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This paper deals with the control of bias estimation when estimating mutual information from
nonparametric approach. We focus on continuously distributed random data and the estimators we
developed are based on nonparametric k-nearest neighbor approach for arbitrary metrics. Using a
multidimensional Taylor series expansion, a general relationship between the estimation error bias
and neighboring size for plug-in entropy estimator is established without any assumption on the data
for two different norms. The theoretical analysis based on the maximum norm developed coincides
with the experimental results drawn from numerical tests made by Kraskov et al ., Phys. Rev. E
69. 066138 (2004). To further validate the novel relation, a weighted linear combination of distinct
mutual information estimators is proposed and, using simulated signals, the comparison of different
strategies allows for corroborating the theoretical analysis.

PACS numbers: 89.70.Cf,87.19.lo,02.50.-r

I. INTRODUCTION

Mutual Information (MI) is a widely used informa-
tion theoretical independence measurement which has re-
ceived particular attention during the past few decades.
However, the estimation of MI remains a tough task
while carried out on finite sample length signals, for ex-
ample in the field of neuroscience, where getting large
amounts of stationary data is problematical. More pre-
cisely, let (X,Y ) be a pair of multidimensional random
variables with a continuous distribution specified by a
joint probability density pX,Y with marginal densities
pX and pY . The joint and marginal entropies, namely
H(X,Y ), H(X) and H(Y ), respectively linked to (X,Y ),
X and Y , are defined as H(X,Y ) = −E [log pX,Y (X,Y )],
H(X) = −E [log pX (X)] and H(Y ) = −E [log pY (Y )].
Mutual information between X and Y is then defined as
[1]

I(X,Y ) =

∫
log

ï
pX,Y (x, y)

pX (x) pY (y)

ò
pX,Y (x, y) dxdy

= H(X) +H(Y )−H(X,Y ).

(1)

According to Eq. (1), MI estimation could be simply
obtained by estimating three individual entropies sepa-
rately and then summing them. In this way, it is possible
to choose relation-specific parameters to cancel out the
bias errors in individual estimations to avoid an adverse
accumulation of errors. To this end, Kraskov et al. [2]
proposed to use a common neighboring size for both joint
and marginal spaces when selecting nearest neighbors.
This strategy consisted in fixing the number of neighbors
in the joint space SZ [Z = (X,Y )], then projecting the
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resulting distance into the marginal spaces SX and SY .
Following this idea, two different MI estimators giving
comparable results were proposed [2]:

ÿ�I (X,Y )K1 = ψ (k)− ⟨ψ (nX + 1) + ψ (nY + 1)⟩+ ψ (n)
(2)

and

ÿ�I (X,Y )K2 = ψ (k)−
1

k
−⟨ψ (nX) + ψ (nY )⟩+ψ (n) , (3)

where n is the signal length, k the number of neighbors,
ψ (·) denotes the digamma function, the symbol ⟨·⟩ stands
for an averaging on a sample data set, nX and nY are the
numbers of points which fall into the resulting distances
in the marginal spaces SX and SY respectively.

In [2], the effectiveness of this strategy to reduce bias
is attested through numerical experiments. This strat-
egy has also been extended to the calculation of other
information theory functionals, such as divergence [3] or
conditional mutual information [4]. In [2], the following
interesting conjecture has been raised from simulation
results:

E
[ÿ�I (X,Y )K1

]
= E

[ÿ�I (X,Y )K2

]
= 0, iif I (X,Y ) = 0,

(4)
where the expectation is computed from the joint prob-
ability distribution of the data sample including all the
observed occurrences of (X,Y ).

In the present work, we propose to give some theoret-
ical explanations to justify this result before developing
a new estimator.
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∫
L(x)

pX(y)dy

v(x)
≈ pX(x) +

ï
∂pX(x)

∂x

òT
1

v(x)

∫

L(x)

(y − x)dy +
1

2v(x)

∫

L(x)

(y − x)T
ï
∂2pX(x)

∂x2

ò
(y − x)dy (12)

∫
L(x)

pX(y)dy

v(x)
≈ pX(x) +

1

2v(x)

∫

L(x)

(y − x)T
ï
∂2pX(x)

∂x2

ò
(y − x)dy

= pX(x) +
1

2v(x)
tr

®ñ∫
L(x)

(y − x)(y − x)Tdy
∂2pX(x)

∂x2

ô´ (13)

II. METHODS AND MATERIALS

A. New bias expression for the plug-in entropy
estimator

Let us consider a dX dimensional random variable X
whose outcomes are in R

dX . If for any x in R
dX , L(x)

stands for a small region around x, we introduce the vol-
ume (Lebesgue measure) v(x) =

∫
L(x)

dz of L(x) and the

probability density function pX(x) to specify the proba-
bility measure PX on this space. In most existing den-
sity estimation algorithms, including either KDE (Ker-
nel Density Estimation) or kNN (k-Nearest Neighbor),
pX(x) is estimated as

”pX(x) =
¤�P [X ∈ L(x)]

v(x)
=

¤�∫
L(x)

pX(y)dy

v(x)
, (5)

where ¤�P [X ∈ L(x)] corresponds to an estimation of the
probability that X belongs to the volume v(x). If we
assume that P [X ∈ L(x)] is perfectly known [but not
pX(x)], we can use the following approximation

log pX(x) ≈ log

ß
P [X ∈ L (x)]

v (x)

™

= log

[∫
L(x)

pX (y) dy

v (x)

]
.

(6)

Given Eq. (5), an estimation Ÿ�log pX(x) of log pX(x) is
introduced

Ÿ�log pX(x) = log”pX (x)

= log
¤�P [X ∈ L(x)]

v(x)

= log

[∫
L(x)

pX(y)dy

v(x)
+ ε

]
,

(7)

where the random estimation error ε given by

ε =

¤�∫
L(x)

pX(y)dy

v(x)
−

∫
L(x)

pX(y)dy

v(x)
(8)

is zero mean when ¤�P [X ∈ L(x)] is unbiased.
From observations Xi (random variables) issued from

PX , the corresponding differential entropy H(X) can be
estimated as

’H(X) = −
1

n

n∑

i=1

÷log pX(Xi), (9)

where n is the number of data used in the averaging.
Then, we approximate the probability density pX(y) us-
ing a second-order Taylor approximation around x,

pX(y) ≈ pX(x) +

ï
∂pX(x)

∂x

òT
(y − x)

+
1

2
(y − x)T

ï
∂2pX(x)

∂x2

ò
(y − x),

(10)

with the superscript T standing for matrix transposition,

and analyze the bias of ’H(X) with

’H(X) = −
1

n

n∑

i=1

log”pX(Xi)

= −
1

n

n∑

i=1

log

[∫
L(Xi)

pX(y)dy

v(Xi)
+ εi

]
,

(11)

where the index i refers to the sample number. Integrat-
ing Eq. (10) on both sides and dividing by v(x), we get
Eq. (12).

If L(x) admits x as a center of symmetry, then∫
L(x)

(y − x)dy = 0 and the first order term on the

right hand side of Eq. (12) is zero. According to ma-
trix properties [5], Eq. (12) can be transformed into Eq.
(13), where tr (·) stands for the trace operator [note that∫
L(x)

(y − x) (y − x)
T
dy is a diagonal matrix].

Finally, the estimator ÷log pX(x) of log pX(x) can be

approximated by Eq. (14), where the term
î

1
pX(x) · ε

ó
is

zero mean.
The bias BX in ’H(X) is approximated by the second

term in the right hand side of Eq. (14) and used as a cor-
recting term. To build L(x) which admits x as a center
of symmetry, we retain two norms, the Euclidean norm
(∥·∥ = ∥·∥E) and the maximum norm (∥·∥ = ∥·∥M) such



3

log

ñ∫
L(x)

pX(y)dy

v(x)
+ ε

ô
≈ log

Ç
pX(x) +

1

2v(x)
tr

®ñ∫
L(x)

(y − x)(y − x)Tdy

ôï
∂2pX(x)

∂x2

ò´
+ ε

å

≈ log pX(x) +
1

pX(x)

1

2v(x)
tr

®ñ∫
L(x)

(y − x)(y − x)Tdy

ôï
∂2pX(x)

∂x2

ò´

︸ ︷︷ ︸
≈BX

+
1

pX(x)
ε

(14)

◊�I(X,Y ) = −
1

n

n∑

i=1

{
log p̂X(xi) + log p̂Y (yi)− log p̂Z(zi)− [BX(xi) + BY (yi)− BZ(zi)]

}
(17)

1

pZ(zi)
· tr

ï
∂2pZ(zi)

∂z2

ò
=

1

pX(xi)
· tr

ï
∂2pX(xi)

∂x2

ò
+

1

pY (yi)
· tr

ï
∂2pY (yi)

∂y2

ò
(18)

◊�I (X,Y )
k

basic =
’H(X)basic +

’H(Y )basic −
’H(Z)basic = −

1

n

n∑

i=1

ï
log

k (xi)

n · v(xi)
+ log

k (yi)

n · v(yi)
− log

k(zi)

n · v(zi)

ò
(23)

that L(x) = {y : ∥y − x∥ ≤ R(x)} corresponding respec-
tively to a standard ball and to a dX dimensional cube.
Consequently, the value R(x) fixes respectively the ra-
dius of the ball or the half of the edge length of the cube.
After calculation, using the Euclidean norm [5], we get

BX(x) ≈
R2(x)

2(dX + 2)
·

1

pX(x)
· tr

ï
∂2pX(x)

∂x2

ò
. (15)

Similarly, using the maximum norm distance, we get

BX(x) ≈
R2(x)

6
·

1

pX(x)
· tr

ï
∂2pX(x)

∂x2

ò
. (16)

Note that, with the second order approximation, the
bias BX increases with larger R(x) whatever the norm.

B. Bias reduction of MI estimator based on the
new bias expression

If we come back to the estimation of mutual informa-
tion, with the help of Eq. (14), by subtracting the bias
terms, we propose the estimation given by Eq. (17).
Consider the ith data point, if the signals X and Y are

independent, i.e., pZ(z) = pX(x)pY (y), with Z = (X,Y ),
we obtain Eq. (18).
In this case, we impose relationship-specific distances

for different entropy estimations in Eq. (1) to cancel out
the bias, i.e.,

BX(xi) + BY (yi)− BZ(zi) = 0. (19)

With the Euclidean norm, it yields to

R(xi) =

 
dX + 2

dZ + 2
·R(zi) and R(yi) =

 
dY + 2

dZ + 2
·R(zi),

(20)

where R(xi), R(yi) and R(zi) are the distances used for
the estimation of ”pX(xi), p̂Y (yi) and p̂Z(zi) at the ith
point, dX , dY and dZ are the dimensions of the signals
X, Y and Z respectively. Similarly, using the maximum
norm, we obtain

R(xi) = R(zi) and R(yi) = R(zi). (21)

Eq. (21) formally confirms (as suggested but not
proved in [2]) that, if X and Y are independent, using the
maximum norm and constraining the values R(xi) and
R(yi) to be equal to R(zi) allows to decrease the bias
ÿ�I(X,Y ) − I(X,Y ). Eq. (20) extends this result when
the Euclidean norm is used for the 3 individual spaces.
We should mention that Eq. (18) no longer holds if sig-
nals X and Y are not independent. In this case only a
part of the bias can be expected to be cancelled out.

So, finally, in the case of independence between X and
Y , we introduced the following MI estimator

ÿ�I(X,Y ) = −
1

n

n∑

i=1

[log”pX(xi) + log p̂Y (yi)− log p̂Z(zi)]

(22)
with an (approximately) zero bias by choosing R(zi) and
by properly defining R(xi) and R(yi) using Eq. (20)
or (21). When R(zi) results from the kNN approach
[i.e., when R(zi) = ∥kNN(zi)− zi∥ is the distance from
zi to its kth NN, also denoted Rk(zi)], this estimator

is denoted by ÿ�I(X,Y )
k

basic with Eq. (23) [with k(zi) =

k]. Hereafter, this estimator is written as ÿ�I(X,Y )basic,E

for the Euclidean norm and by ÿ�I(X,Y )basic,M for the
maximum norm, and called “basic estimator”.
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C. Bias reduction of MI estimation based on the
new bias expression (X and Y dependent)

Now, to further eliminate the bias in MI estimation in
the general case (X and Y are dependent), we consider
again the estimation of individual entropies. Removing
the bias BX in Eq. (14) is not an easy task since its
mathematical expression depends on the unknown prob-
ability density. However, we can expect to cancel it out
considering a weighted linear combination [6]. Conse-
quently, we introduce the following form of an ensemble
estimator of entropy:

’H(X) =

{
−
1

n

n∑

i=1

î
(1− αi) log”pX (1)

(xi)
ó}

+

{
−
1

n

n∑

i=1

î
αi log”pX (2)

(xi)
ó}

,

(24)

where αi, i = 1, .., n is a sequence of weighting coefficients

to be determined, ”pX (1)
(·) and ”pX (2)

(·) are two density

estimations



¤�∫
L(x)

pX(y)dy

v(x)


 obtained from two distinct

definitions of L(·). Until now, L(x) was built either from
a kNN approach or a KDE approach. In the first case,
R(x) is deduced from the kth NN, and in the second case,
R(x) depends on the imposed bandwidth. Hereafter, to
carry on with the conjecture proposed in [2], we only
consider the kNN approach integrating two steps (i) the
choice of two different numbers of neighbors k1 and k2,
(ii) the definition of the probability density estimators,

”pX (1)
(xi) =”pk1(xi) and ”pX (2)

(xi) =”pk2(xi), (25)

where

”pkj
(x) =

kj

n · vkj
(x)

, j = 1, 2 (26)

is the standard kNN density estimator as defined in [7].
The volume vk (x) is equal to the Lebesgue measure of
Lk(x) = {y : ∥y − x∥ ≤ Rk(x)}, and Rk(xi) is the dis-
tance between xi and its kth NN.
Considering each bias term, we write

BX(xi)=
△(1− αi)Bk1(xi) + αiBk2(xi). (27)

The question arises of how to choose αi in Eq. (27) so
that BX(xi) = 0.
Given the Euclidean norm [Eq. (15)], we have

BX(xi) = (1− αi)Bk1(xi) + αiBk2(xi)

=
(1− αi)R

2
k1
(xi) + αiR

2
k2
(xi)

2 (dX + 2) p(xi)
tr

ï
∂2pX(xi)

∂x2

ò
.

(28)
Now, solving Eq. (28) for any i = 1, .., n with respect

to αi leads to

αi =
R2

k1
(xi)

R2
k1
(xi)−R2

k2
(xi)

. (29)

When starting from Eq. (16) instead of Eq. (15) to
address the maximum norm, Eq. (29) still holds. Prac-
tically, an optimal choice of the parameters k1 and k2 is
not obvious. Nevertheless, it is possible to tune these two
parameters to improve the original biased estimator.

In the dependent case we can apply the same strat-
egy to X, Y and Z separately with distinct coefficients
αx
i , α

y
i , α

z
i and then compute the ensemble MI estimator

using

ÿ�I (X,Y )ens =
’H(X)

kx
1 ,k

x
2

ens + ’H(Y )
k
y

1 ,k
y

2

ens −’H(Z)
kz
1 ,k

z
2

ens ,

(30)
where

’H(U)
ku
1 ,k

u
2

ens = −
1

n

n∑

i=1

ï
(1− αu

i ) log
ku1

n · vk1
(ui)

+αu
i log

ku2
n · vk2(ui)

ò
,

(31)

with the pairs (kx1 , k
x
2 ), (k

y
1 , k

y
2) and (kz1 , k

z
2) chosen inde-

pendently for X, Y and Z.
In the independent case, the basic strategy [Eq. (22)]

can be used. But we note that the values αu
i =

R
2
k1

(ui)

R2
k1

(ui)−R2
k2

(ui)
, with u replaced by x, y or z, are iden-

tical if we choose R2
k1
, R2

k2
with the constraint imposed

by Eq. (20) [or Eq. (21)].
Developing Eq. (30) with the substitution αx

i = α
y
i =

αz
i = αi , we get a mixed mutual information estimator

ÿ�I (X,Y )
k1,k2

mixed = ’H(X)
kx
1 ,k

x
2

mixed + ’H(Y )
k
y

1 ,k
y

2

mixed −’H(Z)
kz
1 ,k

z
2

mixed,

(32)
where

’H(U)
ku
1 ,k

u
2

mixed = −
1

n

n∑

i=1

ï
(1− αi) log

kk1(ui)

n · vk1(ui)

+αi log
kk2(ui)

n · vk2(ui)

ò
.

(33)

In summary, our mixed MI estimator is built following
the three steps:

(i) Fix the number of NNs (k1 and k2 separately) in
the joint space SZ to get the distances between the
center point zi and the particular NNs (k1th NN
and k2th NN), marked as Rk1(zi) and Rk2(zi)

(ii) Use Rk1(zi) and Rk2(zi) to get respectively
Rk1(xi), Rk1(yi), and Rk2(xi), Rk2(yi), using Eq.
(20) or Eq. (21) (depending on the norm) and
determine the numbers of points kk1(xi), kk1(yi),
kk2(xi) and kk2(yi) falling into the corresponding
regions

(iii) Estimate H(X) and H(Y ) with Eq. (33), where
αi is given by Eq. (29), H(Z) being calculated
similarly [with kk1(zi) = k1 and kk2(zi) = k2] and

then calculate ÿ�I(X,Y )
k1,k2

mixed by Eq. (32). The re-
sulting estimator is named “mixed estimator” and
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(a) (Color Online) Mutual information (in nats) estimated with
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FIG. 1. Mutual information and mean estimation error using the different estimatorsÿ�I(X,Y )basic,E,

ÿ�I(X,Y )basic,M,ÿ�I(X,Y )mixed,E andÿ�I(X,Y )mixed,M with 100 trials.

denoted byÿ�I(X,Y )mixed,E for the Euclidean norm

andÿ�I(X,Y )mixed,M for the maximum norm.

Note that ÿ�I (X,Y )
k

basic is obtained by replacing Eq.
(32) by Eq. (23) in step (iii).

III. NUMERICAL TEST

The following linear model is generated

Y = X + β · e, (34)

where X and e are independent d-dimensional random
vectors, and both of them follow a zero mean Gaussian
distribution N(0, I) (I is the identity matrix). Clearly,
when β decreases the dependence between X and Y in-
creases. The theoretical value of the mutual information
I(X,Y ) is equal to d

2 log
Ä
1+β2

β2

ä
. For simulations we use

sequences of n independent samples (Xi, Yi) , i = 1, .., n
from the distribution of (X,Y ).

We test the 4 estimatorsÿ�I(X,Y )basic,E,
ÿ�I(X,Y )basic,M,

ÿ�I(X,Y )mixed,E andÿ�I(X,Y )mixed,M to estimate I(X,Y ).
We also run the MI estimator algorithm freely available
from the MILCA toolbox [8], simply denoted by MILCA,

and which a priori corresponds toÿ�I(X,Y )basic,M [9].

Throughout the experimentation, we choose k = 6 (the
default k value of MILCA toolbox) for the basic estima-
tors, and k1 = 6, k2 = 20 for the mixed estimators. The
statistical mean and variance of the five estimators are
estimated by an averaging on 100 trials.

Fig. 1(a) displays the performance of the five algo-
rithms, for a given dimension (d = 3), a number of points
equal to n = 512, and different values of β. The corre-
lation between X and Y is all the more important as β
is low. It comes out that all estimators are compara-
ble when β reaches 0.8 (corresponding to a correlation
coefficient around 0.78 between same ranks coordinates
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of X and Y ). When the signals are highly correlated
(low values of β), the basic estimators still show identical
behaviors, but, in this case, the two new mixed estima-
tors clearly outperform the former whatever the norm,
the best result being obtained using the Euclidean norm
based estimator. Even if all results are not presented
here, we find that the two new estimators outperform
the basic ones using either k = 6 or k = 20.
We also tested the five estimators for different lengths

of the time series for given values of β and d. As displayed
in Fig. 1(b), the two new mixed estimators behave better
whatever the length of the signals (ranging from 512 until
2048), the improvement being all the more important
that the signal length is short.
When computing the error between the different es-

timators and the theoretical value, for a given value of
β (β = 0.5) corresponding to a correlation coefficient
between the signals equal to 0.89, and an increasing di-
mension, the same conclusion globally holds, as displayed
in Fig. 1(c). The new mixed estimators clearly outper-
form the basic ones (which display comparable behavior)
especially for high dimensions. However, for very low
dimensions (d = 1 or d = 2), the original estimators
may be preferred. Clearly, for all estimators, the error
grows along with the dimension, the best result being

systematically obtained with the mixed estimator based
on the Euclidean norm. Since the standard deviations
are quite low, they are not shown in these figures. Using
the basic estimators (or MILCA), the standard deviation
varies from 0.03 to 0.06 which is extremely low compared
to the estimated values of mutual information (approx-
imately from 1 to 5). As for the mixed estimators, the
standard deviation varies from 0.04 to 0.09. The increas-
ing in standard deviation can be considered as negligible
in comparison to the accuracy of the estimation.

IV. SUMMARY

In this paper, we investigated the difficult issue of bias
reduction on mutual information estimation. Once we
established a relation between the systematic bias and
the distance parameter for plug-in entropy estimator, two
strategies, a basic one and a new one involving mixed
estimators, were discussed. Experimental results allowed
us to assess the performance of the new estimators using
Euclidean or maximum norms to get a more accurate
estimation of mutual information.
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