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Mixed Noisy Network Coding and
Cooperative Unicasting in Wireless Networks

Arash Behboodi, Member, IEEE, and Pablo Piantanida, Member, IEEE,

Abstract—The problem of communicating a single message to
a destination in presence of multiple relay nodes, referred to as
cooperative unicast network, is considered. First, we introduce
“Mixed Noisy Network Coding” (MNNC) scheme which general-
izes “Noisy Network Coding” (NNC) where relays are allowed to
decode-and-forward (DF) messages while all of them (without
exception) transmit noisy descriptions of their observations.
These descriptions are exploited at the destination and the DF
relays aim to decode the transmitted messages while creating
full cooperation among the nodes. Moreover, the destination and
the DF relays can independently select the set of descriptions to
be decoded or treated as interference. This concept is further
extended to multi-hopping scenarios, referred to as “Layered
MNNC” (LMNNC), where DF relays are organized into disjoint
groups representing one hop in the network. For cooperative
unicast additive white Gaussian noise (AWGN) networks we
show that –provided DF relays are properly chosen– MNNC
improves over all previously established constant gaps to the
cut-set bound. Secondly, we consider the composite cooperative
unicast network where the channel parameters are randomly
drawn before communication starts and remain fixed during
the transmission. Each draw is assumed to be unknown at
the source and fully known at the destination but only partly
known at the relays. We introduce through MNNC scheme the
concept of “Selective Coding Strategy” (SCS) that enables relays
to decide dynamically whether, in addition to communicate noisy
descriptions, is possible to decode and forward messages. It is
demonstrated through slow-fading AWGN relay networks that
SCS clearly outperforms conventional coding schemes.

Index Terms—Cooperative unicasting, wireless networking,
decode-and-forward, compute-and-forward, quantize-map-and-
forward, noisy network coding, constant gap, composite channel,
outage capacity.

I. INTRODUCTION

Cooperation in multi-terminal networks is becoming the
essential part of modern communication systems, e.g., wire-
less mobile systems, device-to-device (D2D) communications,
network coding, sensor and ad-hoc networks. The increasing
development of these networks during recent years has revital-
ized the interest in understanding the most basic information-
theoretic setups such as broadcast, interference and relay
networks. A convenient wireless model for such scenarios,
as has been widely adopted in the literature, is slow-fading
one where accurate channel state information (CSI) may be

The work of P. Piantanida is partially supported by the ANR grant
(FIREFLIES) INTB 0302 01. The material in this paper was presented in
part at the 5th International Symposium on Communications, Control, and
Signal Processing, May 2012, and the 2012 and 2013 IEEE International
Symposium on Information Theory.

Arash Behboodi is with the Telecommunication Network Groups, Technis-
che Universität Berlin, Einsteinufer 25, FT 5 10587 Berlin, Germany, Email:
arash.behboodi@tu-berlin.de.

Pablo Piantanida is with the Department of Telecommunications, SUP-
ELEC, 91192 Gif-sur-Yvette, France, Email: pablo.piantanida@supelec.fr.

available to the receivers but not to transmitters, and only
partial CSI is available to intermediate nodes. In these cases,
classical Shannon capacities are typically zero due to the
non-zero probability of channels experiencing an arbitrarily
deep fade, so performance is instead quantified in terms of
maximum achievable rates subject to a constraint on the
tolerated error probability (see [1] and references therein).

The term “cooperation strategy” stands for the procedure
used to forward information from source to destination in
relay networks. In selecting a cooperative scheme for wireless
scenarios, several factors must be considered in order to
preserve the capability of relay nodes to deal with the physical
and statistical nature of their channel disturbances. The main
cooperation strategies have been first introduced by Cover-
El Gamal [2] for the relay channel. Although these coding
schemes were not shown to achieve capacity of the additive
white Gaussian noise (AWGN) channel, Decode-and-Forward
(DF) scheme has been shown to be well suitable for situations
where the source-to-relay channel is stronger than the others
channels while Compress-and-Forward (CF) scheme is prefer-
able for situations where the relay-to-destination channel is the
strongest link. Essentially, a relay using DF scheme forwards
information based on a hard estimate of the encoder’s message
whereas CF scheme is based on a soft estimate. Lately El
Gamal-Mohseni-Zahedi [3] developed an alternative version
of CF scheme (not based on Wyner-Ziv coding and sequential
decoding at the destination) which achieves the same rate that
CF scheme [2]. In fact, both CF schemes can perform within
a constant gap to the information-theoretic capacity of the
AWGN relay channel, regardless of channel parameters [4].

More recently, there has been a growing interest in co-
operative networks with multiple relays and several attempts
were made to develop cooperation strategies, e.g., for multiple
access and broadcast relay channels (see [5]–[7] and refer-
ences therein). The capacity of degraded unicast cooperative
networks is derived in [5] by using a sequential DF scheme
while the capacity of a class of modulo-sum relay channels
is found in [8] by using a CF based scheme. Graphical
multicast networks were studied in [9] where the “max-flow
min-cut theorem” for network information flow was presented
for the point-to-point communication network. Deterministic
networks with no interference were studied in [10] whereas
the capacity of wireless erasure multicast networks was de-
termined in [11], and the scaling behavior of cooperative
multicasting in wireless networks was studied in [12].

A. Related Work
An approximation approach to general networks via de-

terministic channels was introduced by Avestimehr-Diggavi-
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Tse [4]. This approach yields a novel improvement over CF
scheme, referred to as “Quantize-Map-and-Forward” (QMF),
which achieves performance within constant gap of capac-
ity for unicast AWGN networks with arbitrary number of
relays. This important feature guarantees the uniformity in
the channel coefficients and hence the fading statistics. Relay
nodes quantize their received signals at noise level, map them
randomly to Gaussian codewords and forward them to the
others nodes. The fundamental difference between CF and
QMF schemes relies on the delay and CSI aspects. The
standard CF scheme [2] requires successive decoding at the
destination and forward channel knowledge at the relays while
QMF uses joint decoding of descriptions and messages with
only CSI at the destination. As a matter of fact, this approach
has played a key role in the development of several further
results on cooperative wireless networks.

In [13], Nazer-Gastpar propose an ingenious coding scheme,
referred to as compute-and-forward, which aims at allowing
the relays to decode and send noiseless functions –linear
combinations– of the transmitted messages. By combining
all these descriptions, the destination determines the original
messages being sent. Indeed, due to the additive nature of
the channel, each relay receives a linear combination of the
lattice codewords [13] in addition to some additive noise,
which have the property that any integer linear combination is
still a codeword [14], [15]. The relays then decode the linear
combination of the codewords and thus a noiseless function
of the messages. Nevertheless, the lattice property requires a
integer linear combination of codewords to guarantee that it
is still a codeword, however the linear combination induced
by wireless channels have arbitrary real (or complex) channel
gains. In order to overcome this difficulty, the authors in
[13] propose to scale the received channel output so that the
received signal is close to an integer linear combination. The
tightness of this approximation relies on the scaling factor
which introduces a tradeoff between closeness of approxima-
tion and noise amplification.

Recent work [16] by Lim et al. generalizes QMF approach
to arbitrary memoryless multicast networks by introducing the
notion of “Noisy Network Coding” (NNC) scheme, which
implies the previous inner bounds in [4], [11]. As a matter of
fact, Yassaee et al. in [17]–[19] independently introduced for
the first time the idea of NNC and derived the same achievable
rate regions. In [16], relay nodes based on NNC scheme send
the same –long– message over many blocks of equal length
–repetitive encoding– and the descriptions at the relays do not
require binning while their indices are non-uniquely decoded
at the destination. While the same result was obtained by using
short messages in [17]–[19].

The achievable region from NNC scheme is shown to
be tight for specific cases, e.g., deterministic and erasure
networks, and in particular, it achieves within constant gap
of capacity for multicast AWGN relay networks. Further
progress was made in [20] where authors showed that the
gain in NNC comes from backward decoding and delaying
the decoding procedure. The use of different message coding
opens up the possibility of combining DF and NNC scheme.
This approach, referred to as “Short-Message Noisy Network

Coding” (SNNC), was taken in [21], [22] and [23], [24].
Transmission is performed over (B + L) blocks, where B
denotes the number of blocks in which a new message is being
transmitted and L denotes the number of blocks in which the
previous messages are repeated according to a specific pattern.
Both (B,L) are required to be large enough in [20] while only
B needs to be large enough in [21], and the destination uses
backward decoding. In this case, relays are divided into two
sets, the relays in the first set use NNC scheme while those
in the second set use DF scheme.

The previously mentioned works have neglected two aspects
of cooperative unicast networks. First, all relay nodes are
capable of collaborating with each other to increase their
chances of decoding the source message, similarly as done
in compute-and-forward [13], and second, the destination
can benefit from noisy descriptions of all nodes which also
includes DF relays. Actually, NNC and SNNC schemes have
since then been exploited in various ways, e.g., multi-level DF
schemes for DF relays are investigated in [25]–[27] where an
aware source exploits the existence of a hierarchy of the relays
based on their channel quality.

B. Contribution and Outline

In this paper, we investigate coding strategies for cooper-
ative unicasting in wireless networks. This problem consists
of a source that wishes to communicate a single message to a
destination in presence of multiple relay nodes. The focus is on
wireless configurations where without CSI, the source cannot
any longer agree with the relays to jointly select an adequate
cooperative strategy for each specific draw of the network
parameters. Traditional approaches to deal with this scenario
falls into composite models for networks [28] which, unlike
compound models [29], channel uncertainty is addressed by
introducing a probability distribution (PD) from which the
current channel index (or vector of channels parameters) is
drawn but remains fixed during the communication. Composite
cooperative AWGN networks have been studied beforehand
via the notion of capacity versus outage (see [12], [30], [31]
among other references). This setup prevents, in general, the
source use of any hierarchical multi-level scheme [25], [26]
to enhance cooperation among the nodes. Notice that without
CSI at the source such approach would clearly result in
performance degradation.

We shall follow an approach similar to that of compute-
and-forward [13] to the study of simultaneous coding strate-
gies [32] that are capable of enabling all nodes to decide
–depending on their instantaneous channel measurements–
whether would be possible to decode-and-forward messages
(e.g. the amount of available noisy descriptions provides
enough information) and which nodes should cooperate with
each other by decoding noisy descriptions of observations (or
noisy functions of the transmitted messages). In the first part,
we introduce “Mixed Noisy Network Coding” (MNNC) for
memoryless unicast networks with perfect CSI at all nodes
while in the second part, we focus on composite cooperative
unicast networks where the channel parameters are assumed to
be unknown at the source and fully known at the destination,
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but only partly known at the intermediate nodes. We introduce
through MNNC scheme the concept of “Selective Coding
Strategy” (SCS) that enables all relays to dynamically select,
based on on the available CSI, both the cooperative strategy
and the nodes to benefit from cooperation.

Our main contributions are summarized below:

1) We introduce MNNC scheme where part of the nodes are
allowed to decode-and-forward (DF) messages while all
of them (without exception) transmit noisy descriptions
of their observations (cf. Theorem 1 and Corollary 1, sec-
tion II-B). Moreover, these descriptions can be exploited
at the destination and the DF relays ends to decode the
intended message –based on offset coding– while creating
full cooperation among the nodes. A general achievable
rate is derived from this cooperative strategy which can
be viewed as a generalization of several existing results
in the literature (cf. section II-C).
It is worth mentioning that this coding strategy differs
from NNC [16] in at least two important aspects: (i)
the use of short-messages coding [18], [20], [21], [23],
[33] where transmission expands over (B + L) blocks
and the relays retransmit the compression index of block
(B + 2) during the last (L − 2) blocks while backward
decoding is used at the destination, and (ii) the relays use
simultaneous cooperative strategies [31] by decoding and
forwarding messages in addition to communicate noisy
descriptions of their observations.

2) We further extend the concept of MNNC to multi-hopping
scenarios that we refer to as “Layered MNNC” (LMNNC)
where DF relays are organized into disjoint groups rep-
resenting one hop in the network (cf. section II-D). Fur-
thermore, LMNNC performs at least as good as MNNC
and improves upon the existent results [27, Theorem 2].

3) For cooperative unicast AWGN networks we show that,
provided DF relays are properly chosen, MNNC improves
over all previously established constant gaps to the cut-
set bound [4], [16] (cf. Proposition 2, section III-B).
As a matter of fact, the presence of mixed cooperation
strategies [22], [24] introduces considerable difficulty
when attempting to compare such scheme to the original
NNC scheme [16]. This issue is solved by the proposed
MNNC scheme where all nodes are enable to simultane-
ously decode and forward messages and transmit noisy
descriptions of their observations.

4) We finally study composite cooperative unicast networks
where the channel parameters are randomly drawn from
a probability distribution (cf. section IV). Each random
draw is assumed to be unknown at the source and fully
known at the destination, but only partly known at the
relay nodes. We introduce through MNNC the concept
of SCS that enables relays to decide dynamically (e.g.
based on their channel measurements) whether would be
possible to decode and forward messages in addition to
communication of noisy descriptions to the destination
and other nodes. It is demonstrated through the asymp-
totic average error probability of the slow-fading AWGN
relay channel that SCS clearly outperforms conventional

YX
PY Y1...YN |XX1...XN

· · ·

W Ŵ

· · ·

· · ·

· · ·· · ·

(Xj , Yj)

(Xk, Yk)

Fig. 1. Cooperative unicast network with relay nodes (Xj ,Yj), for all
j ∈ N , source input X and destination Y.

cooperative schemes (cf. section V).
Within the framework of wireless networks, the results of

this paper are therefore useful to analyze the relationship
between simultaneous cooperative strategies and the use of
available CSI at nodes to dynamically select the coding
strategy, transmission rate and the asymptotic error probability.
A connection is established between the asymptotic error
probability and the outage probability. As a matter of fact,
assuming codes of sufficiently long block lengths, outage prob-
ability dominates from above and below the asymptotic error
probability. Although our results are specific to cooperative
unicasting, we believe that the framework is enough general
to be useful more broadly in the analysis of user cooperation
for multi-source/multicast networks.

Notations

The vector notation x stands for the collection of n samples
(x1, . . . , xn) while upper-case letters Xn are used to denote a
vector of random variables (RVs) (X1, . . . , Xn). The random
channels parameters are denoted by θ and any specific draw
is denoted by θ. Let N , {1, . . . , N} denote a set of indices,
then for any subset S ⊆ N the vector of RVs XS stands
for the collection (Xi)i∈S ; and similarly XSc = (Xi)i∈N−S
where “−” is understood as setminus. The indicator function
for the event A is denoted by 1[A]. Differential entropy is
denoted by h(·), and mutual information by I(· ; ·) while
C(x) , 1

2 log (1 + x). Then, the entropy of XS is defined
by H(XS) = H ((Xi)i∈S) and similarly with mutual infor-
mation. Let X , Y and Z be three RVs on some alphabets
with probability distribution p. If p(x|yz) = p(x|y) for each
x, y, z, then they form a Markov chain, which is denoted by
X−
−Y −
−Z. Finally we denote strong ε-typical and conditional
strong ε-typical sets by Anε (X) and Anε (Y |X), respectively
(see [34] for details). Logarithms are taken in base 2 and
denoted by log(·).

II. MIXED NOISY NETWORK CODING

In this section, we introduce the problem of communicating
a single message to a destination in presence of multiple
relay nodes. Through this section, we shall assume that all
channel parameters involved in the network are known to all
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terminals. We introduce a novel cooperation scheme referred
to as “Mixed Noisy Network Coding” (MNNC) that yields
a rather general achievable rate expression improving over
several existing results in the literature which can be viewed
as particular cases. Then, we further extend this concept to
multi-hopping scenarios, referred to as “Layered MNNC”
(LMNNC), where DF relays are organized into disjoint groups
representing one hop in the network.

A. Definition of the Cooperative Unicast Network

The cooperative unicast network as depicted in Fig. 1 is
defined by a conditional probability distribution (PD) charac-
terizing the destination output Y and the observations at each
of the relay nodes YN , (Y1, Y2, . . . , YN ) given the source
input X and all relay inputs XN , (X1, X2, . . . , XN ), and

PY YN |XXN : X × X1 × · · · × XN 7−→ Y × Y1 × · · · × YN ,
where N = {1, . . . , N}. This network is assumed to be
memoryless and without channel feedback, and all alphabets
are assumed to be finite. We let PY nY nN |XnXnN denote the PD
of the n-memoryless extension.

Definition 1 (code and achievability): A code-
C(n,Mn, εn) for the cooperative unicast network consists of
the following mappings:
• An encoder mapping:

ϕ :Mn = {1, . . . ,Mn} 7−→ Xn ,
• A decoder mapping: φ : Yn 7−→Mn ,
• A sequence of relay functions:{

f
(k)
i : Yi−1k 7−→ Xk

}n
i=1

,

for k ∈ N , and average error probability given by

εn ,
1

Mn

Mn∑
w=1

Pr
[
φ(Y n) 6= w

]
.

A positive rate R is said to be achievable for the cooperative
unicast network if there exists a code-C(n,Mn, εn) defined as
above such that

lim inf
n→∞

1

n
logMn ≥ R

and
lim sup
n→∞

εn = 0 .

The supremum of all achievable rates is the capacity of the
unicast multi-relay network.

B. Mixed Noisy Network Coding

The key ingredients behind MNNC scheme rely on the
following ideas.

1) Simultaneous use of different cooperative strategies
among the relay nodes: Relay nodes are divided into two
disjoint groups of relays denoted by (V,Vc) satisfying
V ∪Vc = N . As shown in Fig. 2, relays in the group Vc
with nodes indices (j, k) are simultaneously employing
partly DF and CF scheme as cooperation strategy while

X Y(Xi, Yi)

(Xj , Yj)

(Xk, Yk)

DF relays

CF relays

wb

li,b−1

lk,b−1

lj,b−1

(lk,b−1, wb−1)

(lj,b−1, wb−1)

Fig. 2. Mixed Noisy Network Coding (MNNC).

relays in V , denoted by index i, simply employ CF
scheme.

2) Full cooperation among all nodes in the network: Each
relay in the network is transmitting the compressed
version of its observation and thus all DF relays take
advantage of the compression indices of the other relays
in the network, which clearly improves the decoding of
source messages. In this setting, transmission takes place
via block-Markov coding in B+L blocks each of length
n, where DF relays for each block b ≤ B + 2 forward
the source message of the (b − 2)-th block. We remark
that this is slightly different from the conventional DF
scheme [2], where the relay forwards the message of the
previous block. Indeed, the compression index of the b-
th block is transmitted only in block b + 1 and thus DF
relays have to wait until the end of block b+1 to decode
the compression index as well as the message of block
b. Hence, they can forward the message of block b only
after block b+ 1.

3) Selection of descriptions to be decoded at both destination
and relays: The destination selects the help of only the
best subset T of nodes among all possible relays N .
Similarly, the k-th DF relay in the set Vc is allowed to
exploit only the help of a selected subset of relays, which
are denoted by Tk.

The next theorem provides the corresponding achievable rate
for this scheme.

Theorem 1 (Mixed Noisy Network Coding (MNNC)): All
rates R satisfying the following inequality are achievable for
the cooperative unicast network:

R ≤ max
P∈P

max
V⊆N

min

(
max
T ∈Υ (N )

min
Vc⊆S⊆T

RT (S) ,

min
k∈Vc

max
Tk∈Υk(N )

min
S⊆Tk

R
(k)
Tk (S)

)
, (1)

where

RT (S) , I(XXS ; ŶScY |XScQ)

−I(ŶS ;YS |XXT ŶScY Q) ,

R
(k)
Tk (S) , I(X; ŶTkYk|V XkXTkQ)

+I(XS ;Yk|V XkXScQ)− I(ŶS ;YS |V XkXTk ŶScYkQ) ,
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with Sc , T − S in (2) and Sc , Tk − S in (2). Moreover,
T ⊆ N , Tk ⊆ N − {k} and Vc = N − V , and Υ (N ) and
Υk(N ) are defined as follows:

Υ (N ) ,
{
T ⊆ N : QT (S) ≥ 0 ∀S ⊆ T

}
,

Υk(N ) ,
{
T ⊆ N − {k} : Q

(k)
T (S) ≥ 0 ∀S ⊆ T

}
,

where QT (S) and Q(k)
T (S) are used to denote:

QT (S),I(XS ; ŶScY |V XXScQ)

−I(ŶS ;YS |V XXT ŶScY Q) ,

Q
(k)
T (S),I(XS ;Yk|V XkXScQ)

−I(ŶS ;YS |V XXkXT ŶScYkQ) .

The set of all admissible input PDs P is defined by

P ,
{
PQVXXNYN ŶNY = PQVXPY YN |XXN∏

j∈Vc
PXj |V QPŶj |V XjYjQ

∏
j∈V

PXj |QPŶj |XjYjQ

}
.

Proof: The proof of this theorem is relegated to Ap-
pendix A.

Remark 1: By following similar arguments to those used
in [23], it is not difficult to check that the optimization of
the term RT (S) in expression (1) can be taken over T ⊆ N
instead of a subset T ∈ Υ (N ). To this end, it is enough to
show that for every T ⊆ N , if there is a subset A ⊆ T
such that QT (A) < 0, then there must be another subset
T ′ ⊂ T ⊆ N such that the region with respect to T ′ is
increased. Therefore, for each S ′ ⊆ T ′ there is a unique
S ⊆ T such that RT (S) ≤ RT ′(S ′) which yields the desired
inequality. Interestingly, it appears that this new set is obtained
by removing from the set T the relays that are present in A.
Thus, for all A ⊆ S ⊆ T , it holds that

RT (S) = RT ∩Ac(S ∩ Ac) +QT (A) , (2)

for each S ⊆ T ∩Ac. Hence, for every set T ⊆ N , if there is
a set A ⊆ T such that QT (A) < 0, then it can be seen from
(2) that

RT (S ∪ A) < RT ∩Ac(S) , (3)

which implies the final rate is increased by replacing T with
T ∩ Ac. For instance, for each T ⊆ N and T ∈ Υ (N )

c,
we can find a subset T ′ ⊂ T ⊆ N that is not necessarily in
Υ c(N ) such that the region with respect to T ′ is enlarged and
this proves the claim.

A direct consequence of the above observation is that, for
every T and A ⊆ T such that QT (A) < 0, it is enough
to ignore –not looking at their description indices– the relay
nodes in A. Thus, the next achievable rate simply follows from
this replacement:

R ≤ max
P∈P

max
V⊆N

min

(
max
T ⊆N

min
Vc⊆S⊆T

RT (S) ,

min
k∈Vc

max
Tk∈Υk(N )

min
S⊆Tk

R
(k)
Tk (S)

)
. (4)

It is worth mentioning here that by setting V = N , the
rate expression in Theorem 1 reduces to that of SNNC [20],
[23], which was shown to be equivalent to NNC first derived
in [16]. Thus, Theorem 1 can be seen as a generalization that
includes the previous results based on NNC schemes while
it also provides a potentially larger rate (e.g. it achieves the
capacity of degraded “Relay Channels” which is not the case
of NNC region).

We also note that since DF relays require the use of
“forward decoding”, the rate R

(k)
Tk (S) is clearly expected to

be smaller compared to the situation where all relays are
allowed to use “backward decoding”. The reason for this,
as was also pointed out in [20], is that the gain of NNC
is due to delaying decoding until the last block. However,
postponing decoding to the last block would not be possible
for those relays cooperating via DF scheme which brings the
rate loss we mentioned. In order to better explore this rate loss,
let us assume the unicast relay network where all relays are
forced to use CF scheme, but the destination decodes based
on “forward decoding” –instead of “backward decoding”–, i.e.,
the same decoding method as DF relays in Theorem 1. As a
consequence of Theorem 1, we can obtain the next corollary
that provides an achievable rate based on “forward decoding”.

Corollary 1 (Forward decoding NNC): Assuming that all
nodes are forced to use “forward decoding”, then all rates
R satisfying the following inequality are achievable:

R ≤ max
P∈P

max
T ⊆Υ (N )

min
S⊆T

RFD
T (S) , (5)

where

RFD
T (S) , I(X; ŶT Y |XTQ) + I(XS ;Y |XScQ)

−I(ŶS ;YS |XT ŶScY Q) (6)

with Sc , T − S and Υ (N ) defined by

Υ (N ) ,
{
T ⊆ N : I(XS ;Y |XScQ)

−I(ŶS ;YS |XXT ŶScY Q) ≥ 0 ∀ S ⊆ T
}
. (7)

The first observation from the above rate is that “forward
decoding” at the destination does not perform in general as
good as NNC. Nevertheless, it potentially improves on the use
of “binning” and other “forward decoding” techniques [20].
Particularly, the condition which determines the optimization
region in [20], i.e.,

I(XS ;Y |XScQ)− I(ŶS ;YS |XT ŶScY Q) ≥ 0 , (8)

creates a smaller optimization region than Υ (N ) because

I(ŶS ;YS |XT ŶScY Q) ≥ I(ŶS ;YS |XXT ŶScY Q) . (9)

Actually, the use of “joint-forward decoding” without “bin-
ning” performs potentially better respect to “joint-forward
decoding” with “binning”.

Remark 2: The reason for the sub-optimality of the current
forward-decoding scheme is two fold and can be easily under-
stood from the proof. The DF relays decode the compression
indices of others relays and also the source message by using
the typical sets (88). The destination, however, does the same
but using the typical set given by (iii). By comparing these
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decoding rules, it is not difficulty to see that the destination
decodes jointly the compression index and the source message
using a typical set involving: the description ŶT , the com-
pression index of the other relays and the source codeword
X . Whereas these terms are absent from the second decoding
rule of DF relays in (88). Indeed, DF relays decode jointly the
source message and compression index of other relays of block
b based on the consecutive blocks b and b+1. In the decoding
block b+1, DF relays cannot dispose of any information about
the fresh compression index and source’ s message of the same
block. Intuitively, these relays cannot benefit fully from the
presence of the descriptions ŶT and X . In contrast with this,
when backward decoding is used decoding is performed in a
single block and full cooperation can be obtained.

This problem may be partially fixed by using layering
coding [19]. In this case, the set of DF relays is partitioned
into a set of layers {L1, . . . ,Lk}, representing the order in
which the compression indices are decoded. Therefore, the
decoding process is delayed at a given layer for few blocks,
and then by proper choice of layers one can achieve each
corner point of the original region. This is possible because
DF relays at the layer b are able to use ŶLi for all blocks
i ≤ b − 1 while decoding the compression index. The
drawback, however, is that this would require new layering
and thus a new coding to achieve each of the corner points.
Specifically, in communication scenarios where the current
channel is unknown at the source is beneficial to have an
oblivious coding schemes for which the source code does not
require to be aware of the cooperation strategy. As a matter
of fact, the proper choice of layering at the source to achieve
a certain corner point is mostly dependent on the channels
parameters. As we will discuss later, the same problem occurs
in multi-hopping setups where the optimal choice and number
of hops strongly depends on the channels parameters.

Although this layering coding can improve on the results
of Corollary 1, still there are some problems that cannot be
completely solved. In our setting, the single source does not
observe any output and thus, it can only cooperate with DF
relays by helping them in decoding the compression indices.
As a matter of fact, by looking at the proof together with
expression (87), it is easy to check that the message index of
source at block b + 1 must be unknown to the other relays
when decoding the messages of block b. As a consequence
of this, the source codewords cannot be fully exploited in
the decoding rule. On one hand, since the source does not
have any channel observation and hence cannot cooperate by
transmitting its compression index while on the other, the
source is the only node having new messages and therefore,
its fresh information must be superimposed on the last layer
of the relays. Otherwise, the relays would need to know the
message beforehand which is not possible.

We consider now another scenario. Let us assume that each
node in the network, including the destination and all relays,
decides to use the help of all nodes. In other words, we set
T , N and Tk , N−{k}, then the following corollary easily
follows from Theorem 1.

Corollary 2 (Fully cooperative MNNC): Assuming that all

X
Y

(Xi, Yi)

(Xj , Yj)

(Xk, Yk)

DF relays

CF relays

wb

li,b−1

wb−1

wb−1

Fig. 3. Non-cooperative Mixed Noisy Network Coding (MNNC) scheme.

nodes cooperate each other in the unicast network, then all
rates R satisfying the following inequality are achievable:

R ≤ max
P∈P

max
V⊆N

min

(
min

Vc⊆S⊆N
RN (S) ,

min
k∈Vc

min
S⊆N−{k}

R
(k)
N (S)

)
, (10)

where

RN (S) , I(XXS ; ŶScY |XScQ)

−I(ŶS ;YS |XXN ŶScY Q) , (11)

R
(k)
N (S) , I(X; ŶN−{k}Yk|V XNQ)

+I(XS ;Yk|V XkXScQ)

−I(ŶS ;YS |V XN ŶScYkQ) (12)

with Sc , N −S in expression (11), Sc , N − (S ∪ {k}) in
expression (12) and Vc , N − V satisfying the constraints:

I(XS ; ŶScY |V XXScQ)

−I(ŶS ;YS |V XXN ŶScY Q) ≥ 0 ,∀S ⊆ N , (13)
I(XS ;Yk|V XkXScQ)

−I(ŶS ;YS |V XXN ŶScYkQ) ≥ 0 ,

∀S ⊆ N − {k} , ∀ k ∈ Vc . (14)

The set of all admissible input distributions P is again defined
by (2).

C. Variations of Mixed Noisy Network Coding

For the rest of this section, we shall focus on some variations
of MNNC scheme. The cooperative strategy that yields The-
orem 1 allows all DF relays to cooperate with each other and
with CF relays via the exchanges of their compression indices.
It appears clear that, decoding of the source message at any
node becomes dependent on all other relays which in many
cases will lead to rather complex optimization problems. In
order to further simplify the coding scheme and thus to avoid
such complex dependences, DF relays can be constrained to
decode messages as stand alone terminals, i.e., without the
use of additional description indices, as it is shown in Fig. 3.
Moreover, this simplification can also avoid decoding delay
at all DF relays, which was necessary for decoding based
on the compression indices of other relays. The next theorem
provides the achievable rate of this simplified coding scheme
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that is referred to as “non-cooperative MNNC”, which was
independently derived in [27].

Theorem 2 (Non-cooperative MNNC): Assuming that no
cooperation is allowed among the relay nodes, then all rates
R satisfying the following inequality are achievable:

R ≤ max
P∈P

max
V⊆N , T ∈Υ (V)

min

(
min
S⊆T

RT (S) ,

min
i∈Vc

I(X;Yi|XVcQ)

)
, (15)

where

RT (S) , I(XXVcXS ; ŶScY |XScQ)

−I(YS ; ŶS |XXT ∪Vc ŶScY Q) (16)

with T ⊆ V ⊆ N , and Vc , N − V , and Sc , T − S.
For notation convenience, we use min∅(·) , +∞. Moreover,
Υ (V) is defined by

Υ (V) ,
{
T ⊆ V

∣∣ I(XS ; ŶScY |XXSc∪VcQ)

−I(YS ; ŶS |XXT ∪Vc ŶScY Q) ≥ 0 ∀ S ⊆ T
}
. (17)

The set of all admissible input PDs P is defined as follows:

P ,
{
PQXXNYN ŶNY =

PQPXXVc |QPY YN |XXN
∏
j∈V

PXj |QPŶj |XjYjQ

}
. (18)

Proof: The proof of this theorem is provided in Ap-
pendix B.

As we have previously stated in Theorem 1, all DF relay
nodes forward simultaneously the source message and their
description indices. However, we can reduce the complexity
of relaying functions by forcing partial cooperation, i.e., all
DF relays in Vc to use only the help of CF relays in V . This
simplified scheme yields the following corollary, which is a
special case of Theorem 1.

Corollary 3 (Partially cooperative MNNC): Assuming that
only partial cooperation is allowed among the relays, then all
rates R satisfying the following inequality are achievable:

R ≤ max
P∈P

max
V⊆N

min

(
max
T ∈Υ (V)

min
S⊆T

RT (S) ,

min
k∈Vc

max
Tk∈Υk(V)

min
S⊆Tk

R
(k)
Tk (S)

)
, (19)

where

RT (S) , I(XXVcXS ; ŶScY |XScQ)

− I(YS ; ŶS |XXT ∪Vc ŶScY Q) , (20)

R
(k)
Tk (S) , I(X; ŶTkYk|XVcXTkQ) + I(XS ;Yk|XVc∪ScQ)

− I(ŶS ;YS |XVc∪Tk ŶScYkQ) (21)

with sets T , and Tk ⊆ V ⊆ N , and Sc , T − S, and Sc ,
Tk − S , and Vc , N − V . Moreover, Υ (V) and Υk(V) are
defined by

Υ (V) ,
{
T ⊆ V

∣∣ I(XS ; ŶScY |XXSc∪VcQ)

− I(YS ; ŶS |XXT ∪Vc ŶScY Q) ≥ 0, ∀S ⊆ T
}
, (22)

Υk(V) ,
{
T ⊆ V

∣∣ I(XS ;Yk|XVc∪ScQ)

− I(ŶS ;YS |XXVc∪T ŶScYkQ) ≥ 0, ∀S ⊆ T
}
. (23)

The set of all admissible input PDs P is defined by (2).

D. Layered Mixed Noisy Network Coding

In this section, we extend the previous results to multi-
hopping scenarios. As before, the relays are divided into two
disjoint subsets V and Vc. Nodes in Vc are purely dedicated to
use DF scheme. Whereas the main difference relies on the fact
that DF relays are organized into disjoint groups where each of
them represents one hop in the network. Each of these groups
are referred to as “layer”. Theses layeres form an ordered
T−tuple, denoted by

〈
Lj : j = [1 : T ]

〉
, where T represents

the number of hops present in the scheme. We denote the set
of all such ordered partitions of an arbitrary set X by Πo(X ),
i.e., the set Πo(X ) contains all possible hops and layers for all
relays. As it is the case for MNNC, decoding at DF relays is
delayed by one block in order to benefit from the compression
indices of other CF relays. Moreover, decoding at DF relays is
sequentially performed, such that DF relays at a higher layer,
with higher indices, start to decode sooner than the other lower
layers, i.e. with lower indices. In this case, DF relays at each
layer can enjoy the help of higher relays which have already
decoded the message. We next introduce notation needed for
the rest of this section:

L≤d ,
⋃
t≤d
Lt and L>d ,

⋃
t>d

Lt ,

where L≤T = Vc. For any sequence of RVs {Xi} with i =
{1, . . . , n}, we define

V≤m , (V1, V2, . . . , Vm) ,

and similarly define xL , (xk)k∈L.
We next present an achievable rate for Layered Mixed Noisy

Network Coding (LMNNC).
Theorem 3 (Layered Mixed Noisy Network Coding): All

rates R satisfying the following inequality are achievable:

R ≤max
P∈P

max
V⊆N

max(
Lj ,j∈[1:T ]

)
⊆Πo(Vc)

min(
max
T ∈Υ (V)

min
S⊆T

RT (S) ,

min
i∈[1:T ]

min
k∈Li

max
Tk∈Υk(V)

min
S⊆Tk

R
(k)
Tk (Li,S)

)
, (24)

where

RT (S) , I(XXVc∪S ; ŶScY |XScQ)

−I(ŶS ;YS |XXVc∪T ŶScY Q) , (25)

R
(k)
Tk (Lt,S) , I(XV>tXL>t ;Yk|V≤tXL≤tQ)

+I(XS ;Yk|V≤TXVc∪ScQ)

−I(ŶTk ;YS |V≤TXVc∪TkYkQ) (26)

with Sc , T −S in (25) and Sc , Tk−S in (26). Moreover,
T , Tk ⊆ N , and Vc = N − V , and Υ (V) and Υk(V) are
defined as follows:

Υ (V) ,
{
T ⊆ V : QT (S) ≥ 0 ∀S ⊆ T

}
, (27)

Υk(V) ,
{
T ⊆ V : Q

(k)
T (S) ≥ 0 ∀S ⊆ T

}
, (28)



8

where QT (S) and Q(k)
T (S) are used to denote:

QT (S) , I(XS ; ŶScY |V≤TXXVcXScQ)

−I(ŶS ;YS |V≤TXXVcXT ŶScY Q) , (29)

Q
(k)
T (S) , I(XS ;Yk|V≤TXVcXScQ)

−I(ŶS ;YS |V≤TXXVcXTk ŶScYkQ) . (30)

The set of all admissible input distributions P is defined by

P ,
{
PQV1...VTXXNYN ŶVY

= PQ

T∏
t=1

PVt|V t−1QPXt|VtQ

PY YN |XXNQ
∏
j∈V

PXj |QPŶj |XjYj

}
. (31)

Proof: The proof of this theorem is provided in Ap-
pendix C.

We first remark that, by comparing the decoding con-
dition (26) with (21), the contribution of having different
layers brings the term (V>t, XL>t) in the mutual information,
which corresponds to the help of higher layers from DF
relays, i.e., the t-th layers shared at the source. In other
words, the source superimposes the fresh information over the
layers (V1, . . . , VT ). Moreover, the rate region presented in
Theorem 3 performs at least as good as partially cooperative
MNNC while by exploiting the help of CF relays it improves
upon the existent results in [27, Theorem 2]. Furthermore, this
multi-hopping scheme achieves the capacity of some networks,
e.g., line networks where relays can be ordered in a way that
the observation of lower layer nodes is a physically degraded
version of that of higher nodes.

In networks with random parameters, e.g., wireless net-
works, it is hard to assume a fixed hierarchy between relays
for all channel draws and thus the degradedness assumption
does not usually hold. Even the optimal number of hops
T depends on the specific channels realizations. Hence the
source cannot adaptively change the number of hops T and
set a priori coding based on a hierarchy. Nevertheless, this
problem can be partially addressed through the adaptive use of
(V1, . . . , VT ) where after the source transmission, DF relays
can choose a set of layers by looking at their channels and
superimpose the information over the corresponding layers,
generating a conditional codebook. But the number of hops
must be selected in advance.

III. CAPACITY OF COOPERATIVE UNICAST AWGN
NETWORKS WITHIN A CONSTANT GAP

In this section, we study the characterization of the capacity
of cooperative unicast additive Gaussian noise (AWGN) net-
works within a constant gap with respect to the cut-set bound.
In particular, we show that MNNC under certain conditions
–provided that DF relays are chosen properly– can achieve a
tighter “constant gap” than the standard NNC.

A. Single-Relay AWGN Channel

We first review the constant gap of DF rate for the single
AWGN relay channel while CF constant gap follows along

the same lines as shown in [16]. Consider the AWGN relay
channel defined by the channel outputs:

Y = g3X + g2X1 + V1 , (32)
Y1 = g1X + V2 , (33)

where the inputs are constrained to satisfy the average power
E[X2] ≤ P , E[X2

1 ] ≤ P , and the Gaussian noises V1 and
V2 are zero-mean of equal variance N ; the channel gains
(g1, g2, g3) are assumed to take arbitrary real values. Lower
bounds on the capacity of this channel are well-known from
literature [2]. The lower bound given by DF rate can be written
as follows

RDF , max
β∈[0,1]

min

{
C
(
g21βP

N

)
,

C

g23P + g22P + 2
√
βg22g

2
3P

N

 , (34)

and the cut-set bound (CB) reads as

CCB , max
β∈[0,1]

min

{
C
(
g21βP + g23βP

N

)
,

C

g23P + g22P + 2
√
βg22g

2
3P

N

 , (35)

where β denotes the correlation coefficient. Observe that the
second term in (34) appears unchnaged in (35), and let us
assume that β? is the value maximizing the CB in (35) that
is also chosen to evaluate the achievable rate in (34). Hence,
only the difference between the first two terms affects the gap
that is bounded as follows:

∆(CCB, RDF) , CCB −RDF

≤ C
(
g21β

?P + g23β
?P

N

)
− C

(
g21β

?P

N

)
=

1

2
log

(
N + β?g21P + β?g23P

N + β?g21P

)
= C

(
g23
g21

βP
N
g21

+ βP

)
≤ C

(
g23
g21

)
. (36)

From our previous analysis we remark that –unlike the conven-
tional NNC– the gap for DF rate cannot be made independent
of the channel gains. For instance, if the channel gain source-
to-relay is enough strong with respect to that of source-to-
destination, the capacity gap can be made arbitrarily small.
Furthermore, we may expect that in general, as will be the
case later, the performances of DF based schemes are heavily
related to channel conditions and therefore cannot be evaluated
independently. Also, it can be seen that when the quality
of source-to-destination channel is better than the quality of
source-to-relay channel, i.e., g3 > g1, then direct transmission
and thus CF scheme perform better than DF scheme.

B. Cooperative Unicast AWGN Networks

Consider a cooperative unicast AWGN network composed
of N relay nodes, a single source and single destination node,
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which yields in total to N+2 nodes. The relays are indexed as
before with index belonging to the set N , {1, . . . , N} but
for simplicity, we will also associate the source with index
0 and the destination with index N + 1, i.e., X0 , X and
YN+1 , Y . Thus, there is a bijection from the set of nodes to
the set {0, 1, . . . , N,N + 1}. The transmitters’ set is denoted
by M , {0, 1, . . . , N} and the receivers’ set is denoted by
D , {1, . . . , N,N + 1}. The channel gain from node i to
node j is denoted by {gij}, and Vj denotes the noise at node
j, which is assumed to follow a Gaussian distribution of zero-
mean and unit variance. The channel outputs at the different
nodes are given by

{
YD = G(D, T )XM + VD ,
ŶN = YN + V̂N ,

where YD = [Y1 Y2 . . . YN Y ]T , YN = [Y1 Y2 . . . YN ]T ,
XM = [X0X1 . . . XN ]T and VD = [V1 V2 . . .VN+1]T and
G(D, T ) denotes the channel matrix with the corresponding
channel gains, where we use the definition gii , 0 for all
i ∈ D; and V̂N denotes the compression noise vector that
is chosen to follow the same statistic as the channel noise,
i.e., Gaussian distribution of zero-mean and unit variance.
All through this section, the notation G(S1,S2) is used to
indicate the set of channel gains

{
gij | i ∈ S1, j ∈ S2

}
.

We simply use G when the respective sub-matrices can be
understood implicitly. All channel inputs are constrained to
satisfy average power E[X2

i ] ≤ P , for all i ∈ M. The
covariance matrix of any subset XS of channel inputs is
denoted by Sigma(S) = [P ρij ] for all i, j ∈ S with
corresponding correlation coefficients ρij between the input
components (Xi, Xj). Similarly, we have Σ(S1,S2) = [P ρij ]
for all i ∈ S1 and j ∈ S2. Also I denotes the identity matrix.

We first recall the capacity within a constant gap which has
been derived in [16] based on NNC scheme.

Proposition 1 (Constant Gap of NNC [16]): A constant
gap between NNC rate and cut-set bound for the AWGN
network with N relays is given by

∆∗(CCB, RNNC) , 0.63(N + 2) . (37)

We proceed to evaluate the achievable rate given in Theorem 1
from which we shall derive a novel constant gap to the
capacity. Let us assume that T = N , which implies that
the destination decodes the compression indices of all relays.
Channel inputs are chosen to be Gaussian random variables
of zero-mean and unit variance satisfying the corresponding
average power constraints. The set Vc denotes the index set
of all relays using DF scheme and V those using CF scheme.
Based on these setups, we need to evaluate:

RMNNC , sup
P∈P

min

(
min

Vc⊆S⊆N
RN (S) ,

min
k∈Vc

max
Tk∈Υk(N )

min
S⊆Tk

R
(k)
Tk (S)

)
(38)

where

RN (S),I(XXS ; ŶScY |XSc)
−I(ŶS ;YS |XXN ŶScY ) , (39)

R
(k)
Tk (S),I(X; ŶTkYk|V XkXTkQ)

+I(XS ;Yk|V XkXSc)− I(ŶS ;YS |V XkXTk ŶScYk) . (40)

In order to evaluate expression (38) and thus compute the gap
from capacity based on MNNC, we first need to evaluate the
cut-set bound in an more convenient manner.

Lemma 1 (Cut-set bound): The capacity of the unicast co-
operative AWGN network is upper bounded by equation (41),
for an arbitrary set of nodes V ⊆ N , where the maximum
is taken over all covariance matrices Σ(·) satisfying the
corresponding inputs constraints. Indeed, the set Vc , N −V
can be seen as the set of relays already having or decoding
the source message.

Proof: Let A and B be two positive semidefinite matrices
such that:

A =

[
A11 A12

A21 A22

]
� 0 and B =

[
A11 0
0 A22

]
� 0 ,

(42)
then 2B � A . It is enough to check that the matrix A(−) ,[
A11 −A12

−A21 A22

]
is positive semidefinite and hence A(−) +

A = 2B. On the other hand, the cut-set bound is as follows:

CCB , max
P∈P

min
S⊆N

I(XXS ;YScY |XSc) . (43)

For convenience, we define the sets Sc∗ , Sc ∪ {N + 1},
Vc∗ , Vc ∪ {0} and SCF , S ∩ V . The following inequalities
hold true:

I(XXS ;YScY |XSc)
≤ h(YScY )− h(YScY |XXN ) (44)

=
1

2
log

∣∣∣∣I(Sc∗) +G

[
Σ(Vc∗) Σ(Vc∗,SCF)

Σ(SCF,Vc∗) Σ(SCF)

]
GT
∣∣∣∣

≤ 1

2
log

∣∣∣∣2I(Sc∗) + 2G

[
Σ(Vc∗) 0

0 Σ(SCF)

]
GT
∣∣∣∣ (45)

≤ 1

2
log

∣∣∣∣2I(Sc∗) + 2G

[
Σ(Vc∗) 0

0 Tr(SCF)I(SCF)

]
GT
∣∣∣∣

(46)

≤1

2
log
∣∣∣2I(Sc∗)+

2 max(1, |SCF|)G
[
Σ(Vc∗) 0

0 P I(SCF)

]
GT
∣∣∣∣ (47)

≤ 1

2
log

∣∣∣∣I(Sc∗) +
1

2
G

[
Σ(Vc∗) 0

0 P I(SCF)

]
GT
∣∣∣∣

+
|Sc|+ 1

2
log
(
4 max(1, |SCF|)

)
(48)

where (45) follows from the identity (42) and (46) follows
by noting that Tr(SCF)I(SCF) � Σ(SCF). For |SCF| 6= 0, (47)
and (48) follow from Tr(SCF) = P |SCF| and basic matrix
operations. For |SCF| = 0, one can bound (46) directly by
|Sc|+1

2 log(4). By rewriting expression (48), it is not difficult
to check that (48) implies (41) which concludes the proof.
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Proposition 2 (Constant Gap of MNNC): Provided source-
to-relays channels allow decoding at all relay nodes in Vc ,
N − V for some set V ⊆ N , capacity can be stated within a
constant gap from MNNC rate satisfying

∆(CCB, RMNNC) , max
Vc⊆S⊆N

[ |S|
2

+
1 + min{|S|, |Sc|}

2
log (4 max(1, |V| − |Sc|))

]
. (49)

Furthermore, if all source-to-relay channels are good
enough to select DF then the constant gap verifies:

∆(CCB, RMNNC) ≤ 0.5N + 0.7 < ∆(CCB, RNNC) , (50)

which leads to a strictly tighter gap than that of NNC
scheme [16].

It should be emphasized that the gains in terms of “constant
gap” provided by MNNC with respect to NNC scheme are
obtained by taking Tk as empty sets. However, the original rate
R

(k)
Tk in Theorem 1 can be maximized over all general (non

necessarily empty) sets Tk which may improve the final rate.
Although we have assumed that the gap incurred by restricting
this maximization is not significant (at least in terms of the
notion of constant gap), the main outcome of our analysis is
that the constant gap can be improved, provided the relays
using DF scheme are adequately chosen.

Proof: Consider the first term of MNNC rate given by
expression (38). This can be lower bounded, for any set S ⊆
N , as follows:

RN (S) = I(XXS ; ŶScY |XSc)− I(ŶS ;YS |XXT ŶScY )

≥ I(XXS ; ŶScY |XSc)− I(ŶS ;YS |XXN )

= I(XXS ; ŶScY |XSc)−
|S|
2
. (51)

By convenience, we select the sets Sc∗ , Sc ∪ {N + 1},
Vc∗ , Vc ∪ {0} and SCF , S ∩ V . Since all channel inputs
among the nodes in Vc are not necessarily independent, we
have that

I(XXS ; ŶScY |XSc) ≥ I(XXS ; ŶSc Ŷ |XSc)
= h(ŶSc Ŷ |XSc)− h(ŶSc Ŷ |XXN )

=
1

2
log

∣∣∣∣I(Sc∗) +
1

2
G

[
Σ(Vc∗) 0

0 P I(SCF)

]
GT
∣∣∣∣ ,

where the covariance matrix Σ(Vc∗) is the one that maximizes
the cut-set bound in (41). Hence, the maximum rate RN (S)
is lower bounded by

RN (S) ≥ 1

2
log

∣∣∣∣I(Sc∗) +
1

2
G

[
Σ(Vc∗) 0

0 P I(SCF)

]
GT
∣∣∣∣

− |S|
2
. (52)

Finally, from (52) the gap between MNNC rate (38) and the
cut-set bound (41) is bounded by

∆1 , max
Vc⊆S⊆N

[ |S|
2

+
1 + min{|Sc|, |S|}

2
log (4 max(1, |S ∩ V|))

]
.(53)

The remanning part of the MNNC rate, which is related
to all relays using DF scheme, can be bounded as follows.
We remark that the channel output Y is absent in the rate
expression while it is present in the cut-set bound. Hence,
any bound on the gap between the achievable rate and the
cut-set bound –no matter how tight it is– will depend on the
channel gains between the output Y and all inputs. For sake
of simplicity, we shall assume that each DF relay is decoding
the source message without looking at the compression indices
of others relays, which yields Tk = ∅. Then, the rate R

(k)
Tk

is simply reduced to R
(k)
DF = I(X;Yk|V Xk) and it can be

bounded using the same steps as before. The outputs Yk can
be re-written as

Yk = g0kX +G({k},N )XN + Vk
= g0kX +

∑
i∈V

gikXi +
∑
i∈Vc

gikXi + Vk ,

where the relays in the set V use CF scheme. In order to
evaluate the conditional entropy h(Yk|V Xk), we can use the
standard linear decomposition Xi = X̃i + αiV , based on
independent descriptions X̃i and V that satisfy the power
constraints. It is easy to check that

h(Yk|V Xk)=
1

2
log(2πe)

[
g20k(1− ρ20k)P

+
∑
i∈V

g2ikP +
∑
i∈Vc

g2ik(1− ρ2ik)P + 1

]
,

and similarly

h(Yk|V XXk) =

1

2
log(2πe)

[∑
i∈V

g2ikP +
∑
i∈Vc

g2ik(1− ρ2ik)P + 1

]
.

From which the mutual information is obtained as

I(X;Yk|V Xk) =

1

2
log

1 +
g20k(1− ρ20k)P∑

i∈V
g2ikP +

∑
i∈Vc

g2ik(1− ρ2ik)P + 1

 .

By evaluating the the cut-set bound, we get:

I(XXN−{k};YkY |Xk) =

1

2
log
∣∣I({2}) +GΣ(M−{k})GT

∣∣ , (55)

CCB , max
Σ(·)

min
Vc⊆S⊆N

1

2
log

∣∣∣∣I(Sc ∪ {N + 1}) +
1

2
G

[
Σ({0} ∪ Vc) 0

0 P I(S ∩ V)

]
GT
∣∣∣∣

+
1 + min{|Sc|, |S|}

2
log (4 max(1, |S ∩ V|)) , (41)
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where

G = G({k,N + 1},M−{k}) =[
g0k g1k . . . gNk

g0(N+1) g1(N+1) . . . gN(N+1)

]
, (56)

the gap between the achievable rate in this case and the
cut-set bound can be bounded by (54). As it was expected,
this gap does depend on channel gains. From expressions (53)
and (54), the final gap reads:

∆(CCB, RMNNC) , max (∆1, ∆2) . (57)

Nevertheless, assuming that all relays using DF scheme are
chosen appropriately, the first term ∆1 of the gap in (57),
which is independent of the channel gains is expected to be
dominant. For instance, the question that arises here is what is
the most appropriate condition to select the set of DF relays.
A simple way to deal with this issue is to pick all relay nodes
whose channel gains {g0k} are enough large compared to
those of the other nodes. This selection rule only requires the
optimization of the first term in (57) which yields the desired
gap in (49).

Therefore, it is of interest to understand how the gap
of MNNC is compared with that of NNC [16]. As it was
previously discussed, there is no definitive answer for general
cases. However, if a considerable amount of relays are well
positioned to perform DF scheme, then the constant gap can
be strictly improved. Notice the interest behind (49) is to
emphasize that MNNC can improve the gap to the capacity.
The improvement of this gap is two fold. Firstly, the gap de-
creases logarithmically as the number of DF relays increases.
Moreover, the expression of constant gap is optimized over
all sets S such that Vc ⊆ S ⊆ N . This leads to a reduced
optimization space which eventually can lead to a better gap.
Secondly, all this is conditioned by whether the DF relays
affect the gap or not. For instance, if all relays are good enough
then the encoder chooses Vc = N and thus the optimization
set is reduced to a single element N , and the constant gap
becomes 0.5N + 0.7 which is strictly better than (37). More
precisely, the gap can be bounded by 0.5N +C(k), where the
value of C(k) is independent of N and k is the number of CF
relays provided that N−k relays perform DF scheme without
degrading the rate. Once again, it should be emphasized that
the constant gap results are dependent on the assumption of
good source-to-relay channel gains.

IV. COOPERATIVE UNICASTING IN WIRELESS NETWORKS

In this section, we consider a direct application of MNNC
to the problem of cooperative unicasting in wireless networks
where a single source wishes to communicate with a des-
tination in presence of multiple relay nodes. A composite

X Y

Y1θr
X1θr

θr

θd

θ ∼ Pθ

Fig. 4. Composite Relay Channel.

unicast network is assumed where the channel parameters are
randomly drawn and this draw is assumed to be unknown at the
source, fully known at the destination and only partly known
at the relay nodes. We exploit MNNC scheme to introduce
a novel transmission scheme that enables the relays to select
–based on their channel measurements– the best cooperative
strategy. Bounds on the asymptotic average error probability
of this class of networks are derived.

A. Composite Relay Channels

Consider the composite relay channel described in Fig. 4,
where the probability distribution characterizing the channel
is indexed with parameters θ. This channel can be defined as
a set of memoryless probability distributions:

WΘ =
{
PY nY n1 |XnXn1 ;θ(y, y1|x, x1; θ)

∣∣∣x ∈ Xn,
x1 ∈ Xn1 , y1 ∈ Y

n
1 , y ∈ Yn, θ ∈ Θ

}∞
n=1

.

This family of channels corresponds to the definition of the
compound relay channel for which the channel is chosen in an
arbitrary manner but remains fixed during the communication.
Whereas, the composite relay channel introduces a probability
measure Pθ on Θ to handle the channel selection and thus an
index θ is present with probability Pθ(θ) but also remains fix
during the communication. The index θ represents vectors of
parameters θ = (θd, θr) with (θd, θr) ∈ Θ, where θr ∈ Θr
denotes all parameters affecting the relay output and θd ∈ Θd
are the remaining parameters involved in the communication.
More precisely, the marginal distributions read as:

PY n1 |XnXn1 ;θ= PY n1 |XnXn1 ;θr ,

PY n|XnXn1 ;θ= PY n|XnXn1 ;θd .

The specific draw θ = (θd, θr) is assumed to be unknown at
the source and fully known at the destination while the relay
only knows θr. The notion of capacity-versus-outage shall be
used to characterize the performance of this channel1.

1Notice that non-zero rate cannot always be guaranteed for the compound
model which means that the weak capacity of many compound models would
be zero.

∆2, max
k∈Vc

1

2
log


∣∣I({2}) +GΣ(M−{k})GT

∣∣ [∑
i∈V

g2ikP +
∑
i∈Vc

g2ik(1− ρ2ik)P + 1

]
g20k(1− ρ20k)P +

∑
i∈V

g2ikP +
∑
i∈Vc

g2ik(1− ρ2ik)P + 1

 . (54)
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Definition 2 (code and achievability): A code-C(n,Mn,
εn,θ) for the composite relay channel with (WΘ,Pθ) defined
as before consists of:
• An encoder mapping {ϕ :Mn 7−→ Xn},
• A decoder mapping {φ : Yn ×Θ 7−→Mn},
• A set of relay functions

{
fi : Yi−11 ×Θr 7−→ X1

}n
i=1

,
for some set of uniformly distributed messages W ∈ Mn ={

1, . . . ,Mn

}
. For each θ, the average error probability is

defined as:

εn,θ = Pr
{
φ(Y n, θ) 6= W

∣∣θ} .

An error probability 0 ≤ ε < 1 is said to be r-achievable, or
the rate r is said to be ε-achievable, if there exists a code-
C(n,Mn, r) with rate satisfying

lim inf
n→∞

1

n
logMn ≥ r

and average error probability

lim sup
n→∞

Eθ

[
Pr
{
φ(Y n, θ) 6= W

∣∣θ}] ≤ ε .
The infimum of all r-achievable error probabilities ε̄(r) is
defined as

ε̄(r) , inf {0 ≤ ε < 1 : ε is r-achievable} .
Remark 3: It is important to remark that the reliability

function of the composite relay channel may be defined in
different ways. If the expectation of the error probability
is chosen as the reliability function (2), then the definition
remains the same as that of averaged channels in [35], [36].
The notion of ε-achievability stays the same as the previous
definition where the supremum of all ε-achievable rates is
refereed to as ε-capacity of the averaged channel

Cε , sup {r ≥ 0 : r is ε-achievable} .
Indeed, composite channels provide more general models
since the reliability function unlike averaged channels is not
uniquely determined.

We aim at characterizing the smallest possible average error
probability (2) as a function of the coding rate r. In wireless
scenarios, the notion of outage probability is extensively used
to characterize the average error probability. To properly define
this notion, let us assume that the decoder is equipped with
an outage identification function [28]:

I : Θ 7−→ {0, 1}
such that I(θ) equal to one indicates that the decoder is able
to recover the message, i.e.,

lim
n→∞

Pr
{
φ(Y n, θ) 6= W

∣∣θ} = 0 ,

otherwise if I(θ) is zero, the decoder does not decode the
message and declares an outage event. The outage probability
is then defined by

Pout , Pr{I(θ) = 0} .
Hence, for any code with outage probability Pout we know that
if I(θ) is equal to one the error probability tends to zero as

n goes to infinity and thus (2) can be upper bounded by the
outage probability, i.e.,

lim sup
n→∞

Eθ

[
Pr
{
φ(Y n, θ) 6= W

∣∣θ}] ≤ Pout .

On the other hand, for I(θ) = 0 the error probability can be
only bounded away from zero. Let us now assume that the
decoder is provided with the full error genie aided function:

J : Θ 7−→ {0, 1} ,
where J(θ) equal to zero indicates that the error probability
tends to one, i.e.,

lim sup
n→∞

Pr
{
φ(Y n, θ) 6= W

∣∣θ} = 1 ,

and the value one is assigned to indicate that the error
probability tends not to one, but neither necessarily to zero.
Thus, we have that the average error probability is bounded
away from the probability that J(θ) equals zero, yielding the
lower bound:

lim inf
n→∞

Eθ

[
Pr
{
φ(Y n, θ) 6= W

∣∣θ}] ≥ Pr{J(θ) = 0} .

In a recent work [31], it has been shown that any rate
bigger than the cut-set bound will produce an error probability
tending to one. This implies that all relay channels for which
the cut-set bound is tight satisfy the strong converse property.
Furthermore, it also implies that the next genie aided function
is a full error identification function:

J(θ) , 1[r > CCB(θ)] ,

where CCB(θ) is the cut-set bound indexed by θ,

CCB(θ) , max
p(x,x1)

min {Iθ(X;Y Y1|X1), Iθ(XX1;Y )} .

By using the previous inequalities, the average error probabil-
ity ε̄(r) can be bounded as follows

Pθ{r > CCB(θ)} ≤ ε̄(r) ≤ Pout(r)

and Pout(r) is the outage probability of a given coding strategy
(e.g. DF and CF schemes). The use of DF scheme yields an
outage probability given by

PDF
out (r) , min

p(x,x1)
Pθ

[
r > min{Iθr (X;Y1|X1),

Iθ(XX1;Y )}
]
, (58)

where Iθ denotes the mutual information for a given θ. Notice
that since the source is unaware of θ = (θr, θd), and p(x, x1)
must be known at both source and relay end, then p(x1) cannot
be independently optimized on θr to minimize the outage
probability.

Consider now the case of CF, for which the source does
not need to know p(x1), so the relay can choose p(x1) to
minimize the outage probability conditioned on each value θr.
This requires two steps of optimization, the outage probability
of CF scheme [16] reads as:

PCF
out (r) , min

p(x,q)
Eθr

[
min

p(x1|q)p(ŷ1|x1,y1,q)

Pθ|θr
[
r > min{Iθ(X; Ŷ1Y |X1Q), Iθ(XX1;Y |Q)−

Iθ(Y1; Ŷ1|XX1Y Q)}
∣∣θr]] . (59)
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Fig. 5. Selective Coding Strategy (SCS) and Two-relay network.

Moreover, from (58) and (59) the selection of the best strategy
minimizing the outage probability provides the tightest bound
on the error probability,

Pout(r) , min
{
PDF

out (r), P
CF
out (r)

}
. (60)

The central question that arises here is whether the achiev-
able error probability (60) can be improved by some kind
of smart coding strategy in which the relay selects instan-
taneously the best strategy between DF or CF, according to
its channel measurement θr. To this purpose, the source code
should be capable of being used simultaneously with DF and
CF schemes, as shown in Fig. 5(a). Nevertheless, the source is
not aware of the channel measurement at the relay and hence
it is not able to know which strategy is going to be selected
at the relay. This is an example of simultaneous relay channel
with two possible situation, DF relay and CF relay. As it is
discussed previously in [37], this problem can be studied using
an equivalent model. The source must consider the two-relay
network where one relay node employs DF scheme while the
other one uses CF scheme, as shown in Fig. 5(b). Now the
source code should be designed to account for both relays.
Also in the equivalent model, the relays cannot collaborate
since only one of them is present at once. This model sheds
light on the proper code design for composite setting due
to the simultaneous presence of relays with heterogeneous
cooperative strategy.

The next corollary is a special case of Theorem 2 for a two-
relay network where the DF relay decodes directly the source
message without the help of the other relay.

Corollary 4 (Two-relay network): A lower bound on the
capacity of the two-relay network is given by all rates sat-
isfying

R ≤ max
P∈P

min

{
I(X;Y1|X1Q) , max

{
I(XX1;Y |Q),

min
[
I(XX1; Ŷ2Y |X2Q), I(XX1X2;Y |Q)

−I(Y2; Ŷ2|Y XX1X2Q)
]}}

(61)

and the set of all admissible input PDs P is defined as

P ,
{
PQX2X1XY Y1Y2Ŷ2

= PQPX2|QPXX1|Q

×PY Y1Y2|XX1X2
PŶ2|X2Y2Q

}
. (62)

The maximum in (61) determines whether the second relay
that uses CF scheme is increasing the rate or would be better
to treat its transmission as interference. It is not difficult to
check that the second relay increases the rate provided the
following condition is satisfied:

I(X2;Y |XX1Q) ≥ I(Y2; Ŷ2|Y XX1X2Q) . (63)

The last two terms in (61) represent the condition of successful
decoding at the destination while the first term is the condition
of successful decoding of X1 at the first relay. By comparing
the last two terms with the standard expression of CF rate,
it is easy to see that these present similar behavior with the
minor difference that the relay codeword has been replaced
with (X,X1). It is also worth mentioning that by treating the
CF relay as noisy, e.g., whenever its link is too noisy, or by
using NNC which improves the constraint (63), Corollary 4
improves over the results in [5].

Based on Corollary 4 we can state an achievable result for
the composite relay channel that is a direct consequence of
Corollary 4 and some additional subtleties which are addressed
in Appendix D. First, we emphasize on the fact that the
coding strategy used in Corollary 4 is also well adapted to
the composite relay channel. Basically, the relay may dispose
of two set of codebooks, namely X1 and X2, and it sends
either X1θr = X1 (corresponding to DF scheme) when
condition θr ∈ DDF holds or X1θr = X2 (corresponding to
CF scheme) elsewhere. Therefore, since the error probability
is made arbitrary small simultaneously for both relays, the
source does not need to know the specific relay function
implemented. With this coding, the relay can select the coding
strategy according to its instantaneous channel measurement
θr. Secondly, we remark that for the CF relay there may be
the additional condition (63) for decoding. The destination is
assumed to know θ and consequently is aware if condition
(63) does hold or not. In the case where it fails, destination
will treat the relay input as interference –without perform its
decoding– and then the condition for unsuccessful decoding
simple becomes 1 {r > Iθ(X;Y )}. We refer to this coding
scheme as to “selective coding strategy” (SCS). In the next
section, we show that it can further improve the asymptotic
error probability.



14

Proposition 3 (SCS with partial CSI at relay): The
average error probability of the composite relay channel
with partial CSI θr at the relay can be upper bounded by

ε̄(r) ≤ min
p(x,x1,q)

inf
DDF⊆Θr

Eθr

{
Pθ|θr

[
r > IDF(θ) , θr ∈ DDF

∣∣θr]
+ min
p(x2|q)p(ŷ2|x2,y1,q)

Pθ|θr
[
r > ICF(θ) , θr /∈ DDF

∣∣θr]} ,
(64)

where (X1, X2) denote the relay inputs corresponding to each
strategy selected as follows

X1θr =

{
X1 if θr ∈ DDF
X2 if θr /∈ DDF

and the quantities IDF, ICF are defined by

IDF(θ) , min
{
Iθr (X;Y1|X1Q) , Iθ(XX1;Y |Q)

}
,

ICF(θ) , max
{

min
[
Iθ(X; Ŷ2Y |X2Q), Iθ(XX2;Y )

−Iθr (Y1; Ŷ2|Y XX2Q)
]
, Iθ(X;Y )

}
.

Consider an index draw θr such that 1
{
r > Iθr (X;Y1|X1)

}
= 1, i.e., the relay is not able to decode the message. Then,
DF scheme would lead to an outage event while CF scheme
does not necessarily yield to such event and so the best guess
of the relay would be to use CF scheme. The question that
arises here is what the proper guess would be if the relay
can decode the message. As a matter of fact, if the relay
decodes and uses DF scheme, an outage event may still
occur if 1 {r > Iθ(XX1;Y )} = 1. However, since X2 is
independent of X while X is in general dependent on X1, for
Gaussian inputs, we have that Iθ(XX1;Y ) ≥ Iθ(XX2;Y ).
This implies that if an outage event occurs with DF scheme
while the relay has the message then the event will happen
anyway with CF scheme. Note that the preceding inequality is
not true in general, e.g., consider the case of binary RVs where
correlation does not necessarily increase mutual information.

Remark 4 (Optimizing the decision region): The optimal
decision region when the inputs (64) are jointly Gaussian is
given by the set

D?DF ,
{
θr ∈ Θr

∣∣ Iθr (X;Y1|X1Q) > r
}
. (65)

Although the knowledge of θr at the relay is enough to select
the adequate coding strategy, full CSI (θr, θd) further improves
the description that the relay sends to the destination and yields
the following extension of Proposition 3.

Proposition 4 (SCS with full CSI at relay): The average
error probability of the composite relay channel with full CSI
θ = (θr, θd) at the relay can be upper bounded by

ε̄(r) ≤ min
p(x,x1,q)

inf
DDF⊆Θr

{
Pθ

[
r > IDF(θ) , θr ∈ DDF

]
+Pθ

[
r > ICF(θ) , θr /∈ DDF

]}
, (66)

where (X1, X2) denote the relay inputs corresponding to each
strategy selected as follows

X1θr =

{
X1 if θr ∈ DDF
X2 if θr /∈ DDF

(67)

X Y

(Xj , Yj) (Xk, Yk)
DF relays

CF relays

✓r ✓d

✓r
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Fig. 6. Composite Cooperative Unicast Network.

and the quantities IDF, ICF are defined by

IDF(θ) , min
{
Iθr (X;Y1|X1Q) , Iθ(XX1;Y |Q)

}
, (68)

ICF(θ) , max
p(x2|q)p(ŷ2|x2,y1,q)

min
{
Iθ(X; Ŷ2Y |X2Q) ,

Iθ(XX2;Y |Q)−Iθr (Y1; Ŷ2|Y XX2Q)
}
. (69)

The proof follows along the same lines than that of Propo-
sition 3. It is worth mentioning that since full CSI is here
available at the relay, the relay input can be optimized over
θ = (θr, θd) and then ICF can never be less than the capacity
of the source-to-destination channel. Similarly, the optimal
decision region assuming Gaussian inputs reads as (65).

B. Composite Cooperative Unicast Networks

Consider the composite cooperative unicast network as
described in Fig. 6, where the probability distribution charac-
terizing the network is indexed with parameters θ ∈ Θ. This
network can be defined as a set of memoryless probability
distributions in (70). This family of networks corresponds to
the definition of the compound cooperative unicast network
for which the channels are chosen in an arbitrary manner but
remain fix during the communication. Similar to the case of the
composite relay channel, we introduce a probability measure
Pθ over Θ, then each index θ is present with probability
Pθ. The vectors of parameters is θ = (θd, θr) ∈ Θ with θr
denoting all parameters that affect the relays’ outputs, and θd
are the remaining parameters involved in the communication,
as shown in Fig. 6. More precisely, the marginal PDs read as:

PY n1 ...Y nN |XnXn1 ...XnN ;θ = PY n1 ...Y nN |XnXn1 ...XnN ;θr ,

PY n|XnXn1 ...XnN ;θ = PY n|XnXn1 ...XnN ;θd .

The specific draw of θ = (θd, θr) is assumed to be unknown at
the source and fully known at the destination while the relays
only know θr. Again the notion of capacity-versus-outage shall
be used to characterize the performance of this network.

Definition 3 (code and achievability): A code-C(n,Mn, r)
for the composite cooperative unicast network with (WΘ,Pθ)
consists of:

• An encoder mapping {ϕ :Mn 7−→ Xn},
• A decoder mapping {φ : Yn ×Θ 7−→Mn},
• A set of relay functions

{
f
(k)
i : Yi−1k ×Θr 7−→ Xk

}n
i=1

for k ∈ N .
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An error probability 0 ≤ ε < 1 is said to be r-achievable, or
the rate r is said to be ε-achievable, if there exists a code-
C(n,Mn, r) with rate satisfying

lim inf
n→∞

1

n
logMn ≥ r

and average error probability

lim sup
n→∞

Eθ

[
Pr
{
φ(Y nθ , θ) 6= W

∣∣θ}] ≤ ε .
The infimum of all r-achievable error probabilities ε̄(r) is
defined as

ε̄(r) , inf {0 ≤ ε < 1 : ε is r-achievable} .
It should be worth mentioning here that the definition ε-
achievability based on (3) becomes equivalent to that of
averaged channels [35], [36], where

Cε , sup {0 ≤ r : r is ε-achievable} .
Assume that the destination is equipped with outage and full

error identification functions I and J , given by expressions
(IV-A) and (IV-A), respectively. The average error of a given
code can be bounded by following the same arguments as
before and thus,

Pr{J(θ) = 0} ≤ lim sup
n→∞

Eθ

[
Pr
{
φ(Y n, θ) 6= W

∣∣θ}]
≤ Pr{I(θ) = 0} .

Because the preceding lower bound is valid for arbitrary codes,
it provides a converse bound on ε̄(r).

Remark 5: The outage and full error identification functions
I and J can be equally used to bound the ε-capacity of
averaged networks with parameter θ. Consider a code with
maximal achievable rate r and outage probability given by
Pr{I(θ) = 0}. Since the outage probability provides an upper
bound on the expected error of the code, the rate r is ε-
achievable for all 0 ≤ ε < 1 exceeding the outage probability.
Hence, all codes with outage probability less than ε are ε-
achievable, i.e.,

Cε ≥ sup
{
r ≥ 0 : ∃ a code-C(n,Mn, r)

with Pr{I(θ) = 0} ≤ ε and lim inf
n→∞

1

n
logMn ≥ r

}
. (71)

Let us assume any code with rate r and full error identification
function J such that Pr{J(θ) = 0} > ε, then we know that
the code is not ε-achievable. This condition does not imply
any specific connection between the rate r and the ε-capacity
because there may exist another code with rate r which is ε-
achievable. To remove this possibility, we can consider only
those rates with Pr{J(θ) = 0} > ε such that that there
is no code with this rate which is ε-achievable. The set of
these rates is non-empty in general because there is certain

rate limit over which every code with that rate will have the
error probability asymptotically tending to one. For instance,
every rate beyond the capacity of discrete memoryless satisfies
such condition and hence it is not ε-achievable for all ε < 1.
Formally, if the rate r is such that for all code-C(n,Mn, r)
with lim inf

n→∞
1
n logMn ≥ r the error probability satisfies

Pr{J(θ) = 0} > ε, then r provides an upper bound on the
ε-capacity of the composite cooperative unicast network, i.e.,

Cε ≤ inf
{
r ≥ 0 : ∀ code-C(n,Mn, r)

if lim inf
n→∞

1

n
logMn ≥ r then Pr{J(θ) = 0} > ε

}
. (72)

For all codes with rate at least r, an identification function is
given by [38]

J(θ) , 1[r > CCB(θ)] ,

where CCB(θ) denotes the cut-set bound of the cooperative
unicast network with index θ. The ε-capacity of the averaged
composite cooperative unicast network is bounded by

Cε ≤ inf {r ≥ 0 : Pr{r > CCB(θ)} > ε} . (73)

In the rest of this section, we upper bound the average error
probability based on the outage probability of the “Selective
Coding Strategy” (SCS). Indeed, we first derive an upper
bound using Theorem 1. Let us select a set of nodes V ⊆ N
and a probability distribution PQVX that is independent of the
specific draw θ, which is not available at the source. Besides
relays can adapt {PXk|QV } to the parameters involved in θr
for which the identification function reads as:

I(θ) , 1[r ≤ IMNNC(V, θ)] ,

where IMNNC(V, θ) is defined by

IMNNC(V, θ) , min

(
max
T ∈Υ (N )

min
Vc⊆S⊆T

RT (S, θ) ,

min
k∈Vc

max
Tk∈Υk(N )

min
S⊆Tk

R
(k)
Tk (S, θr)

)
, (74)

with Vc , T − V and

RT (S, θ) , Iθ(XXS ; ŶScY |XScQ)

−Iθ(ŶS ;YS |XXT ŶScY Q) ,

R
(k)
Tk (S, θr) , Iθr (X; ŶTkYk|V XkXTkQ)

+Iθr (XS ;Yk|V XkXScQ)

−Iθr (ŶS ;YS |V XkXTk ŶScYkQ) .

The sets Υ (N ) and Υk(N ) are given by

Υ (N ) ,
{
T ⊆ N : ∀ S ⊆ T , QT (S, θ) ≥ 0

}
,

Υk(N ) ,
{
T ⊆ N − {k} : ∀ S ⊆ T ,

Q
(k)
T (S, θr) ≥ 0

}
,

WΘ,
{
PY nY n1 ...Y nN |XnXn1 ...XnN ;θ(y, y1, . . . , yN |x, x1, . . . , xN ; θ)

∣∣∣x ∈ Xn, x1 ∈ Xn1 , . . . , xN ∈ XnN ,
y ∈ Yn, y

1
∈ Yn1 , . . . , yN ∈ Y

n
N , θ ∈ Θ

}∞
n=1

. (70)
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where QT (S, θ) and Q(k)
T (S, θr) are defined as:

QT (S, θ) , Iθ(XS ; ŶScY |V XXScQ)

−Iθ(ŶS ;YS |V XXT ŶScY Q) ,

Q
(k)
T (S, θr) , Iθr (XS ;Yk|V XkXScQ)

−Iθr (ŶS ;YS |V XXkXT ŶScYkQ) .

The following upper bound on the expected error probability
of the composite cooperative unicast network with partial CSI
θr at the relays holds:

ε̄(r) ≤ min
p(x,v,q)

inf
V⊆N

Eθr

{
min
p(·)∈Q

Pθ|θr
[
IMNNC(V, θ)

∣∣θr]} ,
(75)

where the set of all admissible PDs Q is given by

p(·) =
∏
j∈V

p(xj |q)p(ŷj |xjyjq)
∏
j∈Vc

p(xj |vq)p(ŷj |vxjyjq) .

We can also further exploit the SCS presented in the
previous subsection. Again the general idea is that, based on
the channel parameters θr, each relay is allowed to use either
CF or DF scheme. In this setting, the relays must have two
set of codebooks: one set is intended to the case in which
the relay uses CF scheme and the other set is for the case of
DF scheme. Without loss of generality, we assume that θr is
known to all relay terminals. Each relay has a decision region,
say D(k)

DF . So that relay k can decide for θr ∈ D(k)
DF to use DF

scheme and otherwise it would use CF scheme. Let V ⊆ N
and define DV as follows:

DV ,

( ⋂
k∈Vc

D(k)
DF

)
∩
(⋂
k∈V
D(k)

DF

c

)
.

By consequence, if θr ∈ DV then θr /∈ D(k)
DF for all k ∈ V ,

and θr ∈ D(k)
DF for all k ∈ Vc. Relay k, for k ∈ V , uses CF

scheme while relay k′, for k′ ∈ Vc, employes DF scheme.
The ensemble of decision regions of the relays given by the
regions DV , which are mutually disjoint, form a partition of
the space of parameters Θr. Notice that for some V , the set
DV may be empty. Indeed, a decision region {DV : V ⊆ N}
is a set of individual decision region DV satisfying:⋃

V⊆N
DV = Θr

for V 6= V ′ with DV ∩ DV′ = ∅ .
The indexed partitions over Θr which are at most 2N

subsets2 are refereed to as the decision region. In other words,
the very same partitioning π(Θr) over Θr can be indexed
differently with subsets of N and so it can lead to different
sets of decision regions. We denote by Π (Θr,N ) the set of
all possible indexed partitions on Θr. Hence, if θr ∈ DV we
have a cooperative unicast network where the relays in V use
CF scheme while the others relays use DF scheme, as shown
in Fig. 7. Each relay has two codebooks based on x

(1)
(k) and

x
(2)
(k). The first codebook with codewords x(1)(k) (DF scheme) is

transmitted when θr ∈ D(k)
DF , so relay k decodes the source

message and transmits it to the destination with the index

2It is due to the fact that each partition subset is indexed by V .

YX
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Fig. 7. Selective coding strategy (SCS) over cooperative unicast networks.

according to MNNC scheme. The source not knowing whether
the relay k is decoding or not uses superposition coding
over x(1)(k). Otherwise, if θr /∈ D(k)

DF then x
(2)
(k) (CF scheme)

is transmitted. Notice that unlike DF, x(2)(k) is independent of
the source codewords and so its probability distribution can
be chosen adaptively based on θr. The optimization over DV
would potentially improve the outage probability compared to
the case in which every relay uses a fix coding strategy for
all θr. A careful evaluation of Theorem 1 yields the following
proposition.

Proposition 5 (SCS with partial CSI): The average error
probability of the composite unicast network with partial CSI
θr at the relays can be upper bounded by

ε̄(r) ≤ min
p(x,v,q)

inf
{DV :V⊆N}∈Π(Θr,N)

∑
V⊆N

Eθr

{
min
p(·)∈Q

Pθ|θr
[
r > IMNNC(V, θ), θr ∈ DV

∣∣θr]} , (76)

where the set of all admissible PDs Q is given by

p(·) =
∏
j∈V

p(xj |q)p(ŷj |xjyjq)
∏
j∈Vc

p(xj |vq)p(ŷj |vxjyjq)

and Π (Θr, N) is the set of all indexed partitions over Θr
into at most 2N disjoint sets and IMNNC(V, θ) is defined by
expression (74).

Proof: This proposition is shown in Appendix E.
It is worth noting that (76) reaches at least the same

performance as (75). In (75), the set V is chosen beforehand
independent of θr. Now if one choose DV = Θr for this V
and DV′ = ∅ for all V ′ 6= V in (76), then (75) is obtained as
special case. The advantage of (76) is in choosing the set of
CF relays, V , adaptively based on channel state information
of relays. Finally, if full CSI is available at all relays then this
will simply give the following proposition.

Proposition 6 (SCS with full CSI): The average error prob-
ability of the composite cooperative network with full CSI θr
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at the relays can be upper bounded by

ε̄(r) ≤ min
p(x,v,q)

inf
{DV :V⊆N}∈Π(Θr,N)∑

V⊆N
Pθ

[
r > IMNNC(V, θ), θr ∈ DV

]
, (77)

where Π (Θr, N) is the set of all indexed partitions over Θr
into at most 2N disjoint sets and IMNNC(V, θ) is defined by

IMNNC(V, θ) , max
p(·)∈Q

min

(
max
T ∈Υ (N )

min
T −V⊆S⊆T

RT (S, θ) ,

min
k∈Vc

max
Tk∈Υk(N )

min
S⊆Tk

R
(k)
Tk (S, θr)

)
,

where the set of all admissible PDs Q is given by

p(·) =
∏
j∈V

p(xj |q)p(ŷj |xjyjq)
∏
j∈Vc

p(xj |vq)p(ŷj |vxjyjq) .

Finally, we present a similar result to that of Theorem 2
where there is no cooperation among the relay nodes.

Proposition 7 (SCS with partial CSI): The average error
probability of the composite non-cooperative unicast network
with partial CSI θr at the relays can be upper bounded by

ε̄(r) ≤ min
p(x,x

(1)
N ,q)

inf
{DV ,V⊆N}∈Π(Θr,N)∑

V⊆N
Eθr

{
min
p(·)

Pθ|θr
[
r > IMNNC(V, θ), θr ∈ DV

∣∣θr]} , (78)

where the set of all admissible PDs Q is given by all PDs
decomposing as:

p(·) =
∏
j∈V

p(x
(2)
j |q)p(ŷj |x

(2)
j yjq) (79)

and Π (Θr, N) is the set of all indexed partitions over Θr into
at most 2N disjoint sets and IMNNC(V, θ) is defined by

IMNNC(V, θ) , max
T ⊆V

min
{

min
S⊆T

RT (S, θ) ,

min
i∈Vc

Iθr (X;Yi|X(1)
N Q)

}
(80)

with

RT (S, θ) ,Iθ(XX
(1)
Vc X

(2)
S ; ŶScY |X(2)

Sc Q)

− Iθ(YSθr ; ŶS |XX(2)
T X

(1)
Vc ŶScY Q) ,

where (X
(1)
k , X

(2)
k ) denote the corresponding relay inputs

selected as follows

Xkθr =

{
X

(1)
k if θr ∈ DkDF

X
(2)
k if θr /∈ DkDF

with DkDF =
⋃

V⊂N , k/∈V
DV .

For θr ∈ DV , the following Markov chain holds:

(X
(1)
V , X

(2)
Vc ) 
 (X,X

(1)
Vc , X

(2)
V ) 
 (Y, YN ) .

Proof: The proof is presented in Appendix F.
It can be checked that the use of superposition coding does not
change the rate RT (S, θ), but unlike the case of the composite
relay channel, the condition of correct decoding at DF relays
is changed from Iθr (X;Yi|X(1)

Vc Q) to Iθ(X;Yi|X(1)
N Q).

V. GAUSSIAN FADING RELAY CHANNEL

We now consider an application example of SCS to the
fading Gaussian relay channel defined by the following desti-
nation and relay output, respectively,

Y = g1X + g3X1 + V1 ,

Y1 = g2X + V2 ,

where V1 and V2 are independent complex Gaussian
noises with zero-mean and unit variance; the channel gains
(g1, g2, g3) are independent complex Gaussian with zero-mean
and unit variance; and the inputs must not exceed the average
powers P and P1, respectively. It is assumed that the source
is not aware of the channel measurements θ , (g1, g2, g3),
the relay only knows θr , g2 and the destination is fully
aware of all fading coefficients θ, and thus θd , (g1, g3).
This model is special case of the composite relay channel
described in Section IV-A. We aim to evaluate the asymptotic
error probability based on the bounds derived in Propositions 3
and 4, and compare them to the upper bounds corresponding to
DF and CF schemes (60), and the cut-set based lower bound.
In this case, the expression for the DF rate reads as:

IDF(θ) , min

{
C
(
β|g2|2P

)
,

C
(
|g1|2P + |g3|2P1 + 2

√
βPP1Re{g1g?3}

)}
(81)

where 0 ≤ β ≤ 1 and C(x) , log2(1 + x). The CF rate is
given by

ICF(θ) , max

{
I ′CF(θ), C

( |g1|2P
|g3|2P1 + 1

)}
, (82)

I ′CF(θ) , min

{
C
(
|g1|2P +

|g2|2P
N̂2 + 1

)
,

C
(
|g1|2P + |g3|2P1

)
− C

(
1

N̂2

)}
, (83)

where the description Ŷ1 is generated by adding independent
complex Gaussian noise with zero-mean and variance N̂2.
Finally, the asymptotically error probability based on DF and
CF schemes can be easily derived by using expressions (58)
and (59), respectively. If full CSI is available at the relay, then
N̂2 can be optimally chosen as:

N̂ opt
2 ,

P
(
|g1|2 + |g2|2

)
+ 1

|g3|2P1
. (84)

Whereas, if only g2 is available at the relay, a constant N̂2 must
be selected to minimize the outage probability. We have shown
that based on |g2|, SCS allows the relay to select the proper
coding strategy. In this case, if the source-to-relay channel is
not good enough for decoding the message, the relay uses CF
scheme while otherwise DF scheme would be the best choice.
It turns out that the optimum decision region DDF is given by
the set D?DF ,

{
g2 : r ≤ C

(
β|g2|2P

)}
.

Fig. 8 presents numerical plots of the asymptotic error
probability with P1 = P = 1. For the case of partially CSI
at the relay, we observe that SCS clearly outperforms the



18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

r (coding rate) [bits/symbol]

ε
(r

) 
(a

v
e

ra
g

e
 e

rr
o

r 
p

ro
b

a
b

ili
ty

)

 

 

CF

DF

CB (converse)

SCS (partial CSI at relay)

SCS (full CSI at relay)

Fig. 8. Asymptotic error probability ε̄(r) vs. the coding rate r.

naive DF and CF schemes. Moreover, notice that full CSI
(g1, g2, g3) at the relay improves the error probability only
through the choice of the best possible compression noise N̂2.
Besides this guarantee that CF scheme can never perform less
good than direct transmission. Finally, it can be seen that the
upper bound (achievable error probability) resulting from SCS
is close to the cut-set lower bound, and so to the best average
error probability.

Fig. 9 presents bounds on ε-capacity of the corresponding
averaged channel for ε = 0.01 based on the signal-to-noise
ratio (SNR). We set P1 = 1 while P is varying with SNR.
Indeed, the ε-capacity represents the maximum achievable rate
subject to satisfy an expected error probability less or equal
than ε. The bounds illustrated in (71) and (72) have been used
here. Observe that again the ε-capacity is clearly enlarged by
using our SCS and is not far from the upper bound.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we investigated the problem of communicat-
ing a single message to a single destination in presence of
multiple relay nodes. We considered a general framework of
composite cooperative networks where the channel parameters
are randomly drawn from a probability distribution and each
draw is assumed to be unknown at the source and fully known
at the destination, but only partly known at the relay nodes.
Within this framework, we introduced “Mixed Noisy Network
Coding” (MNNC) where nodes are allowed to decode and
forward messages while all nodes transmit noisy descriptions
of their observations. We further extended MNNC to multi-
hopping networks that we referred to as “Layered MNNC”
(LMNNC) where DF relays are organized into disjoint groups,
each of them representing one hop in the network.

Perhaps the main feature of MNNC scheme relies on the
meaningful concept of “Selective Coding Strategy” (SCS) [21]
that enables relays to decide dynamically, e.g., based on the
channel measurements, whether in addition to communicate
descriptions that are potentially exploited at the destination
and the DF relays, would be possible to decode and forward
messages. This guarantees full cooperation among all nodes,
and in particular, without the requirement of any hierarchy
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between them. It is demonstrated for additive white Gaussian
noise (AWGN) networks that MNNC improves over all previ-
ously established constant gaps to the cut-set bound, and for
the slow-fading AWGN relay channel that SCS clearly out-
performs the asymptotic average error probability of previous
coding schemes.

An important direction of future work is to investigate
more sophisticated wireless models within our composite
framework, e.g., the effects of user mobility, network geometry
and shadowing can be incorporated into the model [39]. It
remains to investigate network scaling exponents [12] in the
limit of large network size (number of nodes) where MNNC
may substantially improve the scaling of the capacity with the
number of nodes. In this setting, the multi-hopping scenario is
in general challenging and needs further study since it is not
clear how DF relays should choose their layering according
to partial channel observation. Another important direction
is to investigate how MNNC could be exploited in half-
duplex networks. With half-duplex constraints, the nodes are
permitted –within each slot of time– to either transmits or
receives information. Therefore, it would be of interest to
study cooperation protocols based on MNNC with slots of
variable time durations, where nodes can dynamically select
not only whether decode and forward messages in addition to
send noisy descriptions of their observations, but also the time
allowed to receive and transmit data [40], [41]. We believe
this problem may be quite rich because it yields several other
scenarios of practical importance.

APPENDIX A
PROOF OF THEOREM 1

First, we divide the relay nodes into two disjoint groups,
namely, V and Vc = N − V , as shown in Fig. 10. The
relays in V will use Compress-and-Forward (CF) scheme while
the others relays will use Decode-and-Forward (DF) scheme,
which are simply refereed to DF and CF relays. The DF
relays transmit the compressed version of their observations,
superimposed over the source message of the previous block.
In this sense, the compressed version of the observation of
each relay is transmitted to the other nodes. The k-th DF
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relay with k ∈ Vc decodes the source message of block i by
exploiting the descriptions sent by the others relays. Because
the relays transmit the descriptions (or compression index)
related to the block i in block i+ 1, the k-th relay has to wait
until the end of block i+1 to decode it and therefore DF relays
has to wait until the block i+2 to forward the source message
of the i-th block. Moreover, the k-th relay exploits only the
compression index of relays in Tk ⊆ N − {k}. Similarly, the
destination decodes only the compression index of relays in
T ⊆ N . It is shown that, by selecting a subset of relays,
we contribute to increase the total rate provided that certain
conditions are satisfied.

For simplicity, we adopt the following notation:

T DF
k , Tk ∩ Vc , T DF , T ∩ Vc ,
T CF
k , Tk ∩ V , T CF , T ∩ V .

Moreover, for any arbitrary message wi, the notation wS is
used to denote the set of indices {wi : i ∈ S}. We now
provide the code generation, encoding and decoding proce-
dures. Table I presents details of the transmission schedule
for a case with one DF relay and one CF relay. x1 and x2
represent the code of DF and CF relays with ŷ1 and ŷ2 as
the compressed version of their observation. v is used for
coherent transmission between the relays and the source. x
and y are source codeword and destination received message.
As discussed before, the DF relay delays the decoding of
source message at b = 1 to the end of block b = 2 so that
it can jointly decode the compression index l11 and w1 using
y
1
(1) and y

1
(2). The destination on the other hand decodes

backwardly. It first finds l1(B+2) and l2(B+2) and then jointly
decodes (wB , l1(B+1), l2(B+1)). It continues this process until
it finds all the messages.

Code Generation:

(i) Randomly and independently generate 2nR sequences v
drawn i.i.d. from

PnV (v) =

n∏
j=1

PV (vj) .

Index them as v(w0) with index w0 ∈
[
1, 2nR

]
.

(ii) For each k ∈ Vc and each v(w0), randomly and inde-
pendently generate 2nR̂k sequences xk drawn i.i.d. from

PnXk|V (xk|v(w0)) =

n∏
j=1

PXk|V (xkj |vj(w0)) .

Index them as xk(w0, l0k), where l0k ∈
[
1, 2nR̂k

]
for

R̂k , I(Yk; Ŷk|Xk, V ) + ε with k ∈ Vc. This is the
codebook for DF relays.

(iii) For each k ∈ V , randomly and independently generate
2nR̂k sequences xk drawn i.i.d. from

PnXk(xk) =

n∏
j=1

PXk(xkj) .

Index them as xk(l0k), where l0k ∈
[
1, 2nR̂k

]
for R̂k ,

I(Yk; Ŷk|Xk) + ε with k ∈ V . This is the codebook for
CF relays.

(iv) For each v(w0), randomly and conditionally indepen-
dently generate 2nR sequences x drawn i.i.d. from

PnX|V (x|v(w0)) =

n∏
j=1

PX|V (xj |vj(w0)) .

Index them as x(w0, w), where w ∈
[
1, 2nR

]
. This is

the source codebook.
(v) For each k ∈ Vc and each v(w0), xk(w0, l0k), ran-

domly and conditionally independently generate 2nR̂k

sequences ŷ
k

each with probability

Pn
Ŷk|XkV (ŷ

k
|xk(w0, l0k), v(w0))

=

n∏
j=1

PŶk|XkV (ŷkj |xkj(w0, l0k), vj(w0)) .

Index them as ŷ
k
(w0, l0k, lk), where lk ∈

[
1, 2nR̂k

]
with

k ∈ Vc. This is the compressed version of DF relays
output.

(vi) For each k ∈ V and each xk(l0k), randomly and
conditionally independently generate 2nR̂k sequences ŷ

k
each with probability

Pn
Ŷk|Xk(ŷ

k
|xk(l0k)) =

n∏
j=1

PŶk|Xk(ŷkj |xkj(l0k)) .

Index them as ŷ
k
(l0k, lk), where lk ∈

[
1, 2nR̂k

]
with

k ∈ V . This is the compressed version of CF relays
output.

(vii) Provide the corresponding codebooks to the relays, the
encoder and the decoder ends.

Encoding:

(i) In every block i = [1 : B], the source sends wi using
x
(
w(i−2), wi

)
, where we have defined w0 = w−1 = 1.

Moreover, for blocks i = [B + 1 : B + L], the source
sends the dummy message wi = 1 known to all users.

(ii) For every block i = [1 : B + L], and each k ∈ Vc, the
relay k knows w(i−2) by assumption and w0 = w−1 = 1,
so it picks up v

(
w(i−2)

)
. For each i = [1 : B + 2], the

relay k after receiving y
k
(i), searches for at least one

index lki with lk0 = 1 such that(
v(w(i−2)), xk(w(i−2), lk(i−1)), yk(i), ŷ

k
(w(i−2),

lk(i−1), lki)
)
∈ Anε [V XkYkŶk] . (85)
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TABLE I
TRANSMISSION SCHEDULE FOR “MIXED NOISY NETWORK CODING” (MNNC).

b = 1 b = 2 b = 3 . . . b = B + 2 b = B + 3 . . . b = B + L
v(1) v(1) v(w1) . . . v(wB) v(1) . . . v(1)
x1(1, 1) x1(1, l11) x1(w1, l12) . . . x1(wB , l1(B+1)) x1(1, l1(B+2)) . . . x1(1, l1(B+2))
x(1, w1) x(1, w2) x(w1, w3) . . . x(wB , 1) x(1, 1) . . . x(1, 1)
x2(1) x2(l21) x2(l22) . . . x2(l2(B+1)) x2(l2(B+2)) . . . x2(l2(B+2))

ŷ
1
(1, 1, l11) ŷ

1
(1, l11, l12) ŷ

1
(w1, l12, l13) . . . ŷ

1
(wB , l1(B+1), l1(B+2)) ? ? ?

ŷ
2
(1, l21) ŷ

2
(l21, l22) ŷ

2
(l22, l23) . . . ŷ

2
(l2(B+1), l2(B+2)) ? ? ?

y
1
(1) y

1
(2) y

1
(3) . . . y

1
(B + 2) y

1
(B + 3) . . . y

1
(B + L)

y
2
(1) y

2
(2) y

2
(3) . . . y

2
(B + 2) y

2
(B + 3) . . . y

2
(B + L)

y(1) y(2) y(3) . . . y(B + 2) y(B + 3) . . . y(B + L)

The probability of finding such lki goes to one as n goes
to infinity due to our adequate choice of the rate R̂k for
compression.

(iii) For i = [1 : B + 2] and k ∈ Vc, relay k knows
from the previous block lk(i−1) and w(i−2) and it sends
xk(w(i−2), lk(i−1)). Moreover, k-th relay repeats lk(B+2)

for i = [B + 3 : B + L], i.e. for L− 2 blocks.
(iv) For each i = [1 : B + 2], each k ∈ V , the relay k after

receiving y
k
(i), searches for at least one index lki with

lk0 = 1 such that(
xk(lk(i−1)), yk(i), ŷ

k
(lk(i−1), lki)

)
∈ Anε [XkYkŶk] .

(86)
The probability of finding such lki goes to one as n goes
to infinity due to our adequate choice of the rate R̂k for
compression.

(v) For i = [1 : B + 2] and k ∈ V , relay k knows from the
previous block lk(i−1) and it sends xk(lk(i−1)). More-
over, k-th relay repeats lk(B+2) for i = [B+ 3 : B+L],
i.e., for L− 2 blocks.

Decoding:

(i) After the transmission of the block i+1 = [1 : B+1] and
for each k ∈ Vc, the relay k decodes the message wi and
the compression index lTki, i.e., the compression indices
for the block i of all relays in Tk, with the assumption
that all messages and compression indices up to block
i − 1 have been correctly decoded. We emphasize that
there are two kind of relays in Tk, those who employ
DF scheme and those who are using CF scheme. Relay
k knows the message (w(i−2), w(i−1)), and so v

(
w(i−2)

)
and v

(
w(i−1)

)
. Let us define the sequences:

Ek
(
ŵb, l̂Tkb

)
,(

x(w(b−2), ŵb), v(w(b−2)), xk(w(b−2), lk(b−1)), yk(b),(
xi(w(b−2), li(b−1)), ŷi(w(b−2), li(b−1), l̂ib)

)
i∈T DF

k

,(
xi(li(b−1)), ŷi(li(b−1), l̂ib)

)
i∈T CF

k

)
Ek
(
l̂Tkb

)
,
(
v(w(b−1)), xk(w(b−1), lkb), yk(b+ 1),(

xi(w(b−1), l̂ib)
)
i∈T DF

k

,
(
xi(l̂ib)

)
i∈T CF

k

)
. (87)

By looking at two consecutive blocks (b, b+ 1), the k-th
relay searches for the unique indices (ŵb, l̂Tkb) such that:

Ek(ŵb, l̂Tkb) ∈ Anε [V XXkXTk ŶTkYk] and

Ek(l̂Tkb) ∈ Anε [V XTkXkYk] . (88)

Given the sets S ⊆ Tk, and Sc , Tk − S and assuming
that the correct messages were (wb, lTkb), we define the
following events:

E0 :
{
Ek(wb, lTkb) /∈ Anε [V XXkXTk ŶTkYk] or

Ek(lTkb) /∈ Anε [V XTkXkYk]
}
, (89)

ES :
{
Ek(wb, l̂Tkb) ∈ Anε [V XXkXTk ŶTkYk] and

Ek(l̂Tkb) ∈ Anε [V XTkXkYk] for some

l̂kb 6= lkb , k ∈ S and l̂kb = lkb , k ∈ Sc
}
, (90)

Ew,S :
{
Ek(ŵb, l̂Tkb) ∈ Anε [V XXkXTk ŶTkYk] and

Ek(l̂Tkb) ∈ Anε [V XTkXkYk] for some ŵb 6= wb ,

l̂kb 6= lkb , k ∈ S and l̂kb = lkb , k ∈ Sc
}
. (91)

Hence, the error probability can be bounded as follows:

Pr
(

(ŵb, l̂Tkb) 6= (wb, lTkb)
)
≤ Pr(E0)

+
∑
S⊆T

[Pr(ES) + Pr(Ew,S)] ,

where Pr(E0) goes to zero as n→∞, provided by the
code generation and the encoding process. As the next
step, we bound the probability:

Pr(ES) ≤
∑

l̂kb 6=lkb , k∈S

Pr
[
Ek(wb, l̂Tkb) ∈

Anε [V XXkXTk ŶTkYk] and

Ek(l̂Tkb) ∈ Anε [V XTkXkYk]
]

≤
∏
j∈S

(
2nR̂j − 1

)
2n(∆1+∆2) ,

where

∆1 , H(V XYkXkXTk ŶTk)−
∑

j∈S∩T CF
k

H(Ŷj |Xj)
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−
∑

j∈S∩T DF
k

H(Ŷj |XjV )−H(V XXkYkXTk ŶSc) ,

∆2 , H(V XkYkXTk)−
∑

j∈S∩T CF
k

H(Xj)

−
∑

j∈S∩T DF
k

H(Xj |V )−H(V XkYkXSc) + ε1 .

To guarantee that the probability Pr(ES) is arbitrarily
small, the following inequality needs to hold:∑
j∈S∩T CF

k

I(Ŷj ;Yj |Xj) +
∑

j∈S∩T DF
k

I(Ŷj ;Yj |XjV ) + ε1

<
∑

j∈S∩T CF
k

H(Ŷj |Xj) +
∑

j∈S∩T CF
k

H(Xj)

+
∑

j∈S∩T DF
k

H(Ŷj |XjV ) +
∑

j∈S∩T DF
k

H(Xj |V )

+H(V XXkYkXTk ŶSc) +H(V XkYkXSc)

−H(V XYkXkXTk ŶTk)−H(V XkYkXTk)

from which we can have that

ε1 <
∑

j∈S∩T CF
k

H(Ŷj |YjXj) +
∑

j∈S∩T DF
k

H(Ŷj |YjXjV )

+I(XS ;V XkXScYk)−H(ŶS |V XXkXTk ŶScYk) . (92)

Indeed, (92) can be further simplified by using the fact
that Ŷj is independent of all the other random variables,
given (Xj , Yj) for j ∈ T CF

k and (V,Xj , Yj) for j ∈ T DF
k :∑

j∈S∩T CF
k

H(Ŷj |YjXj) +
∑

j∈S∩T DF
k

H(Ŷj |YjXjV )

+I(XS ;V XkXScYk)−H(ŶS |V XXkXTk ŶScYk)

=
∑
j∈S

H(Ŷj |YjXjV ) + I(XS ;V XkXScYk)

−H(ŶS |V XXkXTk ŶScYk)

=
∑
j∈S

H(Ŷj |YSXSV ) + I(XS ;V XkXScYk)

−H(ŶS |V XXkXTk ŶScYk)

=

|S|∑
j=1

H(Ŷo(j)|YSXSV ) + I(XS ;V XkXScYk)

−H(ŶS |V XXkXTk ŶScYk)

=

|S|∑
j=1

H(Ŷo(j)|Ŷo(1) . . . Ŷo(j−1)YSXSV )

+I(XS ;V XkXScYk)−H(ŶS |V XXkXTk ŶScYk)

= H(ŶS |YSXSV ) + I(XS ;V XkXScYk)

−H(ŶS |V XXkXTk ŶScYk) ,

where o : [1 : |S|] 7−→ S is an arbitrary ordering over
S . This manipulation provides us the next condition that
must be satisfied:

ε1 <I(XS ;Yk|V XkXSc)

−I(ŶS ;YS |V XXkXTk ŶScYk) . (93)

However, given the fact that Tk ∈ Υk(N ), inequality (93)
holds for every subset S ⊆ Tk. Finally, the probability
Pr(Ew,S) can be bounded by following the very same
steps as before and thus Pr(Ew,S) goes to zero as n→
∞ provided that

R +
∑

j∈S∩T CF
k

I(Ŷj ;Yj |Xj) +
∑

j∈S∩T DF
k

I(Ŷj ;Yj |XjV ) + ε2

<
∑

j∈S∩T CF
k

H(Ŷj |Xj) +
∑

j∈S∩T CF
k

H(Xj)

+
∑

j∈S∩T DF
k

H(Ŷj |XjV ) +
∑

j∈S∩T DF
k

H(Xj |V )

+ H(X|V ) +H(V XkYkXTk ŶSc) +H(V XkYkXSc)

H(V XYkXkXTk ŶTk)−H(V XkYkXTk) . (94)

From which we obtain the last condition:

R+ ε2 < I(X; ŶScYk|V XkXTk) + I(XS ;Yk|V XkXSc)

−I(ŶS ;YS |V XXkXTk ŶScYk)

= I(X; ŶTkYk|V XkXTk) + I(XS ;Yk|V XkXSc)

−I(ŶS ;YS |V XkXTk ŶScYk) . (95)

(ii) Decoding at the destination is done backwardly. After
the last block, the decoder jointly searches for the unique
indices

(
l̂k(B+2)

)
k∈T such that for all b = [B+3 : B+L]

the following condition holds:((
xk(l̂k(B+2))

)
k∈T CF ,

(
xk(1, l̂k(B+2))

)
k∈T DF , x(1, 1),

v(1), y(b)
)
∈ Anε [V XXT Y ] .

The probability of error goes to zero as n goes to infinity
provided that∑
k∈S∩T CF

I(Ŷk;Yk|Xk) +
∑

k∈S∩T DF

I(Ŷk;Yk|XkV ) + ε2

≤ (L− 2)I(XS ;V XXScY ) ,

for all subsets S ⊆ T .
(iii) After finding the correct index lk(B+2), for each k ∈ T ,

and using the fact that w(B+1) = 1, the destination
decodes jointly the message and all compression indices
(wb, lT (b+1)), for each block b = [1 : B], where we
define lT b , (lkb)k∈T . Decoding is performed back-
wardly with the assumption that (wb+2, lT (b+2)) have
been correctly decoded. Let us define the following
sequence:

E(ŵb, l̂T (b+1)) ,
(
x(ŵb, w(b+2)), v(ŵb), y(b+ 2),(

xk(l̂k(b+1)), ŷk(l̂k(b+1), lk(b+2))
)
k∈T CF ,

(
xk(ŵb, l̂k(b+1)),

ŷ
k
(ŵb, l̂k(b+1), lk(b+2))

)
k∈T DF

)
.

The destination finds the unique pair of indices
(ŵb, l̂T (b+1)) such that

E(ŵb, l̂T (b+1)) ∈ Anε [V XXT ŶT Y ] .



22

For every S ⊆ T and Sc , T −S, we consider the error
events associated with this step which are given by

E0 :
{
E(wb, lT (b+1)) /∈ Anε [V XXT ŶT Y ]

}
,

ES :
{
E(wb, l̂T (b+1)) ∈ Anε [V XXT ŶT Y ] for some

l̂kb 6= lkb , k ∈ S and l̂kb = lkb , k ∈ Sc
}
,

Ew,S :
{
E(ŵb, l̂T (b+1)) ∈ Anε [V XXT ŶT Y ] for some

ŵb 6= wb , l̂kb 6= lkb , k ∈ S, l̂kb = lkb , k ∈ Sc
}
,

where ES denotes the event that there exist joint typical
sequences for relays in S with correct message index but
with wrong compression indices while Ew,S denotes the
event that there exist joint typical sequences for relays in
S with both wrong, message and compression indices.
Hence, the error probability of this step is bounded by

Pr
[
(ŵb, l̂T b) 6= (wb, lT b)

]
≤ Pr(E0)

+
∑
S⊆T

[Pr(ES) + Pr(Ew,S)] .

The first probability, on the right-hand side goes to zero
as n → ∞. On the other hand, Pr(ES) goes to zero as
n→∞ provided that∑
j∈S∩T CF

I(Ŷj ;Yj |Xj) +
∑

j∈S∩T DF

I(Ŷj ;Yj |XjV ) + ε3

<
∑

j∈S∩T CF

H(ŶjXj) +
∑

j∈S∩T DF

H(ŶjXj |V )

+H(V XXSc ŶScY )−H(V XXT ŶT Y ) ,

which also reads as:

ε3 <
∑

j∈S∩T CF

H(Ŷj |YjXj) +
∑

j∈S∩T DF

H(Ŷj |YjXjV )

+H(XXSc ŶScY |V )−H(XXSc ŶT Y |XSV ) . (96)

Indeed, inequality (96) can be further simplified by using
the same method as before:∑

j∈S∩T CF

H(Ŷj |YjXj) +
∑

j∈S∩T DF

H(Ŷj |YjXjV )

+H(XXSc ŶScY |V )−H(XXSc ŶT Y |XSV )

= H(ŶS |YSXSV ) +H(XXSc ŶScY |V )

−H(XXSc ŶT Y |XSV ) . (97)

This manipulation yields the following expression:

ε3 < H(ŶS |YSXSV ) +H(XXSc ŶScY |V )

−H(XXSc ŶT Y |XSV )

= H(ŶS |YSXSV )−H(ŶS |XXSc ŶScY XSV )

+H(XXSc ŶScY |V )−H(XXSc ŶScY |XSV )

= I(XS ;XXSc ŶScY |V )

−I(ŶS ;YS |V XXT ŶScY )

= I(XS ; ŶScY |XXScV )

−I(ŶS ;YS |V XXT ŶScY ) . (98)

Given the fact that T ∈ Υ (N ), inequality (98) holds for
each S ⊆ T . Finally, Pr(Ew,S) tends to zero as n goes
to infinity provided that:

R +
∑

j∈S∩T CF

I(Ŷj ;Yj |Xj) +
∑

j∈S∩T DF

I(Ŷj ;Yj |XjV ) + ε4

<
∑

j∈S∩T CF

H(ŶjXj) +
∑
j∈T DF

H(ŶjXj |V ) +H(V X)

+ H(XT CF∩Sc ŶT CF∩ScY )−H(V XXT ŶT Y ) . (99)

It is worth mentioning here that the right-hand side of
(99) is independent of S ∩ T DF and thus, if we take the
set S such that S∩T DF = T DF, then (99) implies similar
inequalities for all other S with S ∩T DF ⊂ T DF. In fact,
we continue the proof based on this choice that leads to

R +
∑

j∈S∩T CF

I(Ŷj ;Yj |Xj) +
∑
j∈T DF

I(Ŷj ;Yj |XjV ) + ε4

<
∑

j∈S∩T CF

H(ŶjXj) +
∑
j∈T DF

H(ŶjXj |V ) +H(V X)

+ H(XT CF∩Sc ŶT CF∩ScY )−H(V XXT ŶT Y ) , (100)

and thus

R+ ε4 <
∑

j∈S∩T CF

H(Ŷj |YjXj)

+
∑
j∈T DF

H(Ŷj |YjXjV ) +H(X|V )

+ H(XT CF∩Sc ŶT CF∩ScY )

− H(XXSc∩T CF ŶT Y |XS∪T DFV )

= H(ŶS∪T DF |YS∪T DFXS∪T DFV )

+ H(X|V ) +H(XT CF∩Sc ŶT CF∩ScY )

− H(XXSc∩T CF ŶT Y |XS∪T DFV )

= H(ŶS∪T DF |YS∪T DFXS∪T DFV )

− H(ŶS∪T DF |XS∪T DFV XXSc∩T CF ŶT CF∩ScY )

+ H(XT CF∩Sc ŶT CF∩ScY )

− H(XT CF∩Sc ŶT CF∩ScY |XXS∪T DFV )

= I(V XXS∪T DF ; ŶT CF∩ScY |XT CF∩Sc)

− I(ŶS∪T DF ;YS∪T DF |XS∪T DFV XXSc∩T CF ŶT CF∩ScY )

= I(XXS∪T DF ; ŶT CF∩ScY |XT CF∩Sc)

− I(ŶS∪T DF ;YS∪T DF |XXT ŶT CF∩ScY ) (101)
= I(XXS ; ŶScY |XSc)− I(ŶS ;YS |XXT ŶScY ) (102)

where step (101) comes from the fact S has been selected
satisfying T DF ⊆ S.
By choosing finite L but large enough, inequalities (93),
(98), (102) and (95) prove Theorem 1, where the final
rate is achieved by letting (B,n) tend to infinity. At the
end, a time sharing random variable Q can be added over
all expressions, concluding the proof.

APPENDIX B
PROOF OF THEOREM 2

Let p be an arbitrary probability distribution satisfying the
conditions in expression (15), and let two sets V and T



23

maximizing the right-hand side of (15). Let Mn be a set of
messages of size 2nR with an index W to be transmitted.
Transmission is done in B+L blocks, each of them of length
n, and decoding at the destination is done backwardly. At the
last L− 1 blocks, the last compression index is first decoded
and then all compression indices and transmitted messages
are jointly decoded. By the vector notation xS we denote the
collection (xi)i∈S .

Code generation:

(i) Randomly and independently generate 2nR sequences
xVc drawn i.i.d. from

PnXVc (xVc) =

n∏
j=1

PXVc
(
xVcj

)
.

Index them as xVc(w0) with index w0 ∈
[
1, 2nR

]
.

This step will provide |Vc| different codebooks(
xk(w0), w0 ∈ [1, 2nR]

)
for each k ∈ Vc, every hav-

ing 2nR codewords. However, the codewords in each
codebook corresponding to an index are jointly generated
based on PnXVc and in general are not independent.

(ii) For each xVc(w0), randomly and conditionally indepen-
dently generate 2nR sequences x drawn i.i.d. from

PnX|XVc (x|xVc(w0)) =

n∏
j=1

PX|XVc
(
xj |xVcj(w0)

)
.

Index them as x(w0, w) with w ∈
[
1, 2nR

]
.

(iii) For each k ∈ T , randomly and independently generate
2nR̂k sequences xk drawn i.i.d. from

PnXk(xk) =

n∏
j=1

PXk
(
xkj
)
.

Index them as xk(l0k) with l0k ∈
[
1, 2nR̂k

]
for R̂k ,

I(Yk; Ŷk|Xk) + ε.
(iv) For each k ∈ T and each xk(l0k), randomly and

conditionally independently generate 2nR̂k sequences ŷ
k

each with probability

Pn
Ŷk|Xk(ŷ

k
|xk(l0k)) =

n∏
j=1

PŶk|Xk
(
ŷkj |xkj(l0k)

)
.

Index them as ŷ
k
(l0k, lk) with lk ∈

[
1, 2nR̂k

]
.

(v) Provide the corresponding codebooks to the relays, the
encoder and the decoder ends.

Encoding:

(i) In every block i = [1 : B], the source sends wi based on
x
(
w(i−1), wi

)
. Moreover, for blocks i = [B+1 : B+L],

the source sends the dummy message wi = 1 known to
all nodes.

(ii) For every block i = [1 : B +L], and each k ∈ Vc, relay
k knows w(i−1) by assumption and w0 = 1, so it sends
xk
(
w(i−1)

)
.

(iii) For each i = [1 : B + 1], each k ∈ T , relay k after
receiving y

k
(i), searches for at least one index lki with

lk0 = 1 such that(
xk(lk(i−1)), yk(i), ŷ

k
(lk(i−1), lki)

)
∈ Anε [XkYkŶk] .

The probability of finding such lki goes to one as n goes
to infinity provided by our choice of the rate R̂k.

(iv) For i = [1 : B + 1] and k ∈ T , relay k knows the index
lk(i−1) from the previous block and it sends xk(lk(i−1)).
Moreover, relay k repeats lk(B+1) for all i = [B + 2 :
B + L].

Decoding:

(i) After transmission of the block i = [1 : B] is accom-
plished and for each k ∈ Vc, relay k decodes the message
of block i with the assumption that all messages up
to block i − 1 have been correctly decoded. Since the
relay k knows the message w(i−1) and so xk

(
w(i−1)

)
,

it also knows because of the code generation all others
codewords xk′

(
w(i−1)

)
for k′ ∈ Vc. Relay k searches

for the unique index ŵi ∈Mn such that:(
x
(
w(i−1), ŵi

)
, xVc

(
w(i−1)

)
, y
k
(i)
)
∈ Anε [XXVcY1] .

By following similar arguments to those in [2], the
probability of error goes to zero as n goes to infinity
provided that:

R < I(X;Yk|XVc) . (103)

(ii) Decoding at destination is done backwardly. First, the
destination decodes all last compression indices sent by
the relays in T then it waits until the last block to jointly
search for unique indices

(
l̂k(B+1)

)
k∈T such that for all

b = [B + 2 : B + L] the following condition holds:((
xk(l̂k(B+1))

)
k∈T , x(1, 1), xVc(1), y(b)

)
∈ Anε [XXTXVcY ] .

Let us define the following events that can cause an error
in the previous decoding step:

E0 :
{((

xk(lk(B+1))
)
k∈T , x(1, 1), xVc(1), y(b)

)
/∈ Anε [XXTXVcY ]

}
,

ES :
{((

xk(l̂k(B+1))
)
k∈S ,

(
xk(lk(B+1))

)
k∈Sc ,

x(1, 1), xVc(1), y(b)
)
∈ Anε [XXT ∪VcY ] for some

l̂k(B+1) 6= lk(B+1) and ∀ b = [B + 2 : B + L]
}
.

The last event is the event that there exist joint typical
sequences that have correct indices for the relays in
Sc = T − S and wrong indices for the relays in S.
The probability of error is bounded as follows

Pr
(
l̂B+1 6= lB+1

)
≤ Pr(E0) +

∑
S⊆T

Pr(ES) .
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The first probability on the right-hand side goes to zero
as n → ∞, and the second probability can be bounded
as follows:

Pr(ES) ≤
∑

l̂k(B+1) 6=lk(B+1) , k∈S

Pr
[ ⋂
b=[B+2:B+L]{(

xk(l̂k(B+1))
)
k∈S ,

(
xk(lk(B+1))

)
k∈Sc ,

x(1, 1), xVc(1), y(b)
}
∈ Anε [XXTXVcY ]

]
≤
∏
k∈S

(
2nR̂k − 1

) [
2−n(I(XS ;XXSc∪VcY )−ε1)

]L−1
.

This probability goes to zero as n goes to infinity
provided that for all S ⊆ T :∑
k∈S

I(Ŷk;Yk|Xk) + ε2 ≤ (L− 1)I(XS ;XXSc∪VcY ) .

(iii) After finding correct index lk(B+1) for all k ∈ T and
since w(B+1) = 1, the destination decodes jointly the
message and all the compression indices (wb, lT b) for
each b = [1 : B] where lT b = (lkb)k∈T . Decod-
ing is performed backwardly with the assumption that
(wb+1, lT (b+1)) have been correctly decoded. Define the
following event:

E(ŵb, l̂T b) ,
{(
x(ŵb, w(b+1)), xVc(ŵb), y(b+ 1),(
xk(l̂kb), ŷk(l̂kb, lk(b+1))

)
k∈T

)}
.

The destination finds the unique pair (ŵb, l̂T b) such that

E(ŵb, l̂T b) ∈ Anε [XXT ∪Vc ŶT Y ] .

Consider the following error events associated with this
step (S ⊆ T ,Sc = T − S):

E0 :
{
E(wb, lT b) /∈ Anε [XXT ∪Vc ŶT Y ]

}
,

ES :
{
E(wb, l̂T b) ∈ Anε [XXT ∪Vc ŶT Y ] for some

l̂kb 6= lkb, k ∈ S and l̂kb = lkb , k ∈ Sc
}
,

Ew,S :
{
E(ŵb, l̂T b) ∈ Anε [XXT ∪Vc ŶT Y ] for some

ŵ 6= wb , l̂kb 6= lkb, k ∈ S and l̂kb = lkb , k ∈ Sc
}
.

The event ES represents the event that there exist jointly
typical sequences with correct message index but wrong
compression indices for the relays in S. On the other
hand Ew,S is the event that there is jointly typical
codes with wrong message index and wrong compression
indices for the relays in S. The error probability of this
step is bounded by

Pr
(

(ŵb, l̂T b) 6= (wb, lT b)
)
≤ Pr(E0)

+
∑
S⊆T

[Pr(ES) + Pr(Ew,S)] .

The first term on the right-hand side and Pr(ES) go to
zero as n→∞ provided that∑

k∈S
I(Ŷk;Yk|Xk) + ε3 <

∑
k∈S

H(Ŷk|Xk)

+H(XXVc∪Sc ŶScY )−H(XXVc∪Sc ŶT Y |XS) ,

which can be written as:

ε3 <
∑
k∈S

H(Ŷk|YkXk) +H(XXVc∪Sc ŶScY )

−H(XXVc∪Sc ŶT Y |XS) .

The preceding inequality can be simplified by using the
fact that Ŷk is independent of the other random variables
given (Xk, Yk). The standard manipulation introduced
before gives us the following:

ε3 < I(XXVc∪Sc ŶScY ;XS)− I(ŶS ;YS |XXVc∪T ŶScY )

= I(ŶScY ;XS |XXVc∪Sc)
−I(ŶS ;YS |XXVc∪T ŶScY ) . (104)

Given the fact that T ∈ Υ (V), the last inequality holds
for each S ⊆ T . As the next step, we bound the
probability Pr(Ew,S) as follows:

Pr(Ew,S) ≤
∑

l̂kb 6=lkb , ŵ 6=wb

Pr
[(
x(ŵb, w(b+1)),

xVc(ŵb), y(b+ 1),
(
xk(l̂kb), ŷk(l̂kb, lk(b+1))

)
k∈S ,(

xk(lkb), ŷk(lkb, lk(b+1))
)
k∈Sc

)
∈ Anε [XXT ∪Vc ŶT Y ]

]
≤
(
2nR − 1

) ∏
k∈S

(
2nR̂k − 1

)
2n∆3 , (105)

where

∆3 , H(XXVc∪ScY ŶT |XS)−H(XXVc)

− H(Y ŶScXSc)−
∑
k∈S

H(Ŷk|Xk) + ε4) . (106)

From the following inequality, the last probability also
tends to zero as n→∞,

R+
∑
k∈S

I(Ŷk;Yk|Xk)) + ε5 ≤ H(XXVc∪ScY ŶT |XS)

+H(XXVc) +H(Y ŶScXSc) +
∑
k∈S

H(Ŷk|Xk) . (107)

Inequality (107) is then simplified and reads as

R+ ε5 ≤ −H(XXVc∪ScY ŶT |XS) +H(XXVc)

+H(Y ŶScXSc) +
∑
k∈S

H(Ŷk|YkXk)

= −H(XXVc∪ScY ŶT |XS) +H(XXVc)

+H(Y ŶScXSc) +H(ŶS |YSXS)

= I(XXVcXS ;Y ŶSc |XSc)
−H(ŶS |XXVc∪T Y ŶSc) +H(ŶS |YSXS)

= I(XXVcXS ;Y ŶSc |XSc)
−I(ŶS ;YS |XXVc∪T Y ŶSc) .(108)
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By choosing finite L but large enough, inequalities (103)
and (108) prove Theorem 2, where the rate is achieved by
letting (B,n) tend to infinity. At the end, a time sharing
random variable Q can be added.

APPENDIX C
PROOF OF THEOREM 3

For the rest of this section we shall assume that relays are
ordered as (L1, . . . ,LT ). The transmission is done in B+T+
L− 1 blocks where at the end of block B the source finished
of transmitting messages. At the end of this block, the relays
at the layer Lt had only repeated messages until the block
B − T − 2 + t, and therefore it continues transmission until
the end of block B+T +2− t. Therefore, we need B+T +1
blocks for all relays to transmit all messages. From B+T +2
up to block B+T +L−1, namely for L−2 blocks, CF relays
repeat their compression index of their last block B + T + 2.
In the Table II, we illustrate this procedure by considering a
two hop network with a single CF relay. As it can be seen,
the codewords denoted by x2 of the second layer among DF
relays are superimposed on those denoted by x1 of the first
layer among DF relays. Notice that the number of DF relays
can exceed the number of hops. The relays in the second layer
starts to decode at the end of block B + 1 and those in the
first layer at the end of block B + 2.

At the of block B + 3, the first relay sends w1 while the
second relay transmits both messages (w1, w2). When the
number of hops is larger than two, Table III shows the order of
message transmission across the different hops. Briefly, the DF
relays with higher layers start to decode sooner and transmit
more messages in each transmission round.

Code generation:

(i) Randomly and independently generate 2nR sequences v1
drawn i.i.d. from

PnV1
(v1) =

n∏
j=1

PV1
(v1j) . (109)

Index them as v(w1) with index w1 ∈
[
1, 2nR

]
.

(ii) For all hops t = [2 : T ], randomly and in-
dependently generate 2nR sequences vt based on
v1(w1), . . . vt−1(w1, . . . , wt−1) i.i.d. from

PnVt|V≤t−1

(
vt|v1(w1), . . . vt−1(w1, . . . , wt−1)

)
=

n∏
j=1

PVt|V≤t−1

(
vtj |v1j(w1), . . .

. . . v(t−1)j(w1, . . . , wt−1)
)
.

Index them as vt(w1, . . . , wt) with index wt ∈
[
1, 2nR

]
.

(iii) For each k ∈ Lt and each tuple of codewords(
v1(w1), . . . , vt(w1, . . . , wt)

)
, randomly and indepen-

dently generate xk drawn i.i.d. from

PnXk|V≤t
(
xk|v1(w1), . . . , vt(w1, . . . , wt)

)
=

n∏
j=1

PXk|V≤t
(
xkj |v1j(w1), . . . , vtj(w1, . . . , wt)

)
.

This is the codebook for DF relays in Lt.
(iv) For each k ∈ V , randomly and independently generate

2nR̂k sequences xk drawn i.i.d. from

PnXk(xk) =

n∏
j=1

PXk(xkj) .

Index them as xk(l0k), where l0k ∈
[
1, 2nR̂k

]
for R̂k ,

I(Yk; Ŷk|Xk) + ε with k ∈ V . This is the codebook for
CF relays.

(v) For each tuple
(
v1(w1), . . . , vT (w1, . . . , wT )

)
, randomly

and conditionally independently generate 2nR sequences
x drawn i.i.d. from

PnX|V≤T
(
x|v1(w1), . . . , vT (w1, . . . , wT )

)
=

n∏
j=1

PX|V≤T
(
xj |v1j(w1), . . . , vTj(w1, . . . , wT )

)
.

Index them as x(w1, . . . , wT , w), where w ∈
[
1, 2nR

]
.

This is the source codebook.
(vi) For each k ∈ V and each xk(l0k), randomly and

conditionally independently generate 2nR̂k sequences ŷ
k

each with probability

Pn
Ŷk|Xk(ŷ

k
|xk(l0k)) =

n∏
j=1

PŶk|Xk(ŷkj |xkj(l0k)) .

Index them as ŷ
k
(l0k, lk), where lk ∈

[
1, 2nR̂k

]
with

k ∈ V . This is the cookbook for the descriptions sent by
CF relays.

(vii) Provide the corresponding codebooks to all relays, the
encoder and the decoder ends.

Encoding:

(i) In every block i ∈ [1 : B], the source sends wi using
x
(
w(i−T−1), . . . , w(i−2), wi

)
, where we have defined

wi = 1 for i ≤ 0. Moreover, for blocks i = [B + 1 :
B + T + L − 1], the source sends the dummy message
wi = 1 known to all users.

(ii) For i ∈ [1 : B + T + 2 − t] and each k ∈ Lt, the
k-th relay knows

(
wi−T−1, . . . , wi−T−2+t

)
in block i,

and it sends xk(wi−T−1, . . . , w(i−T−2+t)). Notice that
at the of block B+T + 1, all DF relays are transmitting
xk(wB , 1, . . . , 1).

(iii) For i = [1 : B + T + 1], and each k ∈ V , the k-th relay
–after receiving y

k
(i)– searches for at least one index lki

with lk0 = 1 such that(
xk(lk(i−1)), yk(i), ŷ

k
(lk(i−1), lki)

)
∈ Anε [XkYkŶk] .

The probability of finding such lki goes to one as n goes
to infinity due to our adequate choice of the rate R̂k for
compression.

(iv) For i = [1 : B + T + 1] and k ∈ V , relay k knows
from the previous block lk(i−1) and it sends xk(lk(i−1)).
Moreover, k-th relay repeats lk(B+T+1) for i = [B+T+
2 : B + T + L− 1], i.e., for L− 2 blocks.
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TABLE II
TRANSMISSION SCHEDULE FOR “LAYERED MIXED NOISY NETWORK CODING” (LMNNC).

b = 1 b = 2 b = 3 b = B + 2 b = B + 3 b = B + L+ 1
v1(1) v1(1) v1(1) v1(wB−1) v1(wB) v1(1)
x1(1) x1(1) x1(1) x1(wB−1) x1(wB) x1(1)
v2(1, 1) v2(1, 1) v2(1, w1) v2(wB−1, wB) v2(wB , 1) v2(1, 1)
x2(1, 1) x2(1, 1) x2(1, w1) x2(wB−1, wB) x2(wB , 1) x2(1, 1)
x(1, 1, w1) x(1, 1, w2) x(1, w1, w2) x(wB−1, wB , 1) x(wB , 1, 1) x(1, 1, 1)
x3(1) x3(l31) x3(l32) x3(l3(B+1)) x3(l3(B+2)) x3(l3(B+3))

ŷ
3
(1, l31) ŷ

3
(l31, l32) ŷ

3
(l32, l33) ŷ

3
(l3(B+1), l3(B+2)) ŷ

3
(l3(B+2), l3(B+3)) ?

y
1
(1) y

1
(2) y

1
(3) y

1
(B + 2) y

1
(B + 3) y

1
(B + L+ 1)

y
2
(1) y

2
(2) y

2
(3) y

2
(B + 2) y

2
(B + 3) y

2
(B + L+ 1)

y
3
(1) y

3
(2) y

3
(3) y

3
(B + 2) y

3
(B + 3) y

3
(B + L+ 1)

y(1) y(2) y(3) y(B + 2) y(B + 3) y(B + L)

TABLE III
CODING FOR DF RELAYS AT EACH LAYER.

Layers Block b = T + 2 Block b
L1 x1(w1) x1(wb−T−1)
L2 x2(w1, w2) x2(wb−T−1, wb−T )
...

...
...

Lt xt(w1, . . . , wt) xt(wb−T−1, . . . , wb−T−2+t)
...

...
...

LT xT (w1, . . . , wT ) xT (wb−T−1, . . . , wb−2)

Source x(w1, . . . , wT , wT+2) x(wb−T−1, . . . , wb−2, wb)

Decoding:

(i) The DF relays in LT are first to start decoding messages.
After the transmission of the block i + 1 = [2 : B + 1]
and for each k ∈ LT , the k-th relay decodes the message
wi and the compression index lTki of block i for all
relays in Tk, with the assumption that all messages and
compression indices up to block i−1 have been correctly
decoded. We emphasize that in this case there are only
CF relays in Tk. The k-th relay knows the tuple of
message

(
w(i−T−2), . . . , w(i−1)

)
, and so it knows all

codewords indexed by them. Let us define:

Ek
(
ŵb, l̂Tkb, b

)
,
{(
x(w(b−T−1), . . . , w(b−2), ŵb),(

xi(li(b−1)), ŷi(li(b−1), l̂ib)
)
i∈Tk , yk(b)(

vt(w(b−T−1), . . . , w(b−T−2+t)),

xLt(w(b−T−1), . . . , w(b−T−2+t))
)
t∈[1:T ]

)}
,

Ek
(
l̂Tkb, b+ 1

)
,
{((

vt(w(b−T ), . . . , w(b−T−1+t)),

xLt(w(b−T ), . . . , w(b−T−1+t))
)
t∈[1:T ]

,

y
k
(b+ 1),

(
xi(l̂ib)

)
i∈Tk

)}
.

Therefore, the k-th relay, by looking at two consecu-
tive blocks (b, b + 1), searches for the unique indices
(ŵb, l̂Tkb) such that:

Ek(ŵb, l̂Tkb, b) ∈ Anε [V≤TXXVcXTk ŶTkYk] and

Ek(l̂Tkb, b+ 1) ∈ Anε [V≤TXVcXTkYk] .

We define the following error events:

E0 :
{
Ek(wb, lTkb, b) /∈ Anε [V≤TXXVcXTk ŶTkYk]

or Ek(lTkb, b+ 1) /∈ Anε [V≤TXVcXTkYk]
}
,

ES :
{
Ek(wb, l̂Tkb, b) ∈ Anε [V≤TXXVcXTk ŶTkYk]

and Ek(l̂Tkb, b+ 1) ∈ Anε [V≤TXVcXTkYk] for some

l̂kb 6= lkb , k ∈ S and l̂kb = lkb , k ∈ Sc
}
,

Ew,S :
{
Ek(ŵb, l̂Tkb, b) ∈ Anε [V≤TXXVcXTk ŶTkYk]

and Ek(l̂Tkb, b+ 1) ∈ Anε [V≤TXVcXTkYk]

for some ŵb 6= wb , l̂kb 6= lkb , k ∈ S
and l̂kb = lkb , k ∈ Sc

}
.

The probability of error for these relays can be bounded
as follows:

Pr
(

(ŵb, l̂Tkb) 6= (wb, lTkb)
)
≤ Pr(E0)

+
∑
S⊆T

[Pr(ES) + Pr(Ew,S)] .

The probability Pr(E0) goes to zero as n → ∞ given
the code generation and the encoding process. We bound
the other probabilities using the same technique as we
already did in Appendix A. First of all, the probability
Pr(ES) is bounded as:

Pr(ES) ≤
∏
k∈S

(
2nR̂k − 1

)
2n(∆1+∆2) ,

where

∆1 , H(V≤TXXVcXTk ŶTkYk)−
∑
j∈S

H(Ŷj |Xj)

−H(V≤TXXVcXTk ŶScYk) ,

∆2 , H(V≤TXVcXTkYk)−
∑
j∈S

H(Xj)

−H(V≤TXVcXScYk) + ε1 .

The probability Pr(ES) goes to zero as n goes to infinity
if the exponent of the right hand side is also negative
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which yields:∑
j∈S

I(Ŷj ;Yj |Xj) + ε1 <
∑
j∈S

H(Ŷj |Xj) +
∑
j∈S

H(Xj)

+ H(V≤TXXVcXTk ŶScYk)

+ H(V≤TXVcXScYk)

− H(V≤TXXVcXTk ŶTkYk)

− H(V≤TXVcXTkYk) .

After simplification of both sides, in order to guarantee
that the probability Pr(ES) is arbitrarily small, we need
to add the next constraint:

ε1 < I(XS ;Yk|V≤TXVc∪Sc)
− I(ŶS ;YS |V≤TXXVcXTk ŶScYk) .

However, given the fact that Tk ∈ Υk(N ), inequality
(110) holds for every subset S ⊆ Tk.
As the next step, the probability Pr(Ew,S) can be
bounded by following the very same steps as before and
thus Pr(Ew,S) goes to zero as n→∞ provided that

R+
∑
j∈S

I(Ŷj ;Yj |Xj) + ε2 <
∑
j∈S

H(Ŷj |Xj)

+
∑
j∈S

H(Xj) +H(X|V≤TXVc)

+H(V≤TXVcXTk ŶScYk) +H(V≤TXVcXScYk)

−H(V≤TXXVcXTk ŶTkYk)−H(V≤TXVcXTkYk) .

From this, we obtain the following condition:

R+ ε2 < I(X; ŶScYk|V≤TXVcXTk)

+I(XS ;Yk|V≤TXVc∪Sc)
−I(ŶS ;YS |V≤TXXVcXTk ŶScYk)

= I(X; ŶTkYk|V≤TXVcXTk) + I(XS ;Yk|V≤TXVc∪Sc)
−I(ŶS ;YS |V≤TXVcXTk ŶScYk) . (110)

(ii) Decoding at DF relays in Lt is done as follows. As we
already mentioned, these relays start to decode the fresh
source message after all relays have decoded the same
messages corresponding to the higher layers, namely
{Lt+1, . . . ,LT }. Therefore, those relays in higher layers
act as relay for the relays in Lt. Whereas the lower
layers cannot help the relays in Lt, having decoded only
the previous source messages. Indeed, they act as side
information in the decoding process.
After the transmission of the block i + 1 + T − t ∈
{2 +T − t, . . . , B+ 1 +T − t} and for each k ∈ Lt, the
k-th relay decodes the message wi and the compression
index lTki, i.e., the compression indices for block i of
all relays in Tk, with the assumption that all messages
and compression indices up to block i − 1 have been
correctly decoded. To this end, this relay uses the blocks

[b : b+ t]. Let us define the sequences:

Ek
(
ŵb, l̂Tkb, b

)
,
{(
x(w(b−T−1), . . . , w(b−2), ŵb),(

xi(li(b−1)), ŷi(li(b−1), l̂ib)
)
i∈Tk , yk(b)(

vt(w(b−T−1), . . . , w(b−T−2+t)),

xLt(w(b−T−1), . . . , w(b−T−2+t))
)
t∈[1:T ]

)}
,

Ek
(
l̂Tkb, b+ 1

)
,
{((

vt(w(b−T ), . . . , w(b−T−1+t)),

xLt(w(b−T ), . . . , w(b−T−1+t))
)
t∈[1:T ]

,

y
k
(b+ 1),

(
xi(l̂ib)

)
i∈Tk

)}
,

Ek (ŵb, b+ 2) ,
{((

vt(w(b−T+1), . . . , w(b−T+t)),

xLt(w(b−T+1), . . . , w(b−T+t))
)
t∈[1:T−1],(

vT (w(b−T+1), . . . , ŵb),

xLT (w(b−T+1), . . . , ŵb)
)
, y
k
(b+ 2)

)}
,

Ek (ŵb, b+ j) ,
{((

vt(w(b−T+j−1), . . . , w(b−T−2+j+t)),

xLt(w(b−T+j−1), . . . , w(b−T−2+j+t))
)
t∈[1:T−j+1]

,(
vT−j+2(w(b−T+j−1), . . . , ŵb),

xLT−j+2
(w(b−T+j−1), . . . , ŵb)

)
, y
k
(b+ j)

)}
,

Ek (ŵb, b+ 1 + T − t) ,
((
vt(w(b−t), . . . , w(b−1))

, xLt(w(b−t), . . . , w(b−1))
)
t∈[1:t],(

vt+1(w(b−t), . . . , ŵb),

xLt+1
(w(b−t), . . . , ŵb)

)
, y
k
(b+ 1 + T − t)

)
.

In this case, by looking at t + 1 consecutive blocks
(b, . . . , b + t), the k-th relay finds the unique pair of
indices (ŵb, l̂Tkb) such that:

Ek(ŵb, l̂Tkb, b) ∈ Anε [V≤TXXVcXTk ŶTkYk] and

Ek(l̂Tkb, b+ 1) ∈ Anε [V≤TXVcXTkYk] .

Ek(ŵb, b+ j) ∈ Anε [V≤T−j+2XL≤T−j+2
Yk]

for j = [2 : T − t+ 1] . (111)

We define the following error events:

E0 :
{
Ek(wb, lTkb, b) /∈ Anε [V≤TXXVcXTk ŶTkYk]

or Ek(lTkb, b+ 1) /∈ Anε [V≤TXVcXTkYk]

or Ek(wb, b+ j) /∈ Anε [V≤T−j+2XL≤T−j+2
Yk]

for j = [2 : T − t+ 1]
}
.

ES :
{
Ek(wb, l̂Tkb, b) ∈ Anε [V≤TXXVcXTk ŶTkYk]

and Ek(l̂Tkb, b+ 1) ∈ Anε [V≤TXVcXTkYk]

for some l̂kb 6= lkb , k ∈ S
and l̂kb = lkb , k ∈ Sc

}
, (112)
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Ew,S :
{
Ek(ŵb, l̂Tkb, b) ∈ Anε [V≤TXXVcXTk ŶTkYk]

and Ek(l̂Tkb, b+ 1) ∈ Anε [V≤TXVcXTkYk]

and Ek(ŵb, b+ j) ∈ Anε [V≤T−j+2XL≤T−j+2
Yk]

for j = [2 : T − t+ 1]

for some ŵb 6= wb , l̂kb 6= lkb , k ∈ S
and l̂kb = lkb , k ∈ Sc

}
. (113)

Hence, the error probability can be bounded as follows:

Pr
(

(ŵb, l̂Tkb) 6= (wb, lTkb)
)
≤ Pr(E0)

+
∑
S⊆T

[Pr(ES) + Pr(Ew,S)] .

It is easy to check that the probability Pr(E0) goes to
zero as n→∞. As the next step, the probability Pr(ES)
goes to zero with the exact same condition as (110),
namely:

ε1 < I(XS ;Yk|V≤TXVc∪Sc)
− I(ŶS ;YS |V≤TXXVcXTk ŶScYk) .

The probability Pr(Ew,S) can be bounded by following
the very same steps as before and thus Pr(Ew,S) goes
to zero as n→∞ provided that

R+
∑
j∈S

I(Ŷj ;Yj |Xj) + ε2 <
∑
j∈S

H(Ŷj |Xj)

+
∑
j∈S

H(Xj) +H(X|V≤TXVc)

+H(V≤TXVcXTk ŶScYk) +H(V≤TXVcXScYk)

−H(V≤TXXVcXTk ŶTkYk)−H(V≤TXVcXTkYk)

+

T−t+1∑
j=2

I(VT−j+2XLT−j+2
;Yk|V≤T−j+1XL≤T−j+1

) ,

which is simplified to its equivalent condition given by

R+ ε2 < I(X; ŶScYk|V≤TXVcXTk)

+I(XS ;Yk|V≤TXVcXSc)− I(V>tXL>t ;Yk|V≤tXL≤t)
−I(ŶS ;YS |V≤TXXVcXTk ŶScYk)

= I(X; ŶTkYk|V≤TXVcXTk) + I(XS ;Yk|V≤TXVcXSc)
−I(V>tXL>t ;Yk|V≤tXL≤t)
−I(ŶS ;YS |V≤TXVcXTk ŶScYk)

= I(XV>tXL>t ;Yk|V≤tXL≤t)
+I(XS ;Yk|V≤TXVcXSc)

−I(ŶTk ;YS |V≤TXVcXTkYk) .(114)

(iii) Decoding at the destination is done backwardly and
it first starts to decode the last compression index,
namely the decoder jointly searches for the indices(
l̂k(B+T+1)

)
k∈T such that for all b = [B + T + 2 :

B + T + L− 1] the following condition holds:((
xk(l̂k(B+T+1)

)
k∈T ,

(
vt(1, . . . , 1),

xLt(1, . . . , 1)
)
t∈[1:T ]

, x(1, . . . , 1), y(b)
)

∈ Anε [V≤TXVcXT Y ] .

The probability of error is calculated similarly to previ-
ous theorems and it goes to zero as n goes to infinity
provided by∑

k∈S∩T
I(Ŷk;Yk|Xk) + ε2 ≤

(L− 2)I(XS ;V≤TXXVc∪ScY ) ,

for all subsets S ⊆ T .
(iv) After finding the correct index lk(B+T+1), for each k ∈
T , the destination starts decoding from the block B +
T + 1 backward. It decodes jointly the message and all
compression indices (wb, lT (b+T )), for each block b =
[1 : B]. The message wb is decoded at the block b+T+1
and it is assumed that (wb+1, . . . , wb+T+1, lT (b+T+1))
have been correctly decoded. Let us define the next event:

E(ŵb, l̂T (b+1)) ,
(
x(ŵb, . . . , wb+T−1, w(b+T+1)),(

xk(l̂k(b+1)), ŷk(l̂k(b+1), lk(b+2))
)
k∈T ,(

vt(ŵb, . . . , wb+t−1), xLt(ŵb, . . . , wb+t−1)
)
t∈[1:T ]

,

y(b+ T + 1)
)
.

The destination finds the unique pair of indices
(ŵb, l̂T (b+1)) such that

E(ŵb, l̂T (b+1)) ∈ Anε [V≤TXXVc∪T ŶT Y ] . (115)

The error events associated with this step are character-
ized as follows (S ⊆ T ):

E0 :
{
E(wb, lT (b+1)) /∈ Anε [V≤TXXVc∪T ŶT Y ]

}
,

ES :
{
E(wb, l̂T (b+1)) ∈ Anε [V≤TXXVc∪T ŶT Y ]

for some l̂kb 6= lkb , k ∈ S
and l̂kb = lkb , k ∈ Sc

}
,

Ew,S :
{
E(ŵb, l̂T (b+1)) ∈ Anε [V≤TXXVc∪T ŶT Y ]

for some ŵb 6= wb , l̂kb 6= lkb , k ∈ S
and l̂kb = lkb , k ∈ Sc

}
.

The error probability can be bounded as follows:

Pr
[
(ŵb, l̂T b) 6= (wb, lT b)

]
≤ Pr(E0)

+
∑
S⊆T

[Pr(ES) + Pr(Ew,S)] .

These probabilities are bounded using the same tech-
nique in Appendix A and therefore we omit the details
here. The probability Pr(E0) and Pr(ES) go to zero as
n→∞ provided that:∑
k∈S

I(Ŷk;Yk|Xk) + ε3 <
∑
k∈S

H(ŶkXk)

+H(V≤TXXVc∪Sc ŶScY )−H(V≤TXXVc∪T ŶT Y ) ,

(116)
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which is equivalent to the following inequality after
standard manipulation: This manipulation yields the fol-
lowing expression:

ε3 < I(XS ; ŶScY |V≤TXXVc∪Sc)
−I(ŶS ;YS |V≤TXXVc∪T ŶScY ) . (117)

By the choice T ∈ Υ (V), inequality (117) holds for each
S ⊆ T . Now, the probability Pr(Ew,S) tends to zero as
n goes to infinity provided that:

R+
∑
k∈S

I(Ŷk;Yk|Xk) + ε4 <
∑
k∈S

H(ŶkXk)

+H(V≤TXXVc) +H(XSc ŶScY )

−H(V≤TXXVc∪T ŶT Y )
]
. (118)

We apply once again the standard simplification used in
Appendix A from which we get:

R+ ε4 < I(XXVc∪S ; ŶScY |XSc)
−I(ŶS ;YS |XXVc∪T ŶScY ) . (119)

Notice that we can see that DF relays XVc appear in the
mutual information part of the rate (119), which means
that they contribute to the increase the final rate by their
cooperation. The proof is finalized by choosing finite but
large enough L, and then the inequalities (110), (117),
(119), (114), and (110) prove Theorem 3, where the final
rate is achieved by letting (B,n) tend to infinity. At the
end, a time sharing random variable Q can be added over
all expressions which concludes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

Consider now the composite relay channel with given pa-
rameters θ = (θd, θr) and target rate r. Transmission takes
place over B + L blocks of length n.

Code generation:

(i) The relay disposes of two different codebooks. First,
randomly and independently generate 2nr sequences x1
drawn i.i.d. from

PnX1
(x1) =

n∏
j=1

PX1
(x1j) . (120)

Index them as x1(w0) with index w0 ∈ [1, 2nr]. This
codebook must be given to the source so it cannot depend
on the specific draw θr. Then, for each θr ∈ Θr randomly
and independently generate 2nR̂θr sequences x2 drawn
i.i.d. from

PnX2|θr (x2|θr) =

n∏
j=1

PX2|θr (x2j |θr) . (121)

Index them as x2(l0), where l0 ∈
[
1, 2nR̂θr

]
for R̂θr ,

Iθr (Y2; Ŷ2|X2) + ε.

(ii) For each x2(l0), randomly and conditionally indepen-
dently generate 2nR̂θr sequences ŷ

2
each with probability

Pn
Ŷ2|X2;θr

(ŷ
2
|x2(l0); θr)

=

n∏
j=1

PŶ2|X2;θr
(ŷ2j |x2j(l0); θr) . (122)

Index them as ŷ
2
(l0, l), where l ∈

[
1, 2nR̂θr

]
.

(iii) For each x1(w0), randomly and conditionally indepen-
dently generate 2nr sequences x drawn i.i.d. from

PnX|X1
(x|x1(w0)) =

n∏
j=1

PX|X1
(xj |x1j(w0)) . (123)

Index them as x(w0, w), where w ∈ [1, 2nr]. This is the
source codeword independent of the specific draw of θ.
Again note that x1(r1), which is used to generate the
source code, does not depend on θ.

(iv) Provide the codebooks to every node available except
for the collection of codebooks {x2(l0)} that cannot be
known to the source.

Encoding:

(i) In every block i ∈ [1 : B], the source sends wi ∈ [1, 2nr]
based on x

(
w(i−1), wi

)
. Moreover, for blocks i ∈ [B+1 :

B + L], the source sends the dummy message wi = 1
known to all nodes.

(ii) The parameter θr is available to the relay. If θr ∈ DDF
the relay sends the codeword x1 from the first codebook
and uses it for the rest of the communication. In other
words, the relay function for this choice is DF scheme. In
block i, the relay uses its decoder output ŵ(i−1) (w0 = 1)
and sends the codeword x1

(
ŵ(i−1)

)
. Otherwise, if θr /∈

DDF, then the relay picks the codebook of codewords
x2 corresponding to θr. The relay function in this case
is CF scheme. After receiving the corresponding output,
namely y

1
(i), the relay searches for at least one index

li, where l0 = 1, such that(
x2(l(i−1)), y1(i), ŷ

2
(l(i−1), li)

)
∈ Anε [X2Y1Ŷ2|θr] ,

where Anε [X2Y1Ŷ2|θr] is the joint typical set indexed
with θr. The probability of finding such li goes to one
as n goes to infinity. We remark that the typical set used
for such coding is known to the relay because it knows
θr. For i = [1 : B+1], the relay knows from the previous
block l(i−1) and it sends x2(l(i−1)). Moreover, the relay
repeats lB+1 for i = [B + 2 : B + L].

Decoding:

We assume that destination is equipped with an outage
identification function I that is given as follows:

1) For every block i = [1 : B + L], the relay decodes wi
exactly similar to Theorem 2. For a fix r and given θr,
if the next condition is satisfied the probability of error
event will asymptotically tend to zero, i.e.,

r ≤ Iθr (X;Y1|X1) . (124)
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On the contrary, an error occurs when

r > Iθr (X;Y1|X1) . (125)

In this case, the relay will transmit a random message ŵ
and the destination that knows θ will set I(θ) = 0.

2) The decoder knows the channel index θ and hence θr. If
θr ∈ DDF and inequality (124) is satisfied, the destination
decodes the message using the DF codebook. Thus,
decoding of this would not be successful if

r > Iθ(X,X1;Y ) , (126)

for which the destination sets I(θ) = 0 and declares an
outage event. Therefore, if θr ∈ DDF, an outage event is
declared when r > IDF(θ) with

IDF(θ) , min
{
Iθr (X;Y1|X1), Iθ(X,X1;Y )

}
. (127)

Consider the step for the case θr /∈ DDF where the relay
input is chosen from the second set of codebooks with
distribution X2. As a matter of fact, for all draws θ
yielding this case we have

X1 
X 
 (Y, Y1, X2) . (128)

Moreover, the decoder knows whether the next inequality
is satisfied subject to the Markov chain (128)

Iθ(X2;Y |XX1) ≥ Iθ(Y1; Ŷ2|Y XX1X2) . (129)

The decoder applies the exact same decoding procedure
as in Theorem 2. It can be seen that the decoding condi-
tions at destination do not change even if X1 is not really
transmitted. The only change is in the Markov chains,
it can be seen that the previous inequality corresponds
to (63) for the composite relay channel. The destination
declares an outage event and I(θ) = 0 for θr /∈ DDF if
r > ICF(θ), where

ICF(θ) , max
{

min
[
Iθ(XX1;Y Ŷ2|X2), Iθ(XX1X2;Y )

−Iθ(Ŷ2;Y1|Y XX1X2)
]
, Iθ(X;Y )

}
. (130)

Using (127) and (130), the outage event denoted by the
indicator function 1E is as follows

1E , 1[θr ∈ DDF and r > IDF(θ)]

+ 1[θr /∈ DDF and r > ICF(θ)] .

Taking the expected value from both sides lead to the
outage probability. Indeed, the expected value is taken in
two steps. For each θr, the expected value is calculated
using Pθ|θr . The relay, for each θr chooses the joint
distribution of (X2, Ŷ2) to minimize:

Eθ|θr [1E ] ={
Pθ|θr [r > IDF(θ)|θr] θr ∈ DDF

min
p(x2)p(ŷ2|x2,y1)

Pθ|θr [r > ICF(θ)|θr] θr /∈ DDF .

At the next step, the expectation is taken over θr and is
minimized over DDF and p(x, x1), yielding

ε(r) = min
p(x,x1)

inf
DDF⊆Θr

Eθr

{
Pθ|θr

[
r > IDF, θr ∈ DDF|θr

]
+ min
p(x2)p(ŷ2|x2,y1θr )

Pθ|θr
[
r > ICF, θr /∈ DDF|θr

]}
.

Finally, a time sharing random variable Q can be added
to the region, however the optimization should be done
outside the expectation.

APPENDIX E
OUTLINE OF THE PROOF OF PROPOSITION 5

Consider the composite unicast network with parameters
θ = (θd, θr). Transmission is done over B + L blocks.
Suppose that every relay knows DV , i.e., the decision region
of the other relays for each θr.

Code generation:

1) Randomly and independently generate 2nR sequences v
drawn i.i.d. from

PnV (v) =

n∏
j=1

PV (vj) .

Index them as v(w0) with index w0 ∈
[
1, 2nR

]
. This

codebook must be given to the source so it cannot depend
on the specific draw θr.

2) Since all relays know θr, for each θr generate two sets
of codebooks:

a) Each codebook for θr in the first set is generated as
follows. For each v(w0), randomly and conditionally
independently generate 2nR̂kθr sequences xk drawn
i.i.d. from

PnXk|V ;θr
(xk|v(w0), θr)

=

n∏
j=1

PXk|V ;θr (xkj |vj(w0), θr) .

Index them as xk(w0, l0k) with index l0k ∈
[
1, 2nR̂kθr

]
for R̂kθr , Iθr (Yk; Ŷk|XkV ) + ε.

b) For each v(w0), xk(w0, l0k) and θr, randomly and
conditionally independently generate 2nR̂kθr sequences
ŷ
k

each with probability

Pn
Ŷk|XkV ;θr

(ŷ
k
|xk(w0, l0k), v(w0), θr)

=

n∏
j=1

PŶk|XkV ;θr
(ŷkj |xkj(w0, l0k), vj(w0), θr) .

Index them as ŷ
k
(w0, l0k, lk), where lk ∈

[
1, 2nR̂kθr

]
for R̂kθr , Iθr (Yk; Ŷk|XkV ) + ε.

c) As for the second set of codebooks, for each θr ran-
domly and independently generate 2nR̂kθr sequences
xk drawn i.i.d. from

PnXk|θr (xk|θr) =

n∏
j=1

PXk|θr (xkj |θr) .

Index them as xk(l0k), where l0k ∈
[
1, 2nR̂kθr

]
for

R̂kθr , Iθr (Yk; Ŷk|Xk) + ε.
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d) For each xk(l0k), randomly and conditionally indepen-
dently generate 2nR̂k sequences ŷ

k
each from

Pn
Ŷk|Xk;θr (ŷk|xk(l0k), θr)

=

n∏
j=1

PŶk|Xk;θr (ŷkj |xkj(l0k), θr) .

Index them as ŷ
k
(l0k, lk), where lk ∈

[
1, 2nR̂kθr

]
for

R̂kθr , Iθr (Yk; Ŷk|Xk) + ε.
Note that the rate R̂kθr depends on the relay strategy, i.e.,
CF or DF scheme, and so the relay is superimposing the
compression index over the DF code. Therefore, the rate
R̂kθr varies according to each scenario.

3) For each v(w0), randomly and conditionally indepen-
dently generate 2nR sequences x drawn i.i.d. from

PnX|V (x|v(w0)) =

n∏
j=1

PX|V (xj |vj(w0)) .

Index them as x(w0, w), where w ∈
[
1, 2nR

]
.

4) Provide the codebooks to every node available except for
the collection of codebooks {xk(l0k), xk(w0, l0k)} that
cannot be known to the source.

Encoding:

(i) In every block i = [1 : B], the source sends wi based on
x
(
w(i−1), wi

)
. Moreover, for blocks i = [B+1 : B+L],

the source sends the dummy message wi = 1 known to
all nodes.

(ii) Since all relays know θr, if θr ∈ D(k)
DF for every block

i = [1 : B+L], the relay k knows w(i−2) by assumption
and w0 = 1.
Moreover, it searches in the codebook for θr in its first
set of codebooks for at least one index lki with lk0 = 1
such that(

v(w(i−2)), xk(w(i−2), lk(i−1)), yk(i),

ŷ
k
(w(i−2), lk(i−1), lki)

)
∈ Anε [V XkYkŶk|θr] .

The probability of finding such lki goes to one as n goes
to infinity by a choice of the rate R̂kθr . Relay k sends
xk(w(i−2), lk(i−1)) in block i and it repeats lk(B+2) for
all blocks i = [B+ 3 : B+L]. If θr /∈ D(k)

DF , the relay k
after receiving y

k
(i), searches in the codebook index θr

in its second set of codebooks for at least an index lki
with lk0 = 1 such that(
xk(lk(i−1)), yk(i), ŷ

k
(lk(i−1), lki)

)
∈ Anε [XkYkŶk|θr] .

The probability of finding such lki goes to one as n
goes to infinity. The relay k knows from the previous
block lk(i−1) and it sends xk(lk(i−1)). Moreover, relay
k repeats lk(B+1) for all blocks i ∈ [B + 2 : B + L].

Decoding:

If θr ∈ DV , then relays k ∈ V use CF scheme while the
others relays use DF scheme. It means that the relays with
k ∈ V use the codebook for θr in the second set of codebooks

and the others relays use the codebook for θr in the first
set of codebooks. Now the outage indicator function can be
considered as follows:

1E ,
∑
V⊆N

1[r ≤ IMNNC(V, θ) , θr ∈ DV ] . (131)

Therefore, if r is less or equal than IMNNC(V, θ) it can be
achieved and the probability of error tends to zero. Hence,
the outage probability is calculated easily from (131) by
considering the optimization over all probability distributions
and taking the expected value from both sides.

APPENDIX F
OUTLINE OF THE PROOF OF PROPOSITION 7

Consider the composite unicast network with parameters
θ = (θd, θr). Transmission is done over B + L blocks. It is
assumed that every relay knows DV , i.e., the decisions regions
of all others relays.

Code generation:

(i) The relay k knows θr and for each θr it generates two
codebooks

(
x
(1)
k , x

(2)
k

)
as follows:

a) Randomly and independently generate 2nR sequences
x
(1)
N drawn i.i.d. from

Pn
X

(1)
N

(
x
(1)
N
)

=

n∏
j=1

P
X

(1)
N

(
x
(1)
N j
)
.

Index them as x(1)N (r) with index r ∈
[
1, 2nR

]
. Since

this codebook must be also given to the source it
cannot depend on θr.

b) Randomly and independently generate 2nR̂kθr se-
quences x(2)k drawn i.i.d. from

Pn
X

(2)
k |θr

(
x
(2)
k |θr

)
=

n∏
j=1

P
X

(2)
k |θr

(
x
(2)
kj |θr

)
.

Index them as x(2)k (rk), where rk ∈
[
1, 2nR̂kθr

]
for

R̂kθr , Iθr (Yk; Ŷk|X(2)
k ) + ε.

c) For each x
(2)
k (rk), randomly and conditionally inde-

pendently generate 2nR̂kθr sequences ŷ
k

each with
probability

Pn
Ŷk|X(2)

k ;θr

(
ŷ
k
|x(2)k (rk), θr

)
=

n∏
j=1

P
Ŷk|X(2)

k ;θr

(
ŷkj |x(2)kj (rk), θr

)
.

Index them as ŷ
k
(rk, ŝk), where ŝk ∈

[
1, 2nR̂kθr

]
.

(ii) For each x
(1)
N (r), randomly and conditionally indepen-

dently generate 2nR sequences x drawn i.i.d. from

Pn
X|X(1)

N

(
x|x(1)N (r)

)
=

n∏
j=1

P
X|X(1)

N

(
xj |x(1)N j

)
.

Index them as x(r, w), where w ∈
[
1, 2nR

]
. Indeed, this

codebook must be also given to the source so it cannot
depend on θr.
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Encoding:

(i) In every block i = [1 : B], the source sends wi based
on x

(
w(i−1), wi

)
. Moreover, for all blocks i = [B + 1 :

B + L], the source sends the dummy message wi = 1
known to all nodes.

(ii) If θr ∈ D(k)
DF , for every block i = [1 : B + L], the relay

k knows w(i−1) by assumption and w0 = 1 so it sends
x
(1)
k

(
w(i−1)

)
.

If θr /∈ D(k)
DF , the relay k after receiving y

k
(i), searches

for at least one index lki with lk0 = 1 such that(
x
(2)
k (lk(i−1)), yk(i), ŷ

k
(lk(i−1), lki)

)
∈ Anε [XkYkŶk|θr] . (132)

The probability of finding such lki goes to one as n
goes to infinity. The relay k knows from the previous
block lk(i−1) and it sends x(2)k (lk(i−1)). Moreover, relay
k repeats lk(B+1) for all blocks i = [B + 2 : B + L].

Decoding:

1) After transmission of the block i = [1 : B], if θr ∈ D(k)
DF

the k-th relay decodes the message of block i with the
assumption that all messages up to block i−1 have been
correctly decoded. The relay k searches for the unique
index ŵi ∈Mn such that:(

x
(
w(i−1), ŵi

)
, x

(1)
N
(
w(i−1)

)
, y
k
(i)
)

∈ Anε [XXNYk|θr] . (133)

The outage event is occurred when

r > Iθr

(
X;Yk|X(1)

N

)
. (134)

We emphasize that not all X(1)
N are sending description

but only codewords X(1)
Vc does for θr ∈ DV .

2) Decoding at the destination is done backwardly. It knows
θ, DV and therefore V , i.e., it is aware of the strategy
of each relay (e.g. using DF or CF scheme). Moreover,
it chooses T to maximize (80). It first decodes the last
compression indices sent by the relays in T . It jointly
searches for the unique indices

(
l̂k(B+1)

)
k∈T such that

for all b = [B+2 : B+L] the following condition holds:((
xk(l̂k(B+1))

)
k∈T , x(1, 1), xVc(1), y(b)

)
∈ Anε [XXTXVcY |θ] .

After finding the correct index lk(B+1) for all k ∈ T
and since w(B+1) = 1, the destination decodes jointly
the message and all compression indices (wb, lT b), for
each b = [1 : B], where lT b = (lkb)k∈T . Indeed,
decoding is performed backwardly with the assumption
that (wb+1, lT (b+1)) have been correctly decoded. The
destination finds the unique pair (ŵb, l̂T b) such that(

x(ŵb, w(b+1)), xVc(ŵb), y(b+ 1),
(
xk(l̂kb),

ŷ
k
(l̂kb, lk(b+1))

)
k∈T

)
∈ Anε [XXT ∪Vc ŶT Y |θ] .

It can be seen from Theorem 2 that an error occurs if:

r > min
S⊆T

RT (S, θ) , (135)

where

RT (S, θ) , Iθ(XX
(1)
Vc X

(2)
S ; ŶScY |X(2)

Sc )

−Iθ(YS ; ŶS |XX(2)
T X

(1)
N ŶScY ) .

Note that T is chosen in such a way that the right-
hand side achieves its maximum value. From our previous
discussion on expression (4), we know that this set
belongs to Υ (V) and so QT (A) ≥ 0 for each A ⊆ T .

3) Using (134) and (135), the outage indicator function can
be defined as

1E ,
∑
V⊆N

1 [θr ∈ DV and r > IMNNC(V, θ)] , (136)

where

IMNNC(V, θ) ,

max
T ⊆V

min
{

min
S⊆T

RT (S, θ),min
i∈Vc

Iθr (X;Yi|X(1)
N )
}
.

As before, the expected value is taken in two steps. For
each θr, the expected error is calculated with Pθ|θr . The
relays chose the distribution

∏
j∈V p(x

(2)
j )p(ŷj |x(2)j yj) to

minimize the conditional expectation for each θr and DV .
This will lead to the following:

Eθ|θr [1E ] ,
∑
V⊆N

min∏
j∈V p(x

(2)
j )p(ŷj |x(2)

j yj)

Pθ|θr
[
r > IMNNC(V, θ) , θr ∈ DV

∣∣θr] . (137)

At the next step, the expected value is taken over θr and
is minimized over all decision regions DV and p(x, x(1)N )
which leads to the following:

ε̄(r) ≤ min
p(x,x

(1)
N )

inf
{DV ,V⊆N}∈Π(Θr,N)∑

V⊆N
Eθr

{
min∏

j∈V p(x
(2)
j )p(ŷj |x(2)

j yj)

Pθ|θr
[
r > IMNNC(V, θ), θr ∈ DV

∣∣θr]} . (138)

At the end, a time sharing random variable Q can be
added to the region, however the optimization should be
done outside the expectation.
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