, which is useful when pro-
cessing pre-filtered images. In the future, other interesting attributes such as
porosity and tortuousity will be studied. Additionally, extensions to higher
dimensional data (color and 3D) will be analyzed.
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