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DETERMINATION OF TIME DEPENDENT FACTORS OF
COEFFICIENTS IN FRACTIONAL DIFFUSION EQUATIONS

KENICHI FUJISHIRO1) AND YAVAR KIAN2)

Abstract. In the present paper, we consider initial-boundary value problems for partial

differential equations with time-fractional derivatives which evolve in Q = Ω× (0, T ) where

Ω is a bounded domain of Rd and T > 0. We study the stability of the inverse problems of

determining the time-dependent parameter in a source term or a coefficient of zero-th order

term from observations of the solution at a point x0 ∈ Ω for all t ∈ (0, T ).

1. Introduction

1.1. Statement of the problem. Let Ω be a bounded domain of Rd, d = 1, 2, 3, with C2

boundary ∂Ω. We set Σ = ∂Ω × (0, T ), Q = Ω × (0, T ) and we introduce A the uniformly

elliptic differential operator defined by

Au(x, t) := −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

(x, t)

)
,

where

aij = aji, 1 ≤ i, j ≤ d, and
d∑

i,j=1

aij(x)ξiξj ≥ µ|ξ|2, x ∈ Ω, ξ ∈ Rd,

for some µ > 0. We associate to this elliptic operator a Robin boundary condition;

Bσu(x, t) := (1− σ(x))u(x, t) + σ(x)∂νAu(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

where

∂νAu(x, t) =
d∑

i,j=1

aij(x)
∂u

∂xi

(x, t)νj(x)

and ν = (ν1, . . . , νd) is the outward unit normal vector to ∂Ω. Here σ is a C2 function on ∂Ω

satisfying

0 ≤ σ(x) ≤ 1, x ∈ ∂Ω

and the limit case σ ≡ 0 (resp. σ ≡ 1) corresponds to the Dirichlet (resp. Neumann) bound-

ary condition. Recall that Robin boundary conditions are the mathematical formulation

of the Newton’s law of cooling where the heat transfer coefficient σ is utilized. The heat
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transfer coefficient is determined by details of the interface structure (sharpness, geometry)

between two media. This law describes quite well the boundary between metals and gas and

is good for the convective heat transfer.

We set also α ∈ (0, 1) and we denote by ∂α
t the Caputo fractional derivative with respect

to t given by

∂α
t g(t) :=

1

Γ(1− α)

∫ t

0

(t− s)−αdg

ds
(s)ds.

Then, we introduce the following two initial-boundary value problems (IBVPs in short)

for the fractional diffusion equations
∂α
t u(x, t) +Au(x, t) = f(t)R(x, t), (x, t) ∈ Q,

Bσu(x, t) = 0, (x, t) ∈ Σ,

u(x, 0) = 0, x ∈ Ω

(1.1)

and 
∂α
t v(x, t) +Av(x, t) + f(t)q(x, t)v(x, t) = 0, (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = v0(x), x ∈ Ω.

(1.2)

From now on, problems (1.1) and (1.2) will be respectively denoted by the source term prob-

lem and the reaction rate problem. In the present paper, we assume that A, σ, R, v0 and

q are given and we consider the inverse problem of determining the parameter {f(t)}t∈(0,T )

appearing in the source term problem (1.1) and the reaction rate problem (1.2) from obser-

vations at a point x0 ∈ Ω for all t ∈ (0, T ).

1.2. Physical motivations. Recall that diffusion equations with time fractional derivatives

such as (1.1) and (1.2) are proposed as new models describing some sub-diffusive anomalous

diffusion phenomena such as diffusion of ions in heterogeneous media or diffusion of fluid

flow in inhomogeneous anisotropic porous media. Indeed, motivated by the work of Adams

and Gelhar [1] related to models for highly heterogeneous aquifer, Hatano and Hatano [16]

proposed a microscopic model of the diffusion of ions in heterogeneous media based on

continuous-time random walk (CTRW in short). From the CTRW model, one can derive a

fractional diffusion equation as a macroscopic model (see e.g., Metzler and Klafter [26] and

Roman and Alemany [31]). We refer also to the work of [10] and the references therein for

models of diffusion in porous media as well as other physical phenomena described by time

fractional derivatives.

In particular, fractional diffusion equations can be associated to the diffusion of contam-

inants in a soil. In this context, our inverse problems correspond to the determination of a

pollution source in (1.1) and the recovery of a reaction rate of pollutants in (1.2).

1.3. Known results. Let us recall that fractional derivatives for both ODEs and PDEs

have attracted many attention. For detailed study of fractional calculus for instance we refer

to books such as Matignon [25], Miller and Ross [27], Podlubny [29] and Samko, Kilbas and

Marichev [35]. Concerning mathematical properties of partial differential equations with

time fractional derivatives and related properties, we refer to Agarwal [3], Gejji and Jafari
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[14], Gorenflo and Mainardi [15], Luchko [22], Matignon [24] and references therein. For the

well-posedness of problems (1.1) and (1.2) with time-independent coefficients one can refer

to [34].

Let us mention that the recovery of time-dependent parameters appearing in the diffusion

equations (1.1)-(1.2) in the case α = 1 has been considered by several authors. The recovery

of time-dependent coefficients has been treated in Section 1.5 of Prilepko, Orlovsky and Vasin

[30], Cannon and Esteva [7], Choulli and Kian [11] and Saitoh, Tuan and Yamamoto [32, 33].

Note also that using the strategy set by Bukhgeim and Klibanov [6] based on Carleman

estimates, Gaitan and Kian [13] proved stable determination of time-dependent coefficients

for diffusion equations in the special case of cylindrical domain Ω. The determination of

time-dependent factor appearing in the source term has been studied by [7] and [32, 33],

who derived respectively a logarithmic type and a Hölder type stability estimate.

In contrast to parabolic equations, few articles addressed inverse problems for (1.1)-(1.2) in

the fractional case 0 < α < 1. In the one dimensional case d = 1, [8] proved unique determi-

nation of a time-independent coefficient and the fractional order α from Dirichlet boundary

measurements. In the multidimensional case, [17] determined the fractional order α from

measurements of the solutions at a point for any time. The recovery of a time-dependent

factor appearing in the source term has been considered by Sakamoto and Yamamoto who

proved in [34, Theorem 4.4] a result of stability for this problem. In the special case α = 1/2

and d = 1, [9, 38] considered an approach similar to [6] based on Carleman estimates for

equation (1.2). Using this approach, [9, 38] proved stability in the recovery of a time-

independent coefficient of order zero from a single measurement on a subdomain. Moreover,

[28] proved uniqueness in the recovery of a time-independent coefficient of order zero from

measurements on a subdomain. In some recent work, [19] proved recovery of some general

time-independent coefficients from the Dirichlet-to-Neumann map associated to a problem

similar to (1.1) with an inhomogeneous Dirichlet boundary conditions of the form λ(t)g(x)

where λ is a strictly positive and analytic fixed function.

1.4. Main results. In order to state our two main results, let us first introduce some con-

ditions that guaranty existence of sufficiently smooth solutions for the source term problem

(1.1) and the reaction rate problem (1.2). For both (1.1)-(1.2), we assume that the coeffi-

cients aij and the parameter {f(t)}t∈(0,T ) satisfy{
aij ∈ C1(Ω) if σ ≡ 0,

aij ∈ C2(Ω) if σ ̸≡ 0,

f ∈ L∞(0, T ). (1.3)

Note that the regularity of aij depends on whether σ ≡ 0 or not, which is due to condition

(1.8) that will be introduced later.

For other given parameters in (1.1), we suppose

R ∈ Lp(0, T ;H2(Ω)),
8

α
< p ≤ ∞ and BσR = 0 on Σ. (1.4)
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Assuming these conditions, we prove in Section 3 that the IBVP (1.1) admits a unique

solution u ∈ C([0, T ];H2(Ω)) with ∂α
t u ∈ Lp(0, T ;Hs(Ω)) for some s > d/2. Therefore, using

the Sobolev embedding theorem (e.g. [20, Theorem 9.8, chapter1]), for any x0 ∈ Ω, we see

that u(x0, ·) := t 7→ ∂α
t u(x0, t) ∈ Lp(0, T ). Then, we can state our first result of stability in

the recovery of the time-dependent factor appearing in the source term problem (1.1).

Theorem 1.1. Let condition (1.4) be fulfilled and, for i = 1, 2, let ui be the solution of (1.1)

for f = fi ∈ L∞(0, T ). We assume that there exist x0 ∈ Ω and δ > 0 such that

|R(x0, t)| ≥ δ, a.e. t ∈ (0, T ). (1.5)

Then, there exists a constant C > 0 depending on α, p, T , Ω, δ, A, σ and ∥R∥Lp(0,T ;H2(Ω))

such that

∥f1 − f2∥Lp(0,T ) ≤ C∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥Lp(0,T ), (1.6)

∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥Lp(0,T ) ≤ C∥f1 − f2∥L∞(0,T ). (1.7)

In particular, if we take p = ∞ in (1.4), then

C−1∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥L∞(0,T ) ≤ ∥f1 − f2∥L∞(0,T )

≤ C∥∂α
t u1(x0, ·)− ∂α

t u2(x0, ·)∥L∞(0,T ).

For the IBVP (1.2), we assume{
q ∈ L∞(0, T ;H2(Ω)) (and ∂νq = 0 on Σ if σ ̸≡ 0),

v0 ∈ H4(Ω) and Bσv0 = Bσ(Av0) = 0 on ∂Ω.
(1.8)

Then, we prove in Section 3 that the IBVP (1.2) admits a unique solution v ∈ C([0, T ];H2(Ω))

with ∂α
t v ∈ Lp(0, T ;Hs(Ω)) for some s > d/2. Thus, we can consider ∂α

t v(x0, ·) ∈ Lp(0, T )

and we can state our second result, concerning stability in the recovery of the time-dependent

coefficient appearing in the reaction rate problem (1.2).

Theorem 1.2. Let condition (1.8) be fulfilled and, for i = 1, 2, let vi be the solution of (1.2)

for f = fi ∈ L∞(0, T ) with ∥fi∥L∞(0,T ) ≤ M . We assume that there exist x0 ∈ Ω and δ > 0

such that

|q(x0, t)v2(x0, t)| ≥ δ, a.e. t ∈ (0, T ). (1.9)

Then, there exists a constant C > 0 depending on α, M , T , Ω, δ, A, σ and ∥q∥L∞(0,T ;H2(Ω))

such that

C−1∥∂α
t v1(x0, ·)− ∂α

t v2(x0, ·)∥L∞(0,T ) ≤ ∥f1 − f2∥L∞(0,T )

≤ C∥∂α
t v1(x0, ·)− ∂α

t v2(x0, ·)∥L∞(0,T ). (1.10)

Note that in [34, Theorem 4.4], a problem similar to Theorem 1.1 has been considered. In

contrast to [34, Theorem 4.4], Theorem 1.1 holds with a more general boundary condition and

a factor R(x, t) that depends also on the time variable t. Moreover, Theorem 1.1 weakened

the regularity assumption for R of [34, Theorem 4.4]. These two extensions make Theorem

1.1 more suitable for application than [34, Theorem 4.4].
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Let us observe that Theorem 1.2 is stated with solutions of the reaction rate problem (1.2)

with a given initial condition v0. The choice of this initial condition is related to condition

(1.9). Indeed, condition (1.9) depends on the solutions of problem (1.2) that we want to

determine. Nevertheless, combining some suitable maximum principle with the Hopf lemma

one can derive (1.9) from conditions on the initial data and the coefficient q of the form

v0 ≥ δ, f2q ≥ 0, q(x0, t) ≥ δ′ > 0, a.e. t ∈ (0, T ), inf
x∈∂Ω

σ(x) > 0. For the moment, such

a result of maximum principle is only available for (1.2) with time-independent coefficients

(e.g. [21, Theorem 1.1] and [23, Theorem 3]), but we believe that such a result can be

extended to (1.2).

In our two main results, we assume conditions (1.5) and (1.9), which means that the

observations at a point cannot be far from the source. However, the results for fractional

diffusion equations without these conditions have not been obtained yet. Here we restrict

ourselves to that case and we establish Lipschitz type stability estimates.

Let us remark that the results of this paper can be extended to the case d ≥ 4. For this

purpose additional conditions such as more regularity for aij and ∂Ω are required. In order

to avoid technical difficulties, we only treat the case d ≤ 3.

Let us mention that the arguments of Theorems 1.1 and 1.2 can be applied to parabolic

equations (1.1)-(1.2) with α = 1 for the recovery of a time-dependent parameter. It seems

that, with [11, 13, 34], our results are one of the first results of stability in the recovery of a

time-dependent parameter from a single measurement. In addition, even in the case α = 1,

to our best knowledge, with [34, Theorem 4.4], our results are the first results of determi-

nation of a time-dependent parameter from a single measurement at a point x0 ∈ Ω when

Ω ⊂ Rd, d = 1, 2, 3. So even in the context of stable recovery of a time-dependent parameter

appearing in a parabolic equations, it seems that our results improve some previous known

results. Nevertheless, our approach allows only recovery of parameters that depend only on

the time variable t which is a restricted class of parameters. An interesting perspective will

be to generalize our result to recovery of more general coefficients or source term param-

eters appearing in a fractional diffusion equation. For instance, we can consider recovery

of parameters depending on the space variable x or both space and time variable. For this

purpose, we need to consider a different approach and to overcome the difficulties that arise

from fractional time derivatives (no exact formula of integration by parts, of Leibniz rule, of

composition of derivatives...).

1.5. Outline. The remainder of this paper is composed of three sections. In Section 2, we

study the forward problem for the IBVPs (1.1) and (1.2) and we prove the unique existence

of sufficiently smooth solutions. In Sections 3 and 4, we complete the proof of our main

results: Theorems 1.1 and 1.2.

2. Forward problem

This section is devoted to the well-posedness of the IBVPs (1.1) and (1.2). We prove

existence and uniqueness of sufficiently smooth solutions of the source term problem (1.1) and

the reaction rate problem (1.2). More precisely, we look for solutions u of (1.1) and v of (1.2)
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such that u, v ∈ C([0, T ];H2(Ω)) and ∂α
t u, ∂

α
t v ∈ C([0, T ];H2γ(Ω)) for some suitable values

of γ ∈ [0, 1). The smoothness of these solutions are closely related to our inverse problem.

Recall that for fractional diffusion equations with time-dependent coefficients or general

boundary conditions, we cannot reduce the problems to fractional differential equations

like [34]. To prove existence of sufficiently smooth solutions of (1.1)-(1.2), we consider the

abstract evolution problem associated to (1.1)-(1.2) and we use some suitable fixed point

theorem as in Beckers and Yamamoto [4]. We treat separately problems (1.1) and (1.2). We

start with the source term problem (1.1).

2.1. Smooth solutions of the source term problem. In this subsection we study the

well-posedness of problem (1.1). More precisely, we establish conditions that guaranty exis-

tence of sufficiently smooth solutions. The main result of this subsection can be stated as

follows.

Proposition 2.1. Let conditions (1.3) and (1.4) be fulfilled. Then, the IBVP (1.1) admits

a unique solution u ∈ C([0, T ];H2(Ω)) satisfying

Au ∈ C([0, T ];H2γ(Ω)) and ∂α
t u ∈ Lp(0, T ;H2γ(Ω)) (2.1)

for all 0 ≤ γ < 1− 1/(pα). Moreover, we have

∥Au∥C([0,T ];H2γ(Ω)) + ∥∂α
t u∥Lp(0,T ;H2γ(Ω)) ≤ C∥fR∥Lp(0,T ;H2(Ω)) (2.2)

with C > 0 depending on Ω, α, T , A, σ and γ.

To prove this result we introduce the following IBVP.
∂α
t u(x, t) +Au(x, t) = F (x, t), (x, t) ∈ Q,

Bσu(x, t) = 0, (x, t) ∈ Σ,

u(x, 0) = 0, x ∈ Ω.

(2.3)

We also consider the following conditions

F ∈ Lp(0, T ;H2(Ω)),
8

α
< p ≤ ∞ and BσF = 0 on Σ. (2.4)

Note that if we set F (x, t) = f(t)R(x, t), then conditions (1.3) and (1.4) are equivalent to

(2.4). In order to solve the new problem (2.3) we will use an abstract formulation of the

problem. For this purpose, we define the operator A as A + 1 in L2(Ω) equipped with the

boundary condition Bσh = 0;{
D(A) := {h ∈ H2(Ω); Bσh = 0 on ∂Ω},
Ah := Ah+ h, h ∈ D(A).

(2.5)

Recall that A is a selfadjoint and strictly positive operator with an orthonormal basis of

eigenfunctions (ϕn)n≥1 of finite order associated to a non-decreasing sequence of eigenvalues

(λn)n≥1. From now on, ∥ · ∥ and (·, ·) denote the norm and the inner product in L2(Ω)
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respectively. We define the fractional power Aγ, γ ≥ 0, of A by

D(Aγ) :=

{
h ∈ L2(Ω);

∞∑
n=1

λ2γ
n |(h, ϕn)|2 < ∞

}
,

Aγh :=
∞∑
n=1

λγ
n(h, ϕn)ϕn, h ∈ D(Aγ).

(2.6)

Clearly, D(Aγ) is a Hilbert space with the norm ∥ · ∥D(Aγ) defined by ∥h∥D(Aγ) := ∥Aγh∥.
Since D(A) is continuously embedded into H2(Ω) with equivalent norm (e.g. [20, Theorem

5.4, Chapter 2]), we see by interpolation that

D(Aγ) ⊂ H2γ(Ω),

C−1∥h∥H2γ(Ω) ≤ ∥h∥D(Aγ) ≤ C∥h∥H2γ(Ω), h ∈ D(Aγ),

for 0 ≤ γ ≤ 1.

We consider the following abstract problem in L2(Ω);{
∂α
t u(t) + Au(t) = F (t), t ∈ (0, T ),

u(0) = 0.
(2.7)

We define the operator valued function {SA(t)}t≥0 by

SA(t)h =
∞∑
n=1

(h, ϕn)Eα,1(−λnt
α)ϕn, h ∈ L2(Ω), t ≥ 0,

with Eα,β, α > 0, β ∈ R, the Mittag-Leffler function given by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
.

Recall that SA ∈ W 1,1(0, T ;B(L2(Ω))) (e.g. [4, 34]) and {SA(t)}t≥0 does not enjoy the

properties of a semigroup: namely SA(t+ s)h ̸= SA(t)SA(s)h. From now on, for all Banach

space X and all f ∈ L1(0, T ;B(X)), g ∈ L1(0, T ;X), we define the causal convolution

product f ∗ g given by

f ∗ g(t) :=
∫ t

0

f(t− s)g(s)ds, t ∈ (0, T ).

We introduce the operator valued function {S̃A(t)}t>0 given by

S̃A(t)h =
∞∑
n=1

(h, ϕn)t
α−1Eα,α(−λnt

α)ϕn, h ∈ L2(Ω), t > 0.

In light of [6, formula (2.3)], for all t ∈ (0,+∞) we have S̃A(t) = −A−1S ′
A(t). Moreover,

according to [34, Theorem 2.2], for any F ∈ L∞(0, T ;L2(Ω)), problem (2.7) admits a unique

solution

u(t) = S̃A ∗ F (t) =

∫ t

0

S̃A(t− s)F (s)ds, t ∈ (0, T ). (2.8)
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In view of [4, Theorem 1], this solution is lying in L∞(0, T ;D(Aγ)) for 0 ≤ γ < 1, and we

have

∥AγS̃A(t)h∥ ≤ Ctα(1−γ)−1∥h∥, h ∈ L2(Ω), t > 0. (2.9)

For additional information about the time behavior of fractional operators and some results

on Mittag-Leffler functions, we refer to [24]. In particular, the mapping t 7→ S̃A(t) belongs

to Lr(0, T ;B(L2(Ω))) if r ∈ (1,∞) satisfies r(1− α) < 1.

We consider the following Young’s inequality:

Lemma 2.2. Let X be a Banach space, f ∈ Lp(0, T ;B(X)) and g ∈ Lp′(0, T ;X) with

1 ≤ p, p′ ≤ ∞ and 1/p+ 1/p′ = 1. Then, f ∗ g is lying in C([0, T ];X) and we have

∥f ∗ g(t)∥X ≤ ∥f∥Lp(0,t;B(X))∥g∥Lp′ (0,t;X), t ∈ [0, T ].

We refer to [5, Exercise 4.30] and [36, Appendix A] for the proof of this lemma.

Let p ∈ (1,∞] be as in (2.4) and let p′ ∈ [1,∞) be its conjugate index. Noting that A
and S̃A(t) commute, we see from (2.8) that for F ∈ Lp(0, T ;D(A)),

Au(t) = S̃A ∗ AF (t) =

∫ t

0

S̃A(t− s)AF (s)ds.

By p > 1/α and (2.9), the mapping t 7→ S̃A(t) belongs to Lp′(0, T ;B(L2(Ω))). Therefore, by

Lemma 2.2, u belongs to C([0, T ];D(A)) and satisfies

∥Au(t)∥ ≤
∫ t

0

∥S̃A(t− s)AF (s)∥ds ≤ C

∫ t

0

(t− s)α−1∥F (s)∥D(A)ds

≤ C

(∫ t

0

s(α−1)p′ds

)1/p′

∥F∥Lp(0,t;D(A)) ≤ Ctα−1/p∥F∥Lp(0,T ;D(A)).

Thus, we can define the map H : Lp(0, T ;D(A)) → C([0, T ];D(A)) by

H(w) := S̃A ∗ w, w ∈ Lp(0, T ;D(A)) (2.10)

and for any w ∈ Lp(0, T ;D(A)), it satisfies

∥H(w)(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥w(s)∥D(A)ds ≤ Ctα−1/p∥w∥Lp(0,T ;D(A)). (2.11)

Using these properties we will prove Proposition 2.1.

Proof of Proposition 2.1. Let A be the operator defined by (2.5), then the IBVP (2.3)

can be rewritten as {
∂α
t u(t) + Au(t) = u(t) + F (t), t ∈ (0, T ),

u(0) = 0,
(2.12)

where u(t) := u(·, t) and F (t) := F (·, t). From now on, we divide the proof of Proposition 2.1

into three steps. First, using a fixed point argument we will prove that problem (2.12) admits

a unique solution u ∈ C([0, T ];H2(Ω)). Then, we prove that u fulfills ∥u∥C([0,T ];H2(Ω)) ≤
C ∥F∥Lp(0,T ;D(A)). Finally, we prove (2.1) and estimate (2.2).
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We start by proving existence and uniqueness of a solution u ∈ C([0, T ];H2(Ω)). Noting

that F ∈ Lp(0, T ;D(A)) by (2.4), we see from (2.8) that the solution u of (2.12) satisfies

u(t) = H(u)(t) +H(F )(t), t ∈ (0, T ), (2.13)

where the map H is defined by (2.10). Therefore, we will look for a fixed point of the map

G : C([0, T ];D(A)) → C([0, T ];D(A)) defined by

G(w)(t) := H(w)(t) +H(F )(t), w ∈ C([0, T ];D(A)), t ∈ (0, T ).

Now we introduce the family {Yr}r>0 of functions on (0, T ), which is defined by

Yr(t) =
tr−1

Γ(r)
, t > 0.

One can easily check that, for all r, s > 0, we have

Yr ∗ Ys = Yr+s. (2.14)

In particular, noting that Y1(t) ≡ 1, we also have∫ t

0

Yr(t− τ)dτ = Yr ∗ Y1(t) = Yr+1(t). (2.15)

By (2.11) and (2.15), for w ∈ C([0, T ];D(A)) and all t ∈ [0, T ], we have

∥H(w)(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥w(s)∥D(A)ds ≤ C

(∫ t

0

Yα(t− s)ds

)
∥w∥C([0,T ];D(A))

= CYα+1(t)∥w∥C([0,T ];D(A)),

and repeating the similar calculation, we get

∥H2w(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥H(w)(s)∥D(A)ds

≤ C

(∫ t

0

Yα(t− s)Yα+1(s)ds

)
∥w∥C([0,T ];D(A))

= CY2α+1(t)∥w∥C([0,T ];D(A)),

where we have used (2.14) in the last equality. By induction, for all w ∈ C([0, T ];D(A)), we

have

∥Hnw(t)∥D(A) ≤ CYnα+1(t)∥w∥C([0,T ];D(A)) ≤
CT nα

Γ(nα + 1)
∥w∥C([0,T ];D(A)), t ∈ [0, T ]. (2.16)

Therefore, we obtain

∥Gn(w1)− Gn(w2)∥C([0,T ];D(A)) = ∥Hn(w1 − w2)∥C([0,T ];D(A))

≤ CT nα

Γ(nα+ 1)
∥w1 − w2∥C([0,T ];D(A))

for w1, w2 ∈ C([0, T ];D(A)). Thus, Gn is a contraction for sufficiently large n ∈ N and G
admits a unique fixed point u ∈ C([0, T ];D(A)) ⊂ C([0, T ];H2(Ω)). Moreover, we have

u = G(u) = Gn(u) = Hn(u) +
n∑

k=1

Hk(F ) (2.17)
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for any n ∈ N.
Now let us show that this unique solution fulfills ∥u∥C([0,T ];H2(Ω)) ≤ C ∥F∥Lp(0,T ;D(A)). For

this purpose, we estimate each Hk(F ). First, by (2.11), we have

∥H(F )(t)∥D(A) ≤ CYα+1−1/p(t)∥F∥Lp(0,T ;D(A)), t ∈ [0, T ].

Applying (2.11) and (2.14), for all t ∈ [0, T ], we get

∥H2(F )(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥H(F )(s)∥D(A)ds

≤ C

(∫ t

0

Yα(t− s)Yα+1−1/p(s)ds

)
∥F∥Lp(0,T ;D(A))

= CY2α+1−1/p(t)∥F∥Lp(0,T ;D(A)).

By induction, we obtain

∥Hk(F )(t)∥D(A) ≤ CYkα+1−1/p(t)∥F∥Lp(0,T ;D(A)) ≤
CT kα−1/p∥F∥Lp(0,T ;D(A))

Γ(kα + 1− 1/p)
, t ∈ [0, T ].

Therefore, applying (2.16) and (2.17), we find

∥u∥C([0,T ];D(A)) ≤ ∥Hn(u)∥C([0,T ];D(A)) +
n∑

k=1

∥Hk(F )∥C([0,T ];D(A))

≤ CT nα

Γ(nα + 1)
∥u∥C([0,T ];D(A)) + C

(
n∑

k=1

T kα−1/p

Γ(kα+ 1− 1/p)

)
∥F∥Lp(0,T ;D(A))

and by taking sufficiently large n ∈ N, we obtain

∥u∥C([0,T ];D(A)) ≤ C∥F∥Lp(0,T ;D(A)) (2.18)

with C depending on T , α, Ω, A and σ.

We complete the proof of Proposition 2.1 by showing the estimates (2.1)-(2.2). We fix

0 ≤ γ < 1− 1/(pα). Then, in light of (2.13), for all t ∈ (0, T ), we have Au(t) ∈ D(Aγ) with

Aγ(Au)(t) = (AγS̃A) ∗ (Au+AF )(t)

and by (2.9), we have

∥AγS̃A(t)∥B(L2(Ω)) ≤ Ctµ−1,

where µ := α(1−γ). Since µ > 1/p, the mapping t 7→ AγS̃A(t) belongs to Lp′(0, T ;B(L2(Ω))

where p′ ∈ [1,∞) satisfies 1/p+ 1/p′ = 1. Therefore, Au belongs to C([0, T ];D(Aγ)) and

∥Au(t)∥D(Aγ) =

∥∥∥∥∫ t

0

AγS̃A(t− s) (Au(s) +AF (s)) ds

∥∥∥∥
≤ C

∫ t

0

(t− s)µ−1∥u(s)∥D(A)ds+ C

∫ t

0

(t− s)µ−1∥F (s)∥D(A)ds

≤ C

(∫ t

0

(t− s)µ−1ds

)
∥u∥C([0,T ];D(A)) + C

(∫ t

0

sp
′(µ−1)ds

)1/p′

∥F∥Lp(0,t;D(A))

≤ CT µ∥u∥C([0,T ];D(A)) + CT µ−1/p∥F∥Lp(0,T ;D(A)) (2.19)
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Combining this with (2.18), we have

∥Au(t)∥D(Aγ) ≤ C∥F∥Lp(0,T ;D(A)) ≤ C∥F∥Lp(0,T ;H2(Ω)).

Hence, we deduce that Au ∈ C([0, T ];H2γ(Ω)) and

∥Au∥C([0,T ];H2γ(Ω)) ≤ C∥F∥Lp(0,T ;H2(Ω)).

By the original equation ∂α
t u = −Au+F , we see that ∂α

t u belongs to Lp(0, T ;H2γ(Ω)) with

the estimate;

∥∂α
t u∥Lp(0,T ;H2γ(Ω)) ≤ C∥Au∥Lp(0,T ;H2γ(Ω)) + C∥F∥Lp(0,T ;H2γ(Ω))

≤ C∥Au∥C([0,T ];H2γ(Ω)) + C∥F∥Lp(0,T ;H2(Ω))

≤ C∥F∥Lp(0,T ;H2(Ω)),

which implies (2.2). Thus, we have completed the proof of the proposition. �

2.2. Smooth solutions for the reaction rate problem. In this subsection we study the

well-posedness of problem (1.2). The main result of this subsection can be stated as follows.

Proposition 2.3. Let conditions (1.3) and (1.8) be fulfilled. Then, the IBVP (1.2) admits

a unique solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1. Moreover, we have

∥Av∥C([0,T ];H2γ(Ω)) + ∥∂α
t v∥L∞(0,T ;H2γ(Ω)) ≤ C∥v0∥H4(Ω) (2.20)

with C depending on Ω, α, T , ∥f∥L∞(0,T ), ∥q∥L∞(0,T ;H2(Ω)), A, σ and γ.

To prove this result we introduce the intermediate IBVP
∂α
t v(x, t) +Av(x, t) + q̃(x, t)v(x, t) = F (x, t), (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = 0, x ∈ Ω.

(2.21)

If we assume q̃(x, t) = f(t)q(x, t), then conditions (1.3) and (1.8) are equivalent to the

condition {
1) q̃ ∈ L∞(0, T ;H2(Ω)) (and ∂ν q̃ = 0 on Σ if σ ̸≡ 0),

2) v0 ∈ H4(Ω) and Bσv0 = Bσ(Av0) = 0 on ∂Ω.
(2.22)

In order to prove Proposition 2.3, we consider an intermediate result related to the well-

posedness of problem (2.21).

Lemma 2.4. Let F ∈ L∞(0, T ;H2(Ω)) satisfy BσF = 0 and condition 1) of (2.22) be

fulfilled. Then, the IBVP (2.21) admits a unique solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω))

for all 0 ≤ γ < 1. Moreover, we have

∥Av∥C([0,T ];H2γ(Ω)) + ∥∂α
t v∥L∞(0,T ;H2γ(Ω)) ≤ C∥F∥L∞(0,T ;H2(Ω)) (2.23)

with C depending on Ω, T , α, ∥q̃∥L∞(0,T ;H2(Ω)), A, σ and γ.
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Proof. Similarly to Proposition 2.1, the IBVP (2.21) can be rewritten as{
∂α
t v(t) + Av(t) = (1− q̃(t))v(t) + F (t),

v(0) = 0,
(2.24)

where v(t) := v(·, t) and F (t) := F (·, t). Moreover, q̃(t) denotes the multiplication operator

by q̃(x, t). Then, we can see that the solution v of (2.24) is a fixed point of the map

K : C([0, T ];D(A)) → C([0, T ];D(A)) defined by

K(w)(t) := (H(1− q̃(t))w)(t) +H(F )(t), w ∈ C([0, T ];D(A)), t ∈ (0, T ).

Indeed, the Sobolev embedding theorem (e.g. [37, Theorem 2.1,Chapter II]) and condition

1) of (2.22) yields that (1− q̃)w belongs to L∞(0, T ;D(A)) and satisfies

∥(1− q̃(t))w(t)∥D(A) ≤ C∥w(t)∥D(A)

with C depending on ∥q̃∥L∞(0,T ;H2(Ω)). Thus we can see that K maps C([0, T ];D(A)) and we

find

∥Kn(w1)−Kn(w2)∥C([0,T ];D(A)) ≤
CT nα

Γ(nα + 1)
∥w1 − w2∥C([0,T ];D(A)),

w1, w2 ∈ C([0, T ];D(A)),

which implies that K admits a unique fixed point v ∈ C([0, T ];D(A)) ⊂ C([0, T ];H2(Ω)).

Then, we have

v = K(v) = Kn(v) = (H(1− q̃(t)))n(v) +
n∑

k=1

(H(1− q̃(t)))k−1(HF ). (2.25)

Repeating the argument in Proposition 2.1, we deduce from (2.25) that

∥v∥C([0,T ];D(A)) ≤ C∥F∥L∞(0,T ;D(A)) (2.26)

with C depending on T , Ω, α, A, σ and ∥q̃∥L∞(0,T ;H2(Ω)).

Finally for 0 ≤ γ < 1, using estimates similar to (2.19), we deduce that Av belongs to

C([0, T ];H2γ(Ω)) and satisfies

∥Av∥C([0,T ];H2γ(Ω)) ≤ C∥F∥L∞(0,T ;H2(Ω)).

Moreover, combining this with the original equation, we get ∂α
t v ∈ L∞(0, T ;H2γ(Ω)) and

(2.23). �

Armed with Lemma 2.4, we are now in position to complete the proof of Proposition 2.3.

For this purpose, we rewrite problem (1.2) as follows
∂α
t v(x, t) +Av(x, t) + q̃(x, t)v(x, t) = 0, (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = v0(x), x ∈ Ω.

(2.27)

We will prove the result of Proposition 2.3 for problem (2.27) by assuming (2.22) fulfilled.



DETERMINATION OF COEFFICIENTS IN FRACTIONAL DIFFUSION EQUATIONS 13

Proof of Proposition 2.3. We split the solution v of (2.27) into two terms v = w + v0
where w solves

∂α
t w(x, t) +Aw(x, t) + q̃(x, t)w(x, t) = F (x, t), (x, t) ∈ Q,

Bσw(x, t) = 0, (x, t) ∈ Σ,

w(x, 0) = 0, x ∈ Ω

(2.28)

with F (x, t) := −(A + q̃(x, t))v0(x)
1. Then, (2.22) implies F ∈ L∞(0, T ;D(A)) with the

estimate

∥F∥L∞(0,T ;H2(Ω)) ≤ C∥v0∥H4(Ω).

By Lemma 2.4, the IBVP (2.28) admits a unique solution w ∈ C([0, T ];H2(Ω)) satisfying

Aw ∈ C([0, T ];H2γ(Ω)) and ∂α
t w ∈ L∞(0, T ;H2γ(Ω)).

Moreover, we find

∥Aw∥C([0,T ];H2γ(Ω)) + ∥∂α
t w∥L∞(0,T ;H2γ(Ω)) ≤ C∥F∥L∞(0,T ;H2(Ω)) ≤ C∥v0∥H4(Ω).

Therefore, the IBVP (2.27) admits a unique solution v ∈ C([0, T ];H2(Ω)) satisfying

Av ∈ C([0, T ];H2γ(Ω)) and ∂α
t v ∈ L∞(0, T ;H2γ(Ω)).

From the above estimate, we deduce (2.20). �

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. To this end, we prepare the following lemmata

with Gronwall type inequalities;

Lemma 3.1. Let C, α > 0 and h, d ∈ L1(0, T ) be nonnegative functions satisfying

h(t) ≤ Cd(t) + C

∫ t

0

(t− s)α−1h(s)ds, t ∈ (0, T ),

then we have

h(t) ≤ Cd(t) + C

∫ t

0

(t− s)α−1d(s)ds, t ∈ (0, T ).

We refer to [18, Lemma 7.1.1, p.188] for the proof of this lemma. Let us also consider the

following.

Lemma 3.2. We take 2 ≤ p ≤ ∞ and µ > 2/p. Let f ∈ L∞(0, T ) and w, S ∈ Lp(0, T ) be

non-negative functions satisfying the integral inequality

f(t) ≤ w(t) +

∫ t

0

(t− s)µ−1f(s)S(s)ds, a.e. t ∈ (0, T ). (3.1)

Then, we have

∥f∥Lp(0,T ) ≤ C∥w∥Lp(0,T ), (3.2)

where the constant C depends on p, µ, T and ∥S∥Lp(0,T ).

1Here we use the fact that ∂α
t c = 0 for any constant c. This result holds true for fractional derivatives in

the Caputo sense which is being used here but for Riemann-Liouville fractional derivatives this would not

be true (see [29, pages 78-81])
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Proof. In order to prove this lemma, we will apply the Gronwall inequality to b(t) :=

∥f∥pLp(0,t). For this purpose, we will first derive an estimate of b(t) of the form

b(t) ≤ C∥w∥pLp(0,T ) + C

∫ t

0

b(s)ds, t ∈ (0, T ). (3.3)

Applying (3.1), we get

|f(s)|p ≤ C|w(s)|p + C

∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)S(ξ)dξ

∣∣∣∣p ,
which implies

b(t) ≤ C∥w∥pLp(0,T ) + C

∫ t

0

∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)S(ξ)dξ

∣∣∣∣p ds. (3.4)

To obtain (3.3), we will estimate the right-hand side of the above inequality. By the Cauchy-

Schwarz inequality, we get∫ s

0

|f(ξ)S(ξ)|p/2dξ =

∫ s

0

|f(ξ)|p/2 · |S(ξ)|p/2dξ ≤
(∫ s

0

|f(ξ)|pdξ
)1/2(∫ s

0

|S(ξ)|pdξ
)1/2

,

which can also be written

∥fS∥Lp/2(0,s) ≤ ∥f∥Lp(0,s)∥S∥Lp(0,s).

Therefore, for p > 2, an application of Lemma 2.2 yields∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)S(ξ)dξ

∣∣∣∣ ≤ (∫ s

0

ξr(µ−1)ds

)1/r

∥fS∥Lp/2(0,s) ≤ C∥f∥Lp(0,s)∥S∥Lp(0,s),

where r ∈ [1,∞) satisfies 2/p+ 1/r = 1. For p = 2, we also have∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)S(ξ)dξ

∣∣∣∣ ≤ sµ−1∥fS∥L1(0,s) ≤ C∥f∥L2(0,s)∥S∥L2(0,s).

Thus, for any p ≥ 2, we obtain∣∣∣∣∫ s

0

(s− ξ)µ−1f(ξ)S(ξ)dξ

∣∣∣∣p ≤ Cb(s), (3.5)

where C depends on T , p, µ and ∥S∥Lp(0,T ). By (3.4) and (3.5), we get (3.3) and by the

Gronwall inequality, we get

b(t) ≤ C∥w∥pLp(0,T ), t ∈ (0, T )

with C depending on p, µ, T and ∥S∥Lp(0,T ). Thus, we have proved (3.2). �

Armed with Lemma 3.1 and 3.2, we are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. For i = 1, 2, let ui be the solution to (1.1) with f = fi and set

u := u1 − u2, f := f1 − f2. We recall that the regularity of these solutions are stated in

Proposition 2.1 with p ∈ (8/α,+∞] and γ ∈ [0, 1−1/(pα)). Then, u solves (1.1) and satisfies

u(t) = H(u+ fR)(t) =

∫ t

0

S̃A(t− s)(u(s) + f(s)R(s))ds,
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where u(t) := u(·, t) and R(t) := R(·, t). Combining this representation with the Gronwall

type inequality of Lemma 3.1 and 3.2, we will prove Theorem 1.1. For this purpose, we

proceed in four steps. First, we set

d(t) :=

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds.

and we prove that ∥u(t)∥D(A) fulfills

∥u(t)∥D(A) ≤ Cd(t), 0 < t < T. (3.6)

Second, we establish the estimate

∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds. (3.7)

Third, applying estimates (3.6)-(3.7), we derive an estimate of |Au(x0, t)|. Combining this

with Lemma 3.2, we prove (1.6). Forth, we show (1.7).

We start with estimate (3.6). By (2.11), we have

∥u(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥u(s)∥D(A)ds+ C

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds

= C

∫ t

0

(t− s)α−1∥u(s)∥D(A)ds+ Cd(t). (3.8)

Then, applying Lemma 3.1 with h(t) = ∥u(t)∥D(A), we get

∥u(t)∥D(A) ≤ Cd(t) + C

∫ t

0

(t− s)α−1d(s)ds, 0 < t < T. (3.9)

Using Fubini’s theorem, for ν > 0, we find∫ t

0

(t− s)ν−1d(s)ds =

∫ t

0

(t− s)ν−1

(∫ s

0

(s− ξ)α−1|f(ξ)|∥R(ξ)∥D(A)dξ

)
ds

=

∫ t

0

(∫ t

ξ

(t− s)ν−1(s− ξ)α−1ds

)
|f(ξ)|∥R(ξ)∥D(A)dξ

= B(ν, α)

∫ t

0

(t− ξ)ν+α−1|f(ξ)|∥R(ξ)∥D(A)dξ (3.10)

where B(·, ·) is the Beta function. In particular, for ν = α, we obtain∫ t

0

(t− s)α−1d(s)ds = B(α, α)

∫ t

0

(t− s)2α−1|f(s)|∥R(s)∥D(A)ds

≤ TαB(α, α)

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds

≤ Cd(t).

Combining this with (3.9), we deduce (3.6).
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Next we estimate ∥Au(t)∥D(Aγ) for d/4 < γ < 1 − 2/(pα). Repeating the calculation in

(2.19), we find

∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1
(
∥u(s)∥D(A) + |f(s)|∥R(s)∥D(A)

)
ds, a.e. t ∈ (0, T ),

where µ = α(1− γ). By (3.10) with ν = µ and (3.6), we obtain

∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1d(s)ds+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

= CB(µ, α)

∫ t

0

(t− s)µ+α−1|f(s)|∥R(s)∥D(A)ds

+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

≤ CT αB(µ, α)

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds

≤ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds.

This proves (3.7).

Now let us show (1.6). For this purpose, we first apply (3.6)-(3.7) to estimate |Au(x0, t)|.
Since γ > d/4, the Sobolev embedding theorem yields

|Au(x0, t)| ≤ C∥Au(·, t)∥H2γ(Ω) ≤ C∥Au(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds.

(3.11)

From the original equation, we get

f(t)R(x0, t) = ∂α
t u(x0, t) +Au(x0, t), a.e. t ∈ (0, T ). (3.12)

Combining this with (1.5) and (3.11), we find

|f(t)| ≤ 1

δ
(|∂α

t u(x0, t)|+ |Au(x0, t)|)

≤ C|∂α
t u(x0, t)|+ C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds, a.e. t ∈ (0, T ) (3.13)

with C depending on δ, α, Ω, A, σ and T . By Lemma 3.2, we see that

∥f∥Lp(0,T ) ≤ C∥∂α
t u(x0, ·)∥Lp(0,T ),

which implies (1.6).

Finally, we complete the proof by proving (1.7). According to (3.11) and (3.12), we have

|∂α
t u(x0, t)| ≤ |f(t)R(x0, t)|+ |Au(x0, t)|

≤ C|f(t)|∥R(·, t)∥H2(Ω) + C

∫ t

0

(t− s)µ−1|f(s)|∥R(s)∥D(A)ds
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≤ C∥f∥L∞(0,T )∥R(t)∥D(A) + C∥f∥L∞(0,T )

∫ t

0

(t− s)µ−1∥R(s)∥D(A)ds

≤ C∥f∥L∞(0,T )∥R(t)∥D(A) + C∥f∥L∞(0,T )T
µ−1/p∥R∥Lp(0,T ;D(A)), a.e. t ∈ (0, T ).

Therefore, we find

∥∂α
t u(x0, ·)∥Lp(0,T ) ≤ C∥f∥L∞(0,T )∥R∥Lp(0,T ;D(A)) + C∥f∥L∞(0,T )T

µ∥R∥Lp(0,T ;D(A))

≤ C∥f∥L∞(0,T ).

Thus, we have proved (1.7). �

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We first prepare the following generalized Gron-

wall’s inequality;

Lemma 4.1. Let µ, a, b > 0 and f ∈ L1(0, T ) be nonnegative function satisfying the integral

inequality

f(t) ≤ a+ b

∫ t

0

(t− s)µ−1f(s)ds, a.e. t ∈ (0, T ).

Then, we have

f(t) ≤ aEµ,1

(
(bΓ(µ))1/µtµ

)
, a.e. t ∈ (0, T ).

We refer to [18, Lemma 7.1.2, p.189] for the proof of this result. In light of this result, we

are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. For i = 1, 2, let vi be the solution to (1.2) with f = fi and set

v := v1 − v2, f := f2 − f1. We recall that the smoothness of these solutions are given

by Proposition 2.3 with γ ∈ [0, 1). Then, by setting q̃(x, t) := f1(t)q(x, t) and R(x, t) :=

q(x, t)v2(x, t), we see that v solves
∂α
t v(x, t) +Av(x, t) + q̃(x, t)v(x, t) = f(t)R(x, t), (x, t) ∈ Q,

Bσv(x, t) = 0, (x, t) ∈ Σ,

v(x, 0) = 0, x ∈ Ω.

Recall that v satisfies

v(t) = H((1− q̃)v)(t) +H(fR)(t)

=

∫ t

0

S̃A(t− s)(1− q̃(s))v(s)ds+

∫ t

0

S̃A(t− s)f(s)R(s)ds,

where we have set v(t) := v(·, t) and R(t) := R(·, t). Moreover, q̃(t) denotes the multiplica-

tion operator by q̃(x, t).

First we estimate ∥v(t)∥D(A). Since (1 − q̃(t))v(t), R(t) ∈ D(A) by (1.8), we apply (2.11)

to have

∥v(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1∥(1− q̃(t))v(s)∥D(A)ds+ C

∫ t

0

(t− s)α−1|f(s)|∥R(s)∥D(A)ds
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≤ C

∫ t

0

(t− s)α−1∥v(s)∥D(A)ds+ C

∫ t

0

(t− s)α−1|f(s)|ds.

with C depending on Ω, α, M , A, σ and ∥q∥L∞(0,T ;H2(Ω)). Then, repeating the arguments

used in Theorem 1.1, we obtain

∥v(t)∥D(A) ≤ C

∫ t

0

(t− s)α−1|f(s)|ds, 0 < t < T.

and from this estimate we also deduce that for any 0 ≤ γ < 1,

∥Av(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|ds, 0 < t < T,

where µ := α(1− γ). Therefore, by taking γ ∈ (d/4, 1), we have

|Av(x0, t) + q̃(x0, t)v(x0, t)| ≤ C∥Av(·, t) + q̃(·, t)v(·, t)∥H2γ(Ω)

≤ C∥Av(·, t)∥H2γ(Ω) + C∥v(·, t)∥H2γ(Ω)

≤ C∥Av(t)∥D(Aγ) ≤ C

∫ t

0

(t− s)µ−1|f(s)|ds. (4.1)

From the original equation, we have

f(t)R(x0, t) = ∂α
t v(x0, t) +Av(x0, t) + q̃(x0, t)v(x0, t), a.e. t ∈ (0, T ). (4.2)

On the other hand, from (1.9), we deduce that

|R(x0, t)| ≥ c > 0, a.e. t ∈ (0, T )

with c depending on δ, Ω and T . Therefore, combining this with (4.1) and (4.2), we obtain

|f(t)| ≤ C|∂α
t v(x0, t)|+ C|Av(x0, t) + q̃(x0, t)v(x0, t)|

≤ C∥∂α
t v(x0, ·)∥L∞(0,T ) + C

∫ t

0

(t− s)µ−1|f(s)|ds, a.e. t ∈ (0, T ).

Applying Lemma 4.1, we see that

|f(t)| ≤ C∥∂α
t v(x0, ·)∥L∞(0,T ).

Thus, we have proved the second inequality in (1.10). Moreover, by (4.2), we have

|∂α
t v(x0, t)| ≤ |f(t)R(x0, t)|+ |Av(x0, t) + q̃(x0, t)v(x0, t)|

≤ |f(t)|∥R(·, t)∥D(A) + C

∫ t

0

(t− s)µ−1|f(s)|ds

≤ C

(
∥R∥L∞(0,T ;D(A)) +

T µ

µ

)
∥f∥L∞(0,T ).

Thus, we have proved the first inequality in (1.10). �
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Goncalvès and J. Lévy-Véhel, eds., Digital Signal and Image Processing Series, ISTE - Wiley, 7 (2009),

237-278.

[26] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics

approach, Physics reports, 339 (2000), 1-77.

[27] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential

Equations, Wiley, 1993.

[28] L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation , Inverse

Problems, 29 (2013), 075013 (8pp).

[29] I. Podlubny, Fractional differential equations, Academic Press, San Diego, (1999).

[30] A.I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathe-

matical Physics, Marcel Dekker, New York, (2000).

[31] H.E. Roman and P.A. Alemany, Continuous-time random walks and the fractional diffusion equa-

tion, J. Phys. A, 27 (1994), 3407-3410.

[32] S. Saitoh, V.K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to

inverse heat source problems, J. Ineq. Pure and Appl. Math., 3 (5) (2003), Art. 80.

[33] S. Saitoh, V.K. Tuan and M. Yamamoto, Convolution inequalities and applications, J. Ineq. Pure

and Appl. Math., 4 (3) (2003), Art. 50.

[34] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave

equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.

[35] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Gordon and

Breach Science Publishers, Philadelphia, (1993).

[36] E.M. Stein, Singular Intearals and Differentiability Properties of Functions, Princeton university press,

Princeton, (1970).

[37] R.S. Strichartz, Multipliers on Fractional Sobolev Spaces, J. Math. Mech.16 (1967), 1031-1060.

[38] M. Yamamoto and Y. Zhang,Conditional stability in determining a zeroth-order coefficient in a half-

order fractional diffusion equation by a Carleman estimate, Inverse Problems, 28 (2012), no. 10, 105010

(10 pp).

E-mail address: 1) kenichi@ms.u-tokyo.ac.jp

E-mail address: 2) yavar.kian@univ-amu.fr


