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Abstract

The quality of biometric raw data is one of the main factors affecting the

overall performance of biometric systems. Poor biometric samples increase

the enrollment failure, and decrease the system performance. Hence, con-

trolling the quality of the acquired biometric raw data is essential in order to

have useful biometric authentication systems. Towards this goal, we present

a generic methodology for the quality assessment of image-based biomet-

ric modality combining two types of information: 1) image quality and 2)

pattern-based quality using the SIFT descriptor. The associated metric has

the advantages of being multimodal (face, fingerprint and hand veins), and

independent from the used authentication system. Six benchmark databases

and one biometric verification system are used to illustrate the benefits of
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the proposed metric. A comparison study with the NFIQ metric proposed

by the NIST shows the benefits of the presented metric.

Keywords: Biometrics, No-Reference Image Quality Assessment,

Scale-Invariant Feature Transformation (SIFT), Support Vector Machine

(SVM).

1. Introduction

Biometric systems are being increasingly used in our daily life to man-

age the access of physical (such as border control) and logical (such as e-

commerce) resources. Biometrics uses the authentication factors based on

“Something that qualifies the user” and “Something the user can do”. The

main benefits of this authentication method is the strong relationship be-

tween the individual and its authenticator, as well as the easiness of its use.

Also, it is usually more difficult to copy the biometric characteristics of an

individual than most of other authentication methods such as passwords.

Despite the advantages of biometric systems, many drawbacks decrease

their proliferation. The main one is the uncertainty of the verification re-

sult. By contrast to password checking, the verification of biometric raw

data is subject to errors and represented by a similarity percentage (100% is

never reached). This verification inaccuracy is due to many reasons such as

the variations of human characteristics (e.g., occlusions [1]), environmental

factors (e.g., illuminations [2]) and cross-device matching [3]. This kind of

acquisition artifacts may deeply affect the performance of biometric systems

and hence, decrease their use in real life applications. Moreover, the impact
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of quality on the system overall performace is also presented by the results

of the FVC seriers of competitions (FVC in 2000, 2002, 2004 and 2006) [4].

More specifically, the used databases in FVC 2004 and FVC 2006 are more

difficult than FVC 2002 and FVC 2000 ones, due to the perturbations de-

liberately introduced. The results show that the EER in average of the best

matching algorithm has increased from 0.96 in FVC 2000 and FVC 2002 to

2.115 in FVC 2004 and FVC 2006. Therefore, controlling the quality of the

acquired biometric raw data is considered as an essential step in both en-

rollment and verification phases. Using the quality information, poor quality

samples can be removed during the enrollment or rejected during the verifica-

tion. Such information could be also used for soft biometrics and multimodal

approaches [5, 6].

We present in this paper a quality assessment metric of image-based bio-

metric raw data using both information: 1) image quality and 2) pattern-

based quality using the SIFT keyspoints extracted from the image. The

presented metric has the advantages of being multimodal (face, fingerprint

and hand veins), and independent from the used authentication system.

The outline of the paper is given as follows: Section 2 presents related

previous works on quality assessment of biometric raw data. We present in

Section 3 the proposed quality assessment metric. Section 4 describes the

experimental results obtained for the six trial biometric databases (four for

face, two for fingerprint and hand veins, respectively). A comparison study

with the NFIQ1 metric on fingerprints is given in Section 5. A conclusion

1NIST Fingerprint Image Quality
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and some perspectives of this work are given in Section 6.

2. Related works

The quality assessment of biometric raw data is receiving more and more

attention in biometrics community. We present in this section an overview

of existing biometric image-based quality metrics.

The quality assessment of biometric raw data is divided into three points

of view as illustrated in Figure 1 [7]:

• Character: refers to the quality of the physical features of the individ-

ual.

• Fidelity: refers to the degree of similarity between a biometric sample

and its source.

• Utility: refers to the impact of the individual biometric sample on the

overall performance of a biometric system.

Figure 1: Quality assessment of biometric raw data: character, fidelity and utility.
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In biometrics, there is an international consensus on the fact that the

quality of a biometric sample should be related to its recognition performance

[8]. Therefore, we present in this paper a utility-based quality assessment

metric of biometric raw data. In the rest of this section, we present an

overview of the existing image-based quality metrics.

Alonso-Fernandez et al. [9] present an extensive overview of existing fin-

gerprint quality metrics which are mainly divided into three major categories:

1. Based on the use of local features of the image;

2. Based on the use of global features of the image;

3. Or addressing the problem of quality assessment as a classification prob-

lem.

The presented methods in [9] have shown their efficiency in predicting the

quality of fingerprints images. However, these methods are modality-dependent,

hence they cannot be used for other kinds of modalities (such as Face). An ex-

ample of these metrics is the NIST Fingerprint Image Quality metric (NFIQ)

[10] proposed by the NIST. NFIQ metric is dedicated to fingerprint quality

evaluation.

Shen et al. [11] applied Gabor filters to identify blocks with clear ridge

and valley patterns as good quality blocks. Lim et al. [12] combined local and

global spatial features to detect low quality and invalid fingerprint images.

Chen et al. [13] developed two new quality indices for fingerprint images.

The first index measures the energy concentration in the frequency domain

as a global feature. The second index measures the spatial coherence in local

regions. These methods has shown their efficiency in predicting the quality

of fingerprint images. However, they are didicated for fingerprint modality
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and could not be used for other modalities such as veins images.

Krichen et al. [1] present a probabilistic iris quality measure based on a

Gaussian Mixture Model (GMM). The authors compared the efficiency of

their metric with existing ones according two types of alterations (occlusions

and blurring) which may significantly decrease the performance of iris recog-

nition systems. Chaskar et al. [14] assessed nine quality factors of iris images

such as Ideal Iris Resolution(IIR), Actual Iris Resolution (AIR), etc. Other

iris quality metrics are presented in [15, 16]. However, these methods are

used to measure the quality of iris image, and cannot be used for other types

of modalities.

He et al. [17] present a hierarchical model to compute the biometric sam-

ple quality at three levels: database, class and image quality levels. The

method is based on the quantiles of genuine and impostor matching score

distributions. However, their model could not be used directly on a single

capture (i.e., requires a pre-acquired database).

Zhang and Wang [2] present an asymmetry-based quality assessment

method of face images. The method uses SIFT descriptor for quality as-

sessment. The presented method has shown its robustness against illumina-

tion and pose variations. Another asymmetry-based method is presented in

[18, 19]. However, this approach supposes the asymmetry hypothesis hence,

could not be used for the others types of modalities.

For the finger veins modality, very few are the existing works that predict

the quality of finger veins images. We can cite the work presented by Qin et

al. [20]. The authors present a quality assessment method of finger veins im-

ages based on Radon transform to detect the local vein patterns. We believe
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that extensive work should be done in this area since the veins modality is

considered as a promising solution to be implemented.

Discussion

Quality assessment of biometric raw data is an essential step to achieve

a better accuracy in real life applications. Despite this, few researches have

been conducted to this point with respect to research activities on perfor-

mance side. However, most of the existing quality metrics are modality-

and matcher-dependent. The others, based on the genuine and impostor

matching score distributions, could not be used directly on a single capture

(i.e., they require a large number of captures for the same person in order to

constitute its genuine score distribution). Therefore, the main contribution

of this paper is the definition of a quality metric which can be considered

as independent from the used matching system, and also it can be used for

several biometric modalities (face, fingerprint and hand veins images). It de-

tects with a reasonable accuracy three types of alterations that may deeply

affect the global performance of the most widely used matching systems.

The presented metric is not based on asymmetry hypothesis. Thus, it may

be used for several types of modalities (such as fingerprint, face, hand and

finger veins), and can be used directly on a single capture after training the

model.

3. Developed Metric

The presented metric is designed to quantify the quality of image-based

biometric data using two types of information as illustrated in Figure 2. The

retained principle is as follows: using one image quality criterion (Section 3.1)

7



and four pattern-based quality criteria (Section 3.2), a SVM-based classifi-

cation process (Section 3.3) is performed to predict the quality of the target

biometric data.

Figure 2: General scheme of the proposed quality metric.

3.1. No-reference image quality

The image quality assessment is an active research topic which is widely

used to validate treatment processes applied to digital images. In the context

of image compression, for example, such kind of assessment is used to quantify

the quality of the reconstructed image. Existing image quality assessment

metrics are divided into three categories: 1) Full-Reference (FR) quality

metrics, where the target image is compared with a reference signal that is

assumed to have perfect quality; 2) Reduced-Reference (RR) quality metrics,

where a description of the target image is compared with a description of the

reference signal; and 3) No-Reference (NR) quality metrics, where the target

image is evaluated without any reference to the original one. Despite the
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acceptable performance of current FR quality algorithms, the need for a

reference signal limits their application, and calls for reliable no-reference

algorithms.

In our study, we have used a No-Reference Image Quality Assessment

(NR-IQA) index, since the reference image does not exist. The used NR-

IQA method in this paper is the BLIINDS2 index introduced by Saad et

al. [21]. This index is based on a DCT framework. This makes it computa-

tionally convenient, uses a commonly used transform, and allows a coherent

framework. The BLIINDS index is defined from four features, using 17 ×

17 image patches centered at every pixel in the image, that are then pooled

together:

1. DCT-Based Contrast feature (υ1)

Contrast is a basic perceptual attribute of an image. One may distin-

guish between global contrast measures and ones that are computed

locally (and possibly pooled into one measure post local extraction).

The contrast of the kth local DCT patch is computed as follows:

ck(x) =
1

N

N∑
i=1

xiAC
xDC

(1)

where N is the patch size, xDC represents the DC coefficient and the

set {xiAC | i = 1 : N} represents the AC coefficients. Then, the local

contrast scores from all patches of the image are then pooled together

by averaging the computed values to obtain a global image contrast

value υ1:

2BLind Image Integrity Notator using DCT Statistics
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υ1 =
1

M

M∑
i=1

ci(x) (2)

where M is the number of local patches.

2. DCT-Based Structure Features (υ2)

Structure features are derived locally from the local DCT frequency

coefficients computed on a patch k. They are based on statistical traits

of the DCT histogram for which the DC coefficient is ignored. To

measure these statistical traits of the DCT histograms of the patch k,

its kurtosis is computed to quantify the degree of its peakedness and

tail weight:

κk(xAC) =
E(xAC − µ)4

σ4
(3)

where µ is the mean of xAC , and σ is its standard deviation. Then, the

resulting values for all patches are pooled together by averaging the

lowest tenth percentile of the obtained values to compute the global

image kurtosis value υ2.

3. DCT-Based Anisotropy orientation (υ3 and υ4)

It has been hypothesized that degradation processes damage a scene’s

directional information. Consequently, anisotropy, which is a direction-

ally dependent quality of images, was shown by Gabarda and Crist-

bal [22] to decrease as more degradation is added to the image. The

anisotropy measure is computed using the Renyi Entropy on DCT im-

age patches along four different orientations θ = 0, 45, 90, 135 in de-

grees. Each patch consists of the DCT coefficients of oriented pixel

intensities. We discard the DC coefficient, since the focus is on direc-
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tional information. Let the DCT coefficients of kth patch of orientation

θ be denoted by Pθ[k, j], where j is the frequency index of the DCT

coefficient. Each DCT patch is then subjected to a normalization of

the form:

P̃θ[k, j] =
Pθ[k, j]

2∑N
j=1 Pθ[k, j]

2
(4)

where N is the size of the oriented kth patch. Finally, the associated

Renyi entropy Rk
θ is computed as

Rk
θ =

1

1− β
log2

(
N∑
j=1

P̃θ[k, j]
β

)
(5)

where β > 1. Finally, the two measures of anisotropy υ3 and υ4 are

defined as

υ3 = var(E(Rk
θ)) et υ4 = max(E(Rk

θ)), ∀k,∀θ (6)

Due to the fact that the perception of image details depends on the image

resolution, the distance from the image plane to the observer, and the acuity

of the observers visual system, a multiscale approach is applied to compute

the final global score as:

BLIINDS =
L∏
i=1

υ
αi
1

1 υ
αi
2

2 υ
αi
3

3 υ
αi
4

4 (7)

constraints by
∑4

j=1

∑L
i=1 α

i
j = 1 and where L represents the number of de-

composition level used. The αij values are obtained using the correlation of

each criterion (υi) with the subjective notes given by human observers [21].
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Examples of predicted quality score using BLIINDS index are given in Fig-

ure 3. The stronger the image is degraded, the lower the quality index is.

13.58 11.15 9.35 8.50

Figure 3: Examples of BLIINDS index on samples of FACES94 database. From left to

right, reference image then its noisy images.

3.2. Pattern-based quality

The used pattern-based quality criteria are based on statistical measures

of keypoints features. We have used this approach since keypoints features

describe, in a stable manner, the regions of the image where the information is

important. This approach is widely used in object [23] and biometric recogni-

tion [24] issues. For the descriptor vector computation, several methods exist

in the literature such as the Scale Invariant Feature Transform (SIFT) [25],

Shape Contexts [26], Speed Up Robust Features (SURF) [27]. In our study, we

have used the SIFT algorithm since a comparison study presented by Miko-

lajczyk and Schmid [28] show that SIFT outperformed the other methods.

SIFT algorithm has been also successfully used in biometric recognition for

different modalities such as veins [24], face [29], fingerprint [30], iris [31] as

well as in 3D facial recongition [32].

SIFT algorithm consists of four major stages: 1) scale-space extrema de-

tection, 2) keypoint localization, 3) orientation assignment and 4) keypoint

descriptor. In the first stage, potential interest points are identified, using a
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difference-of-Gaussian function, that are invariant to scale and orientation.

In the second stage, candidate keypoints are localized to sub-pixel accuracy

and eliminated if found to be unstable. The third stage identifies the dom-

inant orientations for each keypoint based on its local image patch. The

keypoint descriptor in the final stage is created by sampling the magnitudes

and orientations of the image gradients in a neighborhood of each key-point

and building smoothed orientation histograms that contain the important

aspect of the neighborhood. Each local descriptor is composed of a 4x4 ar-

ray (histogram). For each coordinate of this array, an 8 orientation vector is

associated. A 128-elements (8×(4×4)) vector is then built for each keypoint.

In other words, each image im is described by a set of invariant features

X(im) = {ki = (si, sci, xi, yi)| i = 1 : N(im)} where si is the 128-

elements SIFT invariant descriptor computed near keypoints ki, (xi, yi) its

position in the original image im, sci its scale and N(im) the number of

detected keypoints for image im. The features extracted are invariant to

image scaling and rotation, and partially invariant to change in illumination

and 3D camera viewpoint. Examples of detected SIFT keypoints are given

in Figure 4. From these features, four criteria are retained (see Section 4.3.1)

to contribute to the quality assessment of the biometric raw data.

Figure 4: Examples of detected SIFT keypoints.
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3.3. SVM-based classification

In order to predict biometric sample quality using both information (im-

age quality and pattern-based quality), we use the Support Vector Machine

(SVM). From all existing classification schemes, a SVM-based technique has

been selected due to high classification rates obtained in previous works [33]

and to their high generalization abilities. SVMs have been proposed by Vap-

nik [34] and are based on the structural risk minimization principle from

statistical learning theory. SVMs express predictions in terms of a linear

combination of kernel functions centered on a subset of the training data,

known as support vectors (SV).

Suppose we have a training set {xi,yi} where xi is the training pattern

and yi the label. For problems with two classes, with the classes yi ∈ {−1, 1},

a support vector machine [34] implements the following algorithm. First,

the training points {xi} are projected into a space H (of possibly infinite

dimension) by means of a function Φ(·). The second step is to find an optimal

decision hyperplane in this space. The criterion for optimality will be defined

shortly. Note that for the same training set, different transformations Φ(·)

may lead to different decision functions. A transformation is achieved in an

implicit manner using a kernel K(·, ·) and consequently the decision function

can be defined as :

f(x) = 〈w,Φ(x)〉+ b =
∑̀
i=1

α∗i yiK(xi,x) + b (8)

with α∗i ∈ R. The values w and b are the parameters defining the linear

decision hyperplane. In SVMs, the optimality criterion to maximize is the

margin, that is to say, the distance between the hyperplane and the nearest
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point Φ(xi) of the training set. The α∗i which optimize this criterion are

obtained by solving the following problem :

maxαi

∑`
i=1 αi −

1
2

∑`
i,j=1 αiαjyiK(xi,xjyj)

with constraints,

0 ≤ αi ≤ C ,∑`
i=1 αiyi = 0 .

(9)

where C is a penalization coefficient for data points located in or beyond the

margin and provides a compromise between their numbers and the width of

the margin. In this paper, we use the RBF kernel:

k(xi,xj) = exp(−γ‖xi − xj‖2) (10)

In order to train models with RBF kernels, we use a python script provided

by the libsvm library [35]. This script automatically scales training and

testing sets. It searches (only for the training set) the best couple (C, γ)

of the kernel. The search of the best couple (C, γ) is done using a five-fold

cross-validation computation.

Originally, SVMs have essentially been developed for the two classes prob-

lems. However, several approaches can be used for extending SVMs to multi-

class problems. The method we use in this communication, is called one

against one. Instead of learning N decision functions, each class is discrim-

inated here from another one. Thus, N(N−1)
2

decision functions are learned

and each of them makes a vote for the affectation of a new point x. The

class of this point x becomes then to the majority class after the voting.
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4. Experimental Results

The goal of the proposed quality metric is to detect, with a reasonable ac-

curacy, three synthetic alterations which may deeply affect the most widely

used matching systems. The proposed metric may be considered as inde-

pendent from the used matching system. An example of its practical use

is illustrated in Figure 5. The method predicts the alteration of the input

image. Then, depending from the robustness of the used matching system

against the predicted alteration, the matching system qualifies the image

(good, fair, bad or very bad quality).

Figure 5: An example of use of the presented method.

In Section 4.1, we present the experimental protocol followed by the val-

idation process of the proposed metric. The results are then given in Sec-

tion 4.3.

4.1. Protocol

Six benchmark databases and one biometric matching algorithm are used

in order to validate the proposed metric.
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4.1.1. Alteration process

In this study, we introduce three types of synthetic alterations as well as

three levels for each type using the MATLAB tool:

• Blurring alteration: blurring images are obtained using a two-dimensional

Gaussian filter. To do so, we use the fspecial (’gaussian’, hsize, σ)

method which returns a rotationally symmetric Gaussian lowpass filter

of size hsize with standard deviation σ.

• Gaussian noise alteration: noisy images are obtained using the imnoise

(I, ’gaussian’, m, v) method. It adds Gaussian white noise of mean m

and variance v to the image I.

• Resize alteration: such kind of altered images are obtained using the

imresize (I, scale, ’nearest’) method. It resizes the image I using a

nearest-neighbor interpolation.

Table 1 presents the parameters required of the used alteration MATLAB

methods.

Alteration type method level 1 level 2 level 3

Blurring fspecial (’gaussian’, [7 7], σ) σ = 1 σ = 2 σ = 6

Gaussian noise imnoise (I, ’gaussian’, 0.01, v) v=0.003 v=0.01 v=0.017

Resize imresize (I, scale, ’nearest’) scale = 0.8 scale = 0.6 scale = 0.4

Table 1: Parameters of the MATLAB alteration methods.

Using these alterations, the input vector to SVM is the five retained

quality criteria (one for image quality and four pattern-based quality) and

the output can belong to ten different classes defined as follows (see Table 2):

17



• class 1 illustrates a reference image.

• classes 2 to 10 illustrate 3 types of alterations and 3 levels for each type

(see Section 4.1.2 for details about the introduced alterations).

Class Description Alteration levels

1 reference or original image ×

2, 3 and 4 blurring alteration 1, 2 and 3, respectively

5, 6 and 7 gaussian noise alteration 1, 2 and 3, respectively

8, 9 and 10 resize alteration 1, 2 and 3, respectively

Table 2: SVM classes definition.

4.1.2. Benchmark databases

In this study, we use six benchmark databases. For each database, we

introduce three types of alterations (blurring, gaussian noise and resize alter-

ations) and three levels for each type of alteration. The presented alterations

are commonly realistic during the acquisition of biometric raw data, which

may deeply affect the overall performance of biometric systems. Finally,

we get 60 databases: 6 reference and 54 altered databases (i.e., 9 for each

reference database):

1. Reference databases

• FACES94 Database [36]: This database is composed of 152 indi-

viduals and 20 samples per individual. These images have been

captured in regulated illumination and the variation of expression

is moderated.

18



Figure 6: Samples from FACES94.

• ENSIB Database [37]: It is composed of 100 individuals and 40

samples per individual. Each sample corresponds to one pose from

the left one to the right.

Figure 7: Samples from ENSIB.

• FERET Database [38, 39]: It is composed of 725 individuals with

from 5 to 91 samples per individual (the average value is 11). Each

sample corresponds to a pose angle, illumination and expression.

Figure 8: Samples from FERET.

• AR database [40]: It is composed of 120 individuals and 26 sam-

ples per individual. These included images captured under differ-
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ent conditions of illumination, expression and occlusion.

Figure 9: Samples from AR.

• FVC2002 DB2 database [41]: It is composed of 100 individuals

and 8 samples per individual. The database was used during the

Fingerprint Verification Competition (FVC2002).

Figure 10: Samples from FVC2002 DB2.

• Hand veins database [24]: It is composed of 24 individuals and

30 samples per individual. The database has been collected by

TELECOM & Management SudParis.

Figure 11: Samples from the hand veins database.
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2. Altered databases

Using the introduced alterations presented in Section 4.1.1, we gener-

ated 54 databases from the 6 reference databases: FACES94, ENSIB,

FERET, AR, FVC2002 DB2 and the hand veins databases. Figure 12

shows these alterations on a sample from FACES94 database.

(a) Blurring alteration

(b) Gaussian noise alteration

(c) Resize alteration

Figure 12: Alterations for a reference image from FACES94. From left to right, reference

image then alteration level 1, 2 and 3.

4.1.3. Biometric matching algorithm

The used biometric matching algorithm is a SIFT-based algorithm [25].

The matching similarity principle used is described in previous works [24].

Each image im is described by a set of invariant features X(im) as described

in Section 3.2. The verification between two images im1 and im2 corresponds
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to the similarity between two sets of features X(im1) and X(im2). We thus

use the following matching method which is a modified version of a decision

criterion first proposed by Lowe [25]. Given two keypoints x ∈ X(im1) and

y ∈ X(im2), we say that x is associated to y if:

d(x, y) = min{z ∈ X(im2)}d(x, z) and d(x, y) ≤ C d(x, y′) (11)

where C is an arbitrary threshold, d(·, ·) denotes the Euclidean distance

between the SIFT descriptors and y′ denotes any point of X(im2) whose

distance to x is minimal but greater than d(x, y):

d(x, y′) = min{z ∈ X(im2), d(x,z)>d(x,y)}d(x, z) (12)

In other words, x is associated to y if y is the closest point from x in X(im2)

according to the Euclidean distance between SIFT descriptors and if the

second smallest value of this distance d(x, y′) is significantly greater than

d(x, y). The significance of the necessary gap between d(x, y) and d(x, y′) is

encoded by the constant C. Then, we consider this keypoint x is matched

to y iff x is associated to y and y is associated to x. Figure 13 presents an

example of matching resulting from a genuine and an impostor comparison.

Figure 13: Example of matching results resulting from a genuine (on the left) and an

impostor comparisons (on the right).

22



4.2. Validation process

According to Grother and Tabassi [8], biometric quality metrics should

predict the matching performance. That is, a quality metric takes a biometric

raw data, and produces a class or a scalar related to error rates associated to

that sample. Therefore, we use the Equal Error Rate (EER) which illustrates

the overall performance of a biometric system [42]. EER is defined as the

rate when both False Acceptance Rate (FAR) and False Reject Rate (FRR)

are equal: the lower EER, the more accurate the system is considered to be.

In order to validate the proposed quality metric, we proceed as follows:

• Quality criteria behavior with alterations: the first step of the valida-

tion process consists of showing the robustness of the used five qual-

ity criteria in detecting the introduced alterations: blurring, Gaussian

noise and resize alterations.

• Learning the multi-class SVM models: for face databases, we learn 4

multi-class SVM models using the images from the four benchmark

databases (1 multi-class SVM per benchmark database illustrated by

SVMeach), and 1 multi-class SVM model containing examples from the

four benchmark databases (illustrated by SVMall). For the fingerprint

and hand veins databases, we learn 2 multi-class SVM models, respec-

tively. In order to train and to test the multi-class SVM models, we

split each benchmark database images into two sets Straining and Stest

in a balanced way (i.e., both sets contain the same ratio of reference

and altered images). The choice of the kernel and the selection of the

parameters required are presented in Section 3.3.
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• Quality sets definition: the proposed metric predicts a quality class of

the target image. In order to show the utility of this metric, we need to

define the quality sets for the used authentication system. Depending

from the used authentication system, some alterations may have more

impact on its global performance more than others. Thereafter, we use

the EER to illustrate the global performance of the biometric system.

• EER value of each quality set: in order to quantify the effectiveness of

our quality metric in predicting system performance, we have put each

image to a quality set, using its predicted label by our metric. Then, we

have calculated the EER value for each quality set. The effectiveness of

the method is quantified by how well our quality metric could predict

system performance among the defined quality sets. More generally

speaking, the more the images are degraded, the more the performance

of the overall system will be decreased (illustrated by an increase of its

EER value).

4.3. Results

4.3.1. Quality criteria behavior with alterations

In this section, we show the robustness of the used criteria in detecting

alterations presented in the previous section. To do so, we use the Pearson’s

correlation coefficient between two variables as defined in Equation 13. It

is defined as the covariance of the two variables (X and Y) divided by the

product of their standard deviation (σX and σY ):

Pearson(X, Y ) =
Cov(X, Y )

σXσY
(13)
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In order to compute the correlation of the used criteria with the three types

of alterations, we define for each type of alteration and for each criterion p

the variables as follows:

• Xp = {Xpk| k = 1 : 4} where Xp1 is the set of values of criterion p for

the reference databases images, (Xp2, Xp3, Xp4) are the sets of values of

criterion p for the altered databases level 1, 2 and 3, respectively.

• Alteration levels are represented by the variable Y (1: for the reference

databases, 2, 3 and 4: for the altered databases level 1, 2 and 3). More

precisely, Y = {yk|yk = 1 for k = 1 : N, yk = 2 for k = N + 1 :

2N, yk = 3 for k = 2N + 1 : 3N and yk = 4 for k = 3N + 1 : 4N}

where N is the size of the 4 reference databases.

Using the extracted SIFT keypoints and the Pearson’s correlation coeffi-

cient, four pattern-based quality criteria are retained to contribute to quality

assessment:

1. Keypoints: the number of keypoints detected from image im.

2. DC coefficient: DC coefficient of the matrix Ms, with N(im) rows and

128 columns, related to SIFT invariant descriptor for si, i = 1 : N(im)

where N(im) is the number of detected keypoints for image im.

3. Mean (µ) and

4. Standard deviation (σ) of scales: mean and standard deviation of scales

related to the keypoints detected from image im.

Therefore, the vector V used to predict biometric sample quality is a five-

dimensional vector containing one image quality criterion and four pattern-

based criteria as depicted in Table 3.
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Vector V

Image quality criterion BLIINDS

Pattern-based criteria keypoints

DC coefficient

mean (µ) of scales

standard deviation (σ) of scales

Table 3: The five-dimensional vector for predicting biometric sample quality.

Figure 14 shows that the four pattern-based criteria (keypoints, DC coef-

ficient, mean and standard deviation of scales) are pertinent in detecting the

three types of alterations: blurring, Gaussian noise and resize alterations.

The image quality criterion BLIINDS has shown to be efficient (with a cor-

relation coefficient more than 0.6) in detecting blurring and Gaussian noise

alterations. For the resize alteration, BLIINDS has not shown to be efficient

which is not a surprising result since resize alteration does not affect image

quality (BLIINDS is a multiresolution NR-IQA algorithm). Moreover, the

distortion cards given in Figure 15 show also the efficiency of BLIINDS index

(i.e., each feature υi, i = 1 : 4) in detecting altered images.

Figure 14: Pearson correlation coefficients (in absolute value) between the proposed criteria

and the three alterations among the 4 face databases.
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Figure 15: Distortion cards related to a slightly altered image (first row) and a highly

altered one (second row), respectively. υi, i = 1 : 4 correspond to the four features used

in BLIINDS index computation.

4.3.2. Learning the multi-class SVM models

We learned 7 multi-class SVM models: 5 for face databases, and 2 for

hand veins and fingerprint databases. Table 4 presents the accuracy of the

learned multi-class SVM models on both training and test sets. We have put

the symbol “×” at the last two lines, since we have only 1 multi-class SVM

generated per database. Table 4 shows the efficiency of the proposed metric

in predicting the three synthetic alterations (blurring, Gaussian noise and

resize) of data, with a valuable 10-class classification accuracy (going from

82.29% to 97.73 on the training set, and from 81.16% to 91.1% on the test

set). Results for the different databases are similar but not exactly the same.

The reason is related to the complexity of the databases incorporating more

or less artifacts.

In order to test more the generalization of these results, we have tested

the following:
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• we used one of the four face databases for training, and the rest three

for tests. We obtained a valuable 4-class accuracy of 87.84%. The

four classes are 1: original, 2, 3 and 4: blurring, gaussian noise and

resize level 3, respectively. For a 10-class classification, this accuracy

decreased to 50.78% due to the different resolution of images in each

database. However, the resolution of images to be used for training

should be as much as similar for the test images in order to maintain a

high accuracy. This is illustrated by the results of the multi-class SVM

(SVMall) presented in Table 4 (third and fourth columns). We have

obtained good classification results since the images used for training

this model contains a set of images from each database.

• we used a subset of the CASIA-FingerprintV5 [43] (first 100 persons,

5 images per person, left thumb) of 500 images. The volunteers of

CASIA-FingerprintV5 were asked to rotate their fingers with various

levels of pressure to generate significant intra-class variations. Using

the FVC2002 DB2 database for learning the multi-class SVM, we clas-

sified each of the CASIA-FingerprintV5 500 images into the four cat-

egories presented in Table 5 (1 for good, 2 for fair, 3 for poor and

4 for very poor). We then computed the intra-class matching scores,

using the matching algorithm presented in Section 4.1.3, of the CASIA-

FingerprintV5 database (by taking the first image as reference and the

rest for the test). Using the pearson correlation coefficient between

the obtained intra-class matching scores and the four categories, we

obtained a significant correlation of 0.67. This shows that images clas-

sified of good quality by the proposed method provided higher matching
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scores compared to the images predicted of bad quality; which clarify

the benefits of the presented method.

SVMeach SVMall

Straining Stest Straining Stest

FACES94 91.01 86.69 85.68 85.28

ENSIB 97.73 89.82 94.92 91.1

FERET 82.33 81.2 82.29 81.16

AR 90.08 89.08 90.7 88.92

FVC2002 DB2 × × 91.7 83.68

Hand veins × × 95.25 90.2

Table 4: Accuracy (in %) of the learned multi-class SVM models on both training and

test sets.

4.3.3. Quality sets definition

In order to quantify the robustness of the proposed metric in predicting

system performance, we need first to define the quality sets of the used

biometric authentication systems. Therefore, we have tested the robustness

of the used system against the three alterations presented in Section 4.1.2.

The EER values are computed using the first image as a reference (single

enrollment process), and the rest for the test. Figure 16 shows that all the

introduced alterations have an impact on overall performance of the used

authentication matching algorithm presented in Section 4.1.3. Therefore, we

define in Table 5 the quality sets definition for the used matching algorithm.
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Figure 16: Impact of alterations on overall performance of the used authentication system

among the 4 face databases.

Quality set Predicted quality class by SVM Description

I 1 good

II 2, 5 and 8 fair

III 3, 6 and 9 poor

IV 4, 7 and 10 very poor

Table 5: Category of quality.

4.3.4. EER value of each quality set

In order to validate the proposed quality metric in predicting the used

matching algorithm performance, according to Grother and Tabassi [8], we

calculate the EER value of each quality set predicted by the learned multi-

class SVM models. Figure 17 shows the EER values of each quality set among
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the used biometric databases. From this figure, we can deduce several points:

• The proposed metric has shown its efficiency in predicting the used

matching system among the 6 biometric databases. More generally

speaking, the more the images are altered, the more the EER values

are increasing. This is demonstrated by the increasing curves presented

in Figure 17. For the hand veins database, we have obtained a slight

increase of EER values (0%: good category to 0.05%: very poor cate-

gory). This result can be explained by the small size of the hand veins

database (24 persons), and the robustness of the used matching system

against the introduced alterations.

• The 4 curves related to the four face databases, presented in Figure 17,

are computed using the 4 multi-class SVM (1 multi-class SVM per

database). We have obtained similar curves using the other multi-class

SVM model containing examples from the four benchmark databases.

This shows the scalability of the presented metric to be used on different

types of images (such as the image resolution).

5. Comparison study with NFIQ

In order to show the efficiency of the proposed metric, we present in this

section a comparison study with the NIST Fingerprint Image Quality metric

(NFIQ) [10]. We have used NFIQ metric proposed by the NIST, since it

is the most cited at the literature for the fingerprint modality. NFIQ pro-

vides five levels of quality (NFIQ=1 indicates high quality samples, whereas
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Figure 17: EER values of each quality set among the used biometric databases: face,

fingerprint and hand veins databases.

NFIQ=5 indicates poor quality samples). For the comparison with the pro-

posed method (four levels of quality), we consider that the 4th and 5th levels

belong to the very bad quality set.

In order to compare the proposed metric with NFIQ, we use the approach

suggested by Grother and Tabassi [8] when comparing quality metrics. To do

so, we use the Kolmogorov-Smirnov (KS) test [44] which is a nonparametric

test to measures the overlap of two distributions: in our case, distributions of

scores of genuine and impostors, respectively. More generally speaking, KS

test returns a value defined between 0 and 1: for better quality samples, a

larger KS test statistic (i.e., higher separation between genuine and impostor

distributions) is expected.

Figure 18 illustrates the KS test statistic values of both quality metrics

(NFIQ and the presented one). For the three quality sets (bad, fair and

good), Figure 18 shows that the proposed metric (KS statistic going from
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0.797 to 0.869) outperformed the NFIQ metric (KS statistic going from 0.632

to 0.82).

Figure 18: Comparison study between the proposed metric and NFIQ: Kolmogorov-

Smirnov (KS) test statistic.
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6. Conclusion and perspectives

The quality assessment of biometric raw data is a key factor to take into

account during the enrollment step when using biometric systems. Such kind

of information may be used to enhance the overall performance of biomet-

ric systems, as well as in fusion approaches. However, few are the works

exist in comparison to the performance ones. Toward contributing in this

research area, we have presented an image-based quality assessment metric

of biometric raw data using two types of information (image and pattern-

based quality). The proposed metric is independent from the used matching

system, and could be used to several kind of modalities. Using six public

biometric databases (face, fingerprint and hand veins), we have shown its ef-

ficiency in detecting three kinds of synthetic alterations (blurring, Gaussian

noise and resolution).

For the perspectives of this work, we aim to add an additional quality cri-

terion in order to detect luminance alteration, which is also considered as an

important alteration affecting biometric systems (mainly, facial-based recog-

nition systems). We aim also to compare the proposed metric with NFIQ

using other kind of biometric matching algorithms (such as BOZORTH3 [45]

proposed by the NIST). In addition, we are planning to test the efficiency of

the presented method on altered images combining the presented alterations,

which also represent another kind of real life alterations. This can be done

using the presented criteria and a SVM or a genetic algorithm in order to

produce an index between 0% and 100% (i.e., more the index is near 100%

better is the quality). Modality specific alterations could also be used to

have a precise analysis of the efficiency of the proposed methodology.
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Terms and definitions

Enrollment: The process of collecting biometric samples from a person

and the subsequent preparation and storage of biometric reference templates

representing that person’s identity.

False Acceptance Rate (FAR): Rate at which an impostor is accepted

by an authentication system.

False Rejection Rate (FRR): Rate at which the authorized user is rejected

from the system.

Equal Error Rate (EER): This error rate corresponds to the point at

which the FAR and FRR cross (compromise between FAR and FRR).
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