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Abstract

This report shows how the operational semantics of a language like ORC can be instrumented so
that the execution of a program produces information on the causal dependencies between events. The
concurrent semantics we obtain is based on labeled asymetric event structures. This report contains
the complete demonstration of correctness of this approach.

1 The Orc Core calculus

1.1 Syntax

D ∈ Definition ::= def y(x) = f
f, g, h ∈ Expression ::= p|p(p)|?k|(f |g)|f >x> g|f <x< g|f ; g|D#f |⊥
v ∈ Orc Value ::= V |D
p ∈ Parameter ::= v|stop|x
w ∈ Response ::= NT (v)|T (v)|Neg
n ∈ Non− publication Label ::= Vk(v)|D(p)|ω|h(ω)|h(!v)
l ∈ Label ::= !v|n

1.2 Semantics

(PUBLISH)

v
!v
−→ stop

where v closed

(STOP)
stop

ω
−→ ⊥

(DEFDECLARE)
[D/y]f

l
−→ f ′

D#f
l
−→ f ′

where D is def y(x̄) = g

(STOPCALL)
stop(p̄)

ω
−→ ⊥

(INTCALL)

D(p̄)
D(p̄)
−−−→ [D/y][p̄/x̄]g

where D is def y(x̄) = g

(EXTCALL)

V (v̄)
Vk(v̄)−−−→?k

where v̄ closed and k fresh
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(EXTSTOP)
V (p̄)

ω
−→ ⊥

where stop ∈ p̄

(NTRES)
?k receives NT (v)

?k
!v
−→?k

(TRES)
?k receives T (v)

?k
!v
−→ stop

(NEGRES)
?k receives Neg

?k
ω
−→ ⊥

(PARLEFTSTOP)
f

ω
−→ ⊥

f |g
h(ω)
−−−→ g

(PARRIGHTSTOP)
g

ω
−→ ⊥

f |g
h(ω)
−−−→ f

(PARLEFT)
f

l
−→ f ′

f |g
l
−→ f ′|g

where l 6= ω

(PARRIGHT)
g

l
−→ g′

f |g
l
−→ f |g′

where l 6= ω

(SEQSTOP)
f

ω
−→ ⊥

f >x> g
ω
−→ ⊥

(SEQN)
f

n
−→ f ′

f >x> g
n
−→ f ′ >x> g

where n 6= ω

(SEQV)
f

!v
−→ f ′

f >x> g
h(!v)
−−−→ (f ′ >x> g)|[v/x]g

(PRUNESTOP)
g

ω
−→ ⊥

f <x< g
h(ω)
−−−→ [stop/x]f

(PRUNELEFT)
f

l
−→ f ′

f <x< g
l
−→ f ′ <x< g

where l 6= ω

(PRUNEN)
g

n
−→ g′

f <x< g
n
−→ f <x< g′

where n 6= ω

(PRUNEV)
g

!v
−→ g′

f <x< g
h(!v)
−−−→ [v/x]f

(OTHERSTOP)
f

ω
−→ ⊥

f ; g
h(ω)
−−−→ g

(OTHERN)
f

n
−→ f ′

f ; g
n
−→ f ′; g
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(OTHERV)
f

!v
−→ f ′

f ; g
!v
−→ f ′

1.3 The Instrumented semantics

〈p, cl, cω, av〉.v = p.v
v.v = v

〈p, cl, cω, av〉.c = p.c ∪ cl
v.c = ∅

〈p, cl, cω, av〉.ω = p.c ∪ cl ∪ cω
v.ω = ∅

(PUBLISH)

v
k,!v,∅,∅
−−−−−→ 〈stop, ∅, {k}, ∅〉

where v closed and k fresh

(STOP)

stop
k,ω,∅,∅
−−−−→ ⊥

where k fresh

(DEFDECLARE)
[D/y]f

k,l,c,a
−−−−→ f ′

D#f
k,l,c,a
−−−−→ 〈f ′, {k}, ∅, ∅〉

where D is def y(x̄) = g

(STOPCALL)

P (p)
k,ω,P.ω,P.ω
−−−−−−−−→ ⊥

where P.v = stop and k fresh

(INTCALL)

P (p)
k,D(p̄),P.c,P.c
−−−−−−−−−→ 〈[D/y][p̄/x̄]g, {k}, ∅, ∅〉

where P.v = D is def y(x̄) = g and k fresh

(EXTCALL)

P (p)
k,Vk(v̄),C,C
−−−−−−−−→ 〈?k, {k}, ∅, ∅〉

where p.v closed, p.v = V , C = P.c ∪
⋃

p∈p p.c and k fresh

(EXTSTOP)

P (p)
k,ω,C,C
−−−−−→ ⊥

where stop ∈ p.v, k fresh and x 6∈ p.v and P.v = V and C = p.ω ∪ P.ω

(NTRES)
?k receives NT (v, c, a)

?k
j,!v,c,a∪c
−−−−−−→ 〈?k, ∅, {j}, ∅〉

where j fresh

(TRES)
?k receives T (v, c, a)

?k
j,!v,c,a∪c
−−−−−−→ 〈stop, ∅, {j}, ∅〉

where j fresh

(NEGRES)
?k receives Neg(c, a)

?k
j,ω,c,a∪c
−−−−−−→ ⊥

where j fresh

(PARLEFTSTOP)
f

k,ω,c,a
−−−−→ ⊥

f |g
k,h(ω),c,a
−−−−−−→ 〈g, ∅, {k}, ∅〉

(PARRIGHTSTOP)
g

k,ω,c,a
−−−−→ ⊥

f |g
k,h(ω),c,a
−−−−−−→ 〈f, ∅, {k}, ∅〉

(PARLEFT)
f

k,l,c,a
−−−−→ f ′

f |g
k,l,c,a
−−−−→ f ′|g

where l 6= ω
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(PARRIGHT)
g

k,l,c,a
−−−−→ g′

f |g
k,l,c,a
−−−−→ f |g′

where l 6= ω

(SEQSTOP)
f

k,ω,c,a
−−−−→ ⊥

f >x> g
k,ω,c,a
−−−−→ ⊥

(SEQN)
f

k,n,c,a
−−−−→ f ′

f >x> g
k,n,c,a
−−−−→ f ′ >x> g

where n 6= ω

(SEQV)
f

k,!v,c,a
−−−−−→ f ′

f >x> g
k,h(!v),c,a
−−−−−−−→ (f ′ >x> g)|〈[v/x]g, {k}, ∅, ∅〉

(PRUNESTOP)
g

k,ω,c,a
−−−−→ ⊥

f <x< g
k,h(ω),c,a
−−−−−−→ 〈[〈stop, {k}, ∅, ∅〉/x]f, ∅, {k}, ∅〉

(PRUNELEFT)
f

k,l,c,a
−−−−→ f ′

f <x< g
k,l,c,a
−−−−→ f ′ <x< g

where l 6= ω

(PRUNEN)
g

k,n,c,a
−−−−→ g′

f <x< g
k,n,c,a
−−−−→ f <x< 〈g′, ∅, ∅, {k}〉

where n 6= ω

(PRUNEV)
g

k,!v,c,a
−−−−−→ g′

f <x< g
k,h(!v),c,a
−−−−−−−→ 〈[〈v, {k}, ∅, ∅〉/x]f, ∅, {k}, ∅〉

(OTHERSTOP)
f

k,ω,c,a
−−−−→ ⊥

f ; g
k,h(ω),c,a
−−−−−−→ 〈g, {k}, ∅, ∅〉

(OTHERN)
f

k,n,c,a
−−−−→ f ′

f ; g
k,n,c,a
−−−−→ f ′; g

(OTHERV)
f

k,!v,c,a
−−−−−→ f ′

f ; g
k,!v,c,a
−−−−−→ f ′

(CAUSALSTOP)
f

k,ω,c,a
−−−−→ ⊥

〈f, cl, cω, av〉
k,ω,c∪cl∪cω,a∪cl∪cω
−−−−−−−−−−−−−−→ ⊥

(CAUSALN)
f

k,n,c,a
−−−−→ f ′

〈f, cl, cω, av〉
k,n,c∪cl,a∪cl−−−−−−−−−→ 〈f ′, cl, cω, av〉

where n 6= ω

(CAUSALV)
f

k,!v,c,a
−−−−−→ f ′

〈f, cl, cω, av〉
k,!v,c∪cl,a∪cl∪av
−−−−−−−−−−−−→ 〈f ′, cl, cω, av〉

2 Concurrent executions

In all the remaining, we fix f0 to be an orc program.

Definition 1 (Labelled asymmetric event structure). A labelled asymmetric event structure is a tuple
(E,L,≤,ր,Λ) where

• E is a set of events,

• L is a set of labels,

• ≤, the causality is a partial order on E,
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• ր, the weak causality is a binary relation on E,

• Λ : E 7→ L is the labelling function

• each event e ∈ E has a finite causal history [e] = {e′ ∈ E|e′ ≤ e},

• for all events e < e′ ∈ E, e ր e′, where < is the irreflexive restriction of ≤,

• for all e ∈ E, ր ∩[e]2 is acyclic.

If (E,L,≤,ր,Λ) is an asymmetric event structure, for e, e′ ∈ E, we say that:

• e is prehempted by e′, denoted e e′, if e ր e′ and e 6≤ e′,

• e and e′ are concurrent, denoted e||e′, if ¬e ր e′ and ¬e′ ր e.

We also define an induced conflict relation #a as the smallest set of finite parts of E such that, for E′ ⊂ E and
e0, e1, ..., en ∈ E,

• if e0 ր e1 ր · · · ր en ր e0 then {e0, e1, · · · , en} ∈ #a

• if E′ ∪ {e0} ∈ #a and e0 ≤ e1 then E′ ∪ {e1} ∈ #a.

Definition 2 (Linearization). Let (E,L,≤,ր,Λ) be a labelled asymmetric event system. A finite lineariza-
tion of (E,L,≤,ր,Λ) is a word w = Λ(e0)...Λ(en) where the ei ∈ E are pairwise distincts such that:

• it is left-closed for causality, ie ∀e ∈ E,∀e′ ∈ {e0, ..., en}, e ≤ e′ ⇒ e ∈ {e0, ..., en},

• the weak causality is respected, ie ∀ei, ej ∈ {e0, ..., en}, ei ր ej ⇒ i < j

We denote Lin(E, L,≤,ր,Λ) as the set of all the linearizations of (E,L,≤,ր,Λ).

Definition 3 (Event). The transitions of the instrumented semantics are labelled by tuples e = (k, l, c, a, b)
where k is the identifier of the transition taken in a countable set K, l ∈ L is a label of the original semantics
and c, a and b are finite sets of identifiers.

E = K × L× 2K
fin × 2K

fin × 2K
fin is the set of all the events.

We introduce the notations ek = k, el = l, ec = c, ea = a and eb = b.

Definition 4 (Sequential execution). A sequential execution is a sequence of labels given by the instru-
mented semantics. More formally, an execution is a sequence e1...en such that there is f1...fn such that

f0
e1

−→ f1
e2

−→ ...
en

−−→ fn.

Definition 5 (Concurrent execution). We considere a sequential execution e0...en. We define its concurrent
execution as the triple (E,≤,ր) where:

• E = {e0, ..., en},

• ≤E is the transitive and reflexive closure of {(e, e′) ∈ E2|ek ∈ e′c},

• րE is the transitive closure of {(e, e′) ∈ E2|ek ∈ e′a}.

Property 1. A concurrent execution (E,≤,ր) is an asymmetric event structure.

Proof. Let e0...en be a sequential execution and ei 7→ ej denote the fact that i ≤ j. Let (E,≤,ր) be the
sequential execution obtained from it.

Let us first remark that in all the rules, the c or a part of a label is created as a union of the same
parts in the premise and some arguments of the 〈f, cl, cw , av〉 construction. As f0 is not instrumented,
this construction is only built with the identifier of the the rule that made it up, or left unchanged, so c
and a contain only identifiers of previous steps. Moreover, anything that is added into c is also added
into a. It remains true for the transitive closures, so <⊂ր⊂7→.

It follows that ≤ is antisymmetric. As it is also reflexive and transitive by construction, it is a partial
order. Moreover, if e′ ≤ e, then e′ 7→ e. As there are a finite such e′, [e] is finite.

At last, ր is also a sub-relation of 7→, which is acyclic, so ր is acyclic and ր[e] is acyclic for all e.
Finally, (E,≤,ր) is an asymmetric event structure.

Remark 1. The fact that ր is acyclic means that we will never detect conflicts, i.e #a = ∅. This is due to
the fact that we only considere one sequential execution of the program, so all the events we considere occure
together. For exemple, the program x <x< 1|2, can generate two concurrent executions, one containing the
publication !1 and one containing !2. As they are not in the same execution, they cannot be in conflict.
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3 Instrumentation

Remark 2. We omit the proofs for the external site calls because it is missing formalisation.
It is actually much more complicated if we want to deal with sites properly, because an expression may not

allow the same transitions depending on an unspecified context. In other words, the semantics does not define a
transitions system.

In particular, lemmas 4 and ?? are not sufficient to prove the theorem. Considere the expression

write(0); (read() <x< (write(1)|1)).

The second call to write is prehempted by the internal publication of 1, but after this publication, the program
is read(). However, the next transition can be !0 or !1 depending on what happened before.

Property 2 (Conformity to the original semantics). There is a sequential execution e1...en in the instru-
mented semantics if and only if e1l ...e

n
l is an execution in the original semantics.

Proof. For an instrumented orc program F , we define JF K as the same expression in which the angle
brackets are removed, i.e :

J〈f, cl, cω, av〉K = JfK
Jdef y(x) = fK = def y(x) = JfK

JpK = p

Jp(q)K = JpK(JqK)
J?kK = ?k

Jf |gK = JfK|JgK
Jf >x> gK = JfK >x> JgK
Jf <x< gK = JfK <x< JgK

Jf ; gK = JfK; JgK
JD#fK = JDK#JfK

J⊥K = ⊥.

One step. Let F be an instrumented program. We show that there is an instrumented program

F ′ and an event e such that F
e
−→ F ′ if and only if JF K

el−→ JF ′K. We show the implication and its
converse by induction on the derivation trees.

Implication. Suppose F
e
−→ F ′.

If the step was defined by an axiom, then an axiom of the same name exists in the original

semantics and its application is JF K
el−→ JF ′K. For example, if the rule is PUBLISH, the step is

v
k:!v,∅,∅
−−−−−→ 〈stop, ∅, {k}〉 and v

!v
−→ stop is a valid step in the original semantics.

Otherwise, if F is not of the form 〈f, cl, cω, av〉, the step was generated by a rule with a unique

premise f
e′

−→ f ′. By induction, JfK
e′l−→ Jf ′K is a valid step in the original semantics, so the rule with

the same name can be applied in the original semantics, and JF K
el−→ JF ′K.

The last case is if F = 〈f, cl, cω, av〉, so the rule is one of CAUSALSTOP, CAUSALN or CAUSALV. As

above, the premise corresponds to a valid step JfK
e′l−→ Jf ′K in the original semantics. As JF K = JfK,

JF ′K = Jf ′K and el = e′l, we have JF K
el−→ JF ′K.

Converse. Suppose JF K
l
−→ f ′.

There is a finite m ∈ N such that F = 〈〈...〈f, cml , cmω 〉...〉, c1l , c
1
ω〉 where f is not of the form 〈g, cl, cω〉.

Moreover, JfK = JF K
l
−→ f ′.

We now considere the step JfK
l
−→ f ′. If it was generated by an axiom, then we can apply the axiom

with the same name applies on f to get f
e
−→ F ′ with el = l and JF ′K = f ′.

Otherwise, the rule used for the step has a unique premise g
l′

−→ g′. Moreover, the left hand side of

the premise of the rule with the same name is G with JGK = g
l′

−→ g′. By induction, there are e′ and G′

with e′l = l′ and Jg′K = g′ such that G
e′

−→ G′, so we can apply the rule in the instrumented semantics,
which gives us the expected e and F ′.

Finally, we can apply m times the rule CAUSALSTOP, CAUSALN or CAUSALV depending on the

label, and get F
e′′

−−→ H = 〈〈...〈F ′, cml , cmω 〉...〉, c1l , c
1
ω〉, with e′′l = l and JHK = JF ′K = f ′.
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Whole execution. It remains to show the property on whole executions. We will prove not only
that the labels are the same, but also that the intermediate expressions correspond. We will prove both
the induction and its converse by induction on n, the length of the execution.

Implication. Suppose there are instrumented expressions F1, ..., Fn and events e1, ..., en such

that f0
e1

−→ F1...
en

−−→ Fn. We show by induction on n that f0 = Jf0K
e1l−→ JF1K...

enl−−→ JFnK.
It is clear for n = 0. Just notice that f0 is not instrumented, so f0 = Jf0K. Suppose the property

is true for n and f0
e1...en

−−−−→ Fn
en+1

−−−→ Fn+1. By induction, f0
e1l ...e

n
l−−−−→ JFnK and by what precedes,

JFnK
e
n+1

l−−−→ JFn+1K, so f0
e1l ...e

n+1

l−−−−−−→ JFn+1K.

Converse. Suppose there are orc expressions f1, ..., fn and labels l1, ..., ln such that f0
l1

−→

f1...
ln

−→ fn. We show by induction on n that there are instrumented expressions F1, ..., Fn and events

e1, ..., en with JFiK = fi and eil = li for all i such that f0
e1

−→ F1...
en

−−→ Fn.

It is clear for n = 0 as f0 = Jf0K. Suppose the property is true for n and f0
l1...ln+1

−−−−−−→ ln+1. By

induction, f0
e1...en

−−−−→ Fn and by what precedes, Fn
en+1

−−−→ Fn+1, so f0
e1...en+1

−−−−−−→ Fn+1 with for all i,
JFiK = fi and eil = li.

4 Correctness

Definition 6 (Conform linearization). Let (E,≤,ր) be an asymmetric event system. A linearization (E′, 7→
) is said to be conform to E if:

• E′ is left-closed for causality, ie ∀e ∈ E,∀e′ ∈ E′, e ≤ e′ ⇒ e ∈ E′,

• the weak causality is respected, ie ∀e, e′ ∈ E′, e ր e′ ⇒ e 7→ e′.

Definition 7 (Feasible linearization). Let (E,≤,ր) be an asymmetric event system.
Let E be a concurrent execution and (E′, 7→) be a linearization of E.
E′ is not left-closed regarding to weak causality, in the sens that there can be e ∈ E \ E′ and e′ ∈ E′

such that e ր e′. We introduce πa
E′ as the projection that remove the weak causes of events that are not in E′:

πa
E′(k, l, c, a) = (k, l, c, {k′ ∈ a|∃e′ ∈ E′, e′k = k′}).
(E′, 7→) is said to be feasible if there is a sequential execution πa

E′(e0)...πa
E′(en) such that E′ =

{e0, ..., en} with e0 7→ ... 7→ en.

We will now prove that the linearisations of E that are conform to E are exactly those that are
feasible. We need a few other definitions and lemma in order to prove this theorem (theorem 1).

Definition 8 (Equivalence of programs). Let F and F ′ be two instrumented orc programs. They are equiv-
alent, denoted F ≡ F ′, if the have the same sequential executions regardless the values of the variables, ie for all

x1, ..., xm and f1, ..., fm, there is F1, ..., Fn and e1, ...en such that [f1/x1]...[fm/xm]F
e1−→ F1...

en−−→ Fn if

and only if there is F ′
1, ..., F

′
n such that [f1/x1]...[fm/xm]F ′ e1−→ F ′

1...
en−−→ F ′

n.

Lemma 1. We prove some properties on the equivalence relation that will be usefull later:

• for all programs f, g, h, f |g ≡ g|f and (f |g)|h ≡ f |(g|h)

• for all program f and all sets of identifiers cl, c
′
l, cω, c

′
ω, av, a

′
v , 〈〈f, c′l, c

′
ω, a

′
v〉, cl, cω, av〉 ≡

〈〈f, cl, cω, av〉, c
′
l, c

′
ω, a

′
v〉

• if f ≡ f ′ and g are instrumented orc programs, then f |g ≡ f ′|g, f >x> g ≡ f ′ >x> g, f <x< g ≡
f ′ <x< g and f ; g ≡ f ′; g

Proof. Let x1, ..., xm and f1, ..., fm be variables and programs. For an orc program f , let []f denote
[f1/x1]...[fm/xm]F .

Let F, F ′ be two instrumented orc programs, and let Pn(F, F
′) denote, for all n, that there are n

labels e1, ..., en ∈ E and n instrumented orc programs F1, ..., Fn such that []F
e1−→ F1

e2−→ ...
en−−→ Fn if

and only if there are F ′
1, ..., F

′
n such that []F ′ e1−→ F ′

1
e2−→ ...

en−−→ F ′
n.

For all F, F ′, P0(F, F
′) is true.

Suppose, for all f and g, Pn(f |g, g|f) for a given n ≥ 0. Let f, g be two instrumented orc programs

such that [](f |g) = []f |[]g
e
−→ F ′. Only four rules are able to generate this step
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PARLEFT we have []f
e
−→ f ′ and []f |[]g

e
−→ f ′|[]g. So by PARRIGHT, []g|[]f

e
−→ []g|f ′. As Pn(f

′|g, f |g′),
we have Pn+1(f |g, f |g).

PARLEFTSTOP we have []f
e′=(ek,ω,ec,ea)
−−−−−−−−−−→ ⊥ and []f |[]g

e
−→ 〈[]g, ∅, {ek}, ∅ = F . So by PARRIGHT-

STOP, []g|[]f
e
−→ F , and Pn+1(f |g, g|f).

PARRIGHT and PARRIGHTSTOP are symmetric.

The converse is true by symmetry
The proofs for Pn+1((f |g)|h, f |(g|h)) and Pn+1(〈〈f, c

′
l, c

′
ω, a

′
v〉, cl, cω, av〉, 〈〈f, cl, cω, av〉, c

′
l, c

′
ω, a

′
v〉,

as well as there converses are very similar, which proves the first two points.
Suppose there is an n such that for all instrumented orc programs f ≡ f ′ and g, Pn(f |g, f

′|g). Let

f ≡ f ′ and g be instrumented orc programs such that [](f |g)
e
−→ F . There are four possibilities for this

transition:

PARLEFT we have []f
e
−→ h, so []f ′ e

−→ h′ with h ≡ h′, and by PARLEFT, [](f ′|g)
e
−→ h′|[]g. As, by

induction, Pn(h|g, h
′|g), we have Pn+1(f |g, f

′|g).

PARLEFTSTOP we have []f
e′=(ek,ω,ec,ea)
−−−−−−−−−−→ ⊥, so []f ′ e′=(ek,ω,ec,ea)

−−−−−−−−−−→ ⊥, so PARLEFTSTOP gives

[](f ′|g)
e
−→ []g and Pn(h|g, h

′|g)

PARRIGHT we have []g
e
−→ g′, so by PARLEFT, [](f ′|g)

e
−→ []f ′|g′ and the end by induction.

PARRIGHTSTOP we have []g
e′

−→ ⊥, so by PARRIGHTSTOP, [](f ′|g)
e
−→ []f ′ and the end by induction.

The converse and the proofs for the sequence and otherwise are very similar. We can prove similarly
that 〈f, cl, cω, av〉 ≡ 〈f ′, cl, cω, av〉.

For f < x < g ≡ f ′ < x < g, the arguments are the same for rules PRUNEN and

PRUNELEFT. For rule PRUNEV, we have []g
e′

−→ g′, so by rule PRUNEV, [](f ′ < x < g)
e
−→

〈[〈v, {ek}, ∅, ∅〉][]f
′, ∅, {ek}, ∅〉. We have [〈v, {ek}, ∅, ∅〉][]f

′ ≡ [〈v, {ek}, ∅, ∅〉][]f by definition of the
equivalence, so 〈[〈v, {ek}, ∅, ∅〉][]f

′, ∅, {ek}, ∅〉 ≡ 〈[〈v, {ek}, ∅, ∅〉][]f, ∅, {ek}, ∅〉, and Pn+1(f < x <
g, f ′ <x< g). It is similar for rule PRUNESTOP.

Lemma 2. For all instrumented Orc programs F, F ′, F ′′ and for all events A = (k, !v, c, a) and B =

(k′, ω, c′, a′) such that F
A
−→ F ′ B

−→ F ′′, we have A ≤ B.

Proof. We show this lemma by induction on the syntax of F . For the base cases, the only possibilities
to publish a value are the rules PUBLISH, DEFDECLARE, NTRES and TRES. All this rules instrument F ′

with {k}, so any further step that produces ω must be generated by CAUSALSTOP, so we have A ≤ B.
Here is the list of the rules that can publish a value, and thus stand for A, for the induction cases:

PARLEFT, PARRIGHT: the following step can only be produced by PARLEFT, PARRIGHT, PARLEFT-
STOP or PARRIGHTSTOP, none of which being able to produce B.

PRUNELEFT: the following step can only be produced by PRUNESTOP, PRUNELEFT, PRUNEN or
PRUNEV, none of which being able to produce B.

OTHERV: if F = f ; g
A
−→ F ′ was generated by OTHERV, then the premise f

A
−→ F ′ is true, and we

have f
A
−→ F ′ B

−→ F ′′. By induction, we have A ≤ B.

CAUSAL: the last possibility is F = 〈f, cl, cω〉
A
−→ F ′ = 〈f ′, cl, cω〉

B
−→ F ′′ = 〈f ′′, cl, cω〉. The premises

give f
A′=(k,!v,c0,a)
−−−−−−−−−→ f ′ B′=(k′,ω,c′0,a

′)
−−−−−−−−−−→ f ′′ with c = c0 ∪ cl and c′ = c′0 ∪ cl ∪ cω . By induction,

we have A′ ≤ B′, so A ≤ B.

Lemma 3. Let F, F ′ be instrumented program, p be the parameter v or stop, x be a variable, c be a set of
identifiers and e be an event. For a program f , let f [p] = [〈p, c, ∅, ∅〉/x]f .

• If F
e
−→ F ′ then F [p]

e
−→ F ′[p].

• If F [p]
e
−→ F ′[p] then F

e
−→ F ′ or c ⊂ ec.

Proof. Suppose F
e
−→ F ′. We will prove by induction on the derivation tree of the step that F [p]

e
−→

F ′[p].

PUBLISH, STOP, NTRES, TRES, NEGRES: F = F [p], so the property is true.
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DEFDECLARE: F = D#f and [D/y]f
e
−→ f ′, so by induction ([D/y]f)[p]

e
−→ f ′[p]. As y is bound in f ,

we have [D[p]/y]f [p] = ([D/y]f)[p], so F [p]
e
−→ 〈f ′[p], {ek}, ∅, ∅〉 = F ′[p].

other cases: In all the other cases, it is easy to see by induction that the same step can be achieved.

Conversely, suppose F
e
−→ F ′. We will prove by induction on the derivation tree of the step that

F [p]
e
−→ F ′[p].

Lemma 4. Let F, F ′ and F ′′ be instrumented orc programs and e||e′ be two events of the instrumented seman-

tics such that F
e
−→ F ′ e′

−→ F ′′. Then there are two instrumented program G,G′ such that F
e′

−→ G
e
−→ G′ ≡

F ′′.

Proof. Let F, F ′ and F ′′ be instrumented orc programs and e||e′ be two events of the instrumented

semantics such that F
e
−→ F ′ e′

−→ F ′′.
We will prove this lemma by induction on F . The principle of this proof is to enumerate all the

possibilities for the pair of rules that where able to generate e and e′. As this is an inductive proof,
we should differentiate the base cases and the induction cases. However, by sake of clarity, we give a
unique list of possibilities. The first-level items are for rules that can generate e and the second-level
items are related to e′. Of course, we never use the induction hypothesis on case bases.

PUBLISH, DEFDECLARE, INTCALL, EXTCALL, OTHERSTOP: the following step must be CAUSALN
or CAUSALSTOP, but then e ≤ e′, which is not possible.

STOP, STOPCALL, EXTSTOP, SEQSTOP, CAUSALSTOP: there is no possible following step either.

PARLEFTSTOP (resp. PARRIGHTSTOP): F = f |g (resp. F = g|f ), F ′ = 〈g, ∅, {k}, ∅〉 and el = h(ω).

As ¬e ր e′, e′ can only be an application of rule CAUSALN, with premise g
e′=(k′,n′,c′,a′)
−−−−−−−−−−→ g′

where n′ 6= ω. Thus, rule PARRIGHT (resp. PARLEFT) can be applied, giving F
e′

−→ G = f |g′

(resp g′|f ), then rule PARLEFTSTOP (resp. PARRIGHTSTOP), giving G
e
−→ F ′′ = 〈g′, ∅, {k}, ∅〉.

PARLEFT (the same arguments hold for PARRIGHT): F = f |g
e
−→ f ′|g = F ′ with el 6= ω. The second

step can be generated by four different rules:

PARRIGHT: we have g
e′

−→ g′, so F = f |g
e′

−→ f |g′
e
−→ F ′′ = f ′|g′.

PARLEFT: we have f
e
−→ f ′ e′

−→ f ′′ with e||e′, so by induction, there are h, h′ ≡ f ′′ such that

f
e′

−→ h
e
−→ h′. We can apply PARLEFT twice to obtain F = f |g

e′

−→ h|g
e
−→ h′|g ≡ F ′′.

PARRIGHTSTOP: we have g
e′

−→ ⊥ and e′l = ω, so by PARRIGHTSTOP and PARLEFT,F = f |g
e′

−→

〈f, ∅, {e′k}, ∅〉
e
−→ F ′′ = 〈f ′, ∅, {e′k}, ∅〉.

PARLEFTSTOP: we have f
e
−→ f ′ e′′=(e′k,ω,e′c,e

′

a)−−−−−−−−−−→ ⊥ with e||e′′, so by induction, there is h such

that f
e′′

−−→ h
e
−→ ⊥. As e′′l = ω, h = ⊥, which is not possible.

SEQN: F = f >x> g
e
−→ f ′ >x> g = F ′. The second step can be generated by three different rules:

SEQSTOP: we have f
e
−→ f ′ e′

−→ ⊥ with e′l = ω. As above, f
e′

−→ ⊥, which is impossible.

SEQN: we have f
e
−→ f ′ e′

−→ f ′′ with e||e′, so by induction, there are h, h′ ≡ f ′′ such that f
e′

−→

h
e
−→ h′. We can apply SEQN twice to obtain F = f >x> g

e′

−→ h >x> g
e
−→ h′ >x> g ≡ F ′′.

SEQV: we have f
e
−→ f ′ e′′=(e′k,!v,e

′

c,e
′

a)−−−−−−−−−−−→ f ′′ with e||e′′ and e′l = h(v). By induction, there are

h, h′ ≡ f ′′ such that f
e′′

−−→ h
e
−→ h′. We can apply SEQV and then PARRIGHT and SEQN, so

that F = f >x> g
e′

−→ h >x> g|〈[v/x]g, {k}, ∅, ∅〉
e
−→ h′ >x> g|〈[v/x]g, {k}, ∅, ∅〉 ≡ F ′′.

SEQV: F = f >x> g
e
−→ f ′ >x> g|〈[v/x]g, {ek}, ∅, ∅〉 = F ′. As e 6≤ e′, it is not possible to generate

the second step from the right hand side of F ′, so there are four possibilities:

PARLEFTSTOP: e′l = h(ω), so the premise is f ′ >x> g
e′′=(e′k,ω,e′c,e

′

a)−−−−−−−−−−→ ⊥. As above, it is not
compatible with the fact that e||e′.

PARLEFT and SEQSTOP: we have e′l = ω, which is incompatible with the fact that e||e′.

PARLEFT and SEQN: we have f
e′′=(ek,!v,ec,ea)
−−−−−−−−−−−→ f ′ e′

−→ f ′′ with e′′|e′. By induction, there are

h, h′ ≡ f ′′ such that f
e′

−→ h
e
−→ h′, so we can apply SEQN and then SEQV, so F = f >x>

g
e′

−→ h >x> g
x
−→ h′ >x> g|〈[v/x]g, {k}, ∅, ∅〉 ≡ F ′′.
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PARLEFT and SEQV: we have f
e′′=(ek,!v,ec,ea)
−−−−−−−−−−−→ f ′ e′′′=(e′k,!w,e′c,e

′

a)
−−−−−−−−−−−→ f ′′. By induction, there are

h, h′ ≡ f ′′ such that f
e′′′

−−→ h
e′′

−−→ h′. We can apply the same rules, so F = f >x> g
e′

−→ h >

x> g|〈[w/x]g, {e′k}, ∅, ∅〉
e
−→ h′ >x> (g|〈[v/x]g, {ek}, ∅, ∅〉)|〈[w/x]g, {e′k}, ∅, ∅〉 ≡ F ′′.

PRUNELEFT: F = f <x< g
e
−→ f ′ <x< g = F ′. There are four possibilities for the second step:

PRUNESTOP: we have g
e′′=(e′k,ω,e′c,e

′

a)−−−−−−−−−−→ ⊥, so we can apply PRUNESTOP on F , which gives

F = f <x< g
e′

−→ 〈[〈stop, ∅, c, ∅〉/x]f, ∅, {k}, ∅〉 = G. The premise of the first step is f
e
−→ f ′.

By lemma 3, G
e
−→ F ′′.

PRUNELEFT: we have f
e
−→ f ′ e′

−→ f ′′ and e||e′, so by induction there are h, h′ ≡ f ′′ such that

f
e′

−→ h
e
−→ h′. We can apply PRUNELEFT twice, so that F = f <x< g

e′

−→ h <x< g
e
−→ h′ <

x< g ≡ F ′′.

PRUNEN: we have f
e
−→ f ′ and g

e′

−→ g′. We can apply PRUNEN and then PRUNELEFT, so

F = f <x< g
e′

−→ f <x< 〈g′, ∅, ∅, {e′k}〉
e
−→ f ′ <x< 〈g′, {e′k}, ∅, ∅〉 = F ′′.

PRUNEV: we have g
e′′=(e′k,!v,e

′

c,e
′

a)
−−−−−−−−−−−→ g′, so we can apply PRUNEV on F , which gives F = f <

x< g
e′

−→ 〈[〈v, {e′k}, ∅, ∅〉/x]f, ∅, {e
′
k}, ∅〉 = G. The premise of the first step is f

e
−→ f ′. By

lemma 3, G
e
−→ F ′′.

PRUNEN: F = f <x< g
e
−→ f <x< 〈g′, ∅, ∅, {ek}〉 = F ′. As e||e′, PRUNEV is impossible for the next

step, that has to be:

PRUNESTOP: we have g
e
−→ g′

e′′=(e′k,ω,e′c,e
′

a)
−−−−−−−−−−→ g′′. It is impossible as e||e′.

PRUNELEFT: we have f
e′

−→ f ′. We can apply PRUNELEFT and then PRUNEN, so F = f <x<

g
e′

−→ f ′ <x< g
e
−→ f ′ <x< 〈g′, {ek}, ∅, ∅〉 = F ′′.

PRUNEN and CAUSALN: we have g
e
−→ g′

e′

−→ g′′. By induction, there are h, h′ ≡ g′′ such that

g
e′

−→ h
e
−→ h′. We can apply PRUNEN followed by PRUNEN and CAUSALN, so F = f <x<

g
e′

−→ f <x< 〈h, {e′k}, ∅, ∅〉
e
−→ f ′ <x< 〈〈h′, {e′k}, ∅, ∅〉, {ek}, ∅, ∅〉 ≡ F ′′.

PRUNEV (the same arguments hold for PRUNESTOP): F = f < x < g
e
−→

〈[〈v, {ek}, ∅, ∅〉/x]f, ∅, {ek}, ∅〉 = F ′. As e||e′, the next step is given by either CAUSALN

or causal CAUSALV, and the premise is [〈v, {ek}, ∅, ∅〉/x]f
e′

−→ f ′, as cl = av = ∅. By lemma 3, as

e||e′, f
e′

−→ f ′′, with [〈v, {ek}, ∅, ∅〉/x]f
′′ = f ′. We can apply PRUNELEFT and then PRUNEV, so

F = f <x< g
e′

−→ f ′ <x< g
e
−→ 〈[〈v, {ek}, ∅, ∅〉/x]f

′, ∅, {ek}, ∅〉 = F ′.

OTHERN: F = f ; g
e
−→ f ′; g. The next step can be generated by three rules :

OTHERN: we have f
e
−→ f ′ e′

−→ f ′′, with e||e′. By induction, there are h, h′ ≡ f ′′ such that

f
e′

−→ h
e
−→ h′. We can apply OTHERN twice, so that F = f ; g

e′

−→ h; g
e
−→ h′; g ≡ F ′′.

OTHERV: we have f
e
−→ f ′ e′′=(e′k,!v,e

′

c,e
′

a)
−−−−−−−−−−−→ F ′′, with e||e′. By induction, there are h, h′ ≡ F ′′

such that f
e′

−→ h
e
−→ h′. We can apply OTHERV on the first step, so that f

e′

−→ h
e
−→ h′ ≡ F ′′.

OTHERSTOP: f
e
−→ f ′ e′

−→ ⊥. Once again, it is not possible as e||e′.

OTHERV: F = f ; g. As e||e′, by lemma 2, e′l 6= ω. It leaves a lot of possibilities for the second rule,
that we will reduce to two cases :

• e′l =!w: we have f
e
−→ f ′ e′

−→ f ′′. By induction, there are h, h′ ≡ F ′′ such that f
e′

−→ h
e
−→ h′.

We can apply OTHERV on the first step, and f ; g
e′

−→ h
e
−→ h′ ≡ F ′′.

• e′l = n: we have f
e
−→ f ′ e′

−→ f ′′. By induction, there are h, h′ ≡ F ′′ such that f
e′

−→ h
e
−→ h′.

We can apply OTHERN on the first step, and OTHERV on the second step, so f ; g
e′

−→ h; g
e
−→

h′ ≡ F ′′.

CAUSALN or CAUSALV: F = 〈f, cl, cω〉
e
−→ 〈f ′, cl, cω〉 = F ′. The next step cannot be CAUSALSTOP

because e||e′, so it is generated by CAUSALN or CAUSALV. We have f
e
−→ f ′ e′

−→ f ′′, so by

induction there are h, h′ ≡ f ′′ such that f
e′

−→ h
e
−→ h′. We can apply the same rulesin the reverse

order, so F = 〈f, cl, cω〉
e′

−→ 〈h, cl, cω〉
e
−→ 〈h′, cl, cω〉 ≡ F ′′.
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Definition 9.

πk(〈f, cl, cω, av〉) = πk(f) if cl ∪ cω ∪ av = {k}
πk(〈f, cl, cω, av〉) = 〈πk(f), cl \ {k}, cω \ {k}, av \ {k}〉 otherwise
πk(def y(x) = f) = def y(x) = πk(f)

πk(p) = p

πk(p(q)) = πk(p)(πk(q))
πk(?k

′) = ?k′

πk(f |g) = πk(f)|πk(g)
πk(f >x> g) = πk(f) >x> πk(g)
πk(f <x< g) = πk(f) <x< πk(g)

πk(f ; g) = πk(f);πk(g)
πk(D#f) = πk(D)#πk(f)

πk(⊥) = ⊥.

Lemma 5. Let F, F ′ and F ′′ be instrumented orc programs and e  e′ be two events of the instrumented

semantics such that F
e
−→ F ′ e′

−→ F ′′. Then F
π(e′)=(e′k,e

′

l,e
′

c,e
′

a\{ek})
−−−−−−−−−−−−−−−−→ πek (F

′′).

Proof. Let F, F ′ and F ′′ be instrumented orc programs and e e′ be two events such that F
e
−→ F ′ e′

−→
F ′′.

Let e′
0
, ..., e′

n
be the sequence of events that appear in the derivation tree that produced e′, such

that e′
0

is produced by an axiom, for all i < n, e′
i

and e′
i+1

are the labels of the premise and the
conclusion of a rule, and e′

n
= e′.

Let ui = e′
i
a \ e′

i
c for all i. The sequence (ui)i<n is growing for set inclusion, u0 = ∅ and ek ∈ un as

e e′. There is a unique j such that for all i < j, ek 6∈ ui and for all i ≥ j, ek ∈ ui.
The only possibility to add an identifier in a and not in c is to use the rule CAUSALV, so it

was instanciated to build e′
j
, and there are f, f ′ and cl, c

′ω, av such that ek ∈ av, f
e′

j−1

−−−−→ f ′ and

〈f, cl, cω, av〉
e′

j

−−→ 〈f ′, cl, cω, av〉.
As ek ∈ av , and f0 is not instrumented, 〈f, cl, cω, av〉 was built at step e with rule PRUNEN. There

is a subterm H = 〈h, ∅, ∅, {ek}〉 in F ′ that is created during the first step.
We know that the rule PRUNEN is called in the derivation tree of the first step, and that it produces

a label n. All the rules that have a label n 6= ω in premise just copy it in the conclusion, so el = n and
we will only considere the rules that have a label n in there premises.

Similarly, the rule PRUNEV is called in the derivation tree of the first step, and it produces a label
h(!v). For the same reason, apart from PRUNEV, we only considere the rules that have a label h(!v) in
there premises for the second step.

The cases are, for e. For many rules, more than one argument holds, but we just give one of them:

DEFDECLARE : it is not possible as e 6≤ e′.

PARLEFT (the same arguments hold for PARRIGHT, SEQN, PRUNELEFT, OTHERN and CAUSALN):

F = f |g
e
−→ f ′|g = F ′ and f

e
−→ f ′. H is contained in f ′, so the second step must be performed by

PARLEFT (because PARLEFTSTOP has ω in its premise) with the premise f ′ e′

−→ f ′′. By induction,

f
π(e′)
−−−→ π(f ′′), so by PARLEFT, F

π(e′)
−−−→ π(F ′′).

PRUNEN: F = f <x< g
e
−→ f <x< 〈g′, ∅, ∅, {ek} = F ′ and g

e
−→ g′. A subterm corresponding to H

is build in the conclusion of the rule, but it does not implie that it CAUSALV was applied on it
in the second step, as g′ was also build in the first step. Two choices are possible for the second
step:

PRUNEN: gives g′
e′

−→ g′′, so by induction, g
π(e′)
−−−→ g′′, and by rule PRUNEN, F = f < x<

g
π(e′)
−−−→ f <x< 〈g′, ∅, ∅, {e′k}〉 = π(F ′′)

PRUNEN: we have g
e
−→ g′

e′′=(e′k,!v,e
′

c,e
′

a\{ek})−−−−−−−−−−−−−−−→ g′′, so by induction g
π(e′′)
−−−−→ pi(g′′). We can

apply PRUNEV, so g
π(e′)=(e′k,e

′

l,e
′

c,e
′

a\{ek})
−−−−−−−−−−−−−−−−→ pi(g′′).

Lemma 6. If F
e
−→ F ′ and k 6∈ ea, then πk(F )

e
−→ πk(F

′).
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Suppose F
e
−→ F ′, k 6= ek and k 6∈ ea, then πk(F )

e
−→ πk(F

′).

Proof. Suppose that F
e
−→ F ′, k 6= ek and k 6∈ ea.

Let us considere the rule that was used to generate e:

PUBLISH (the same argument hold for STOP, NTRES, TRES and NEGRES) : we have F = v =

πk(F ) and F ′ = 〈stop, ∅, {ek}, ∅〉 = πk(F
′), so πk(F )

e
−→ πk(F

′).

STOPCALL, INTCALL, EXTCALL, EXTSTOP : If F 6= πk(F ), we would have k ∈ ea. So F = πk(F ),
F ′ = πk(F

′) and πk(F )
e
−→ πk(F

′).

Theorem 1. Let (E,≤,ր) be a concurrent execution and (E1, 7→1) be a linearization of E. Then (E1, 7→1) is
feasible if and only if it is conform to E.

Proof. Let e0...en be a sequential execution and let (E,≤,ր) be the concurrent execution obtained
from it. Let (E1, 7→1) be a linearization of E.

Implication. Suppose (E1, 7→1) is feasible. There is a sequential execution πa
E1

(e0)...π
a
E1

(en)
such that E1 = {e0, ..., en} and e0 7→1 ... 7→1 en. Let (Eπ,≤π,րπ) be the concurrent execution
associated with πa

E1
(e0)...π

a
E1

(en).
Let πa

E1
(e) 7→π πa

E1
(e′) denote e 7→1 e′. As above, (Eπ, 7→π) is conform to Eπ . We have e ∈ E1

if and oonly if πa
E1

(e) ∈ Eπ , e ≤ e′ if and only if πa
E1

(e) ≤π πa
E1

(e′) and e ր e′ if and only if
πa
E1

(e) րπ πa
E1

(e′). So (E1, 7→1) is conform to E.

Converse. Suppose (E1, 7→1) is conform to E.
Let W be the set of linearizations (E2, 7→2) of E that are conform to E and feasible such that E1 ⊂

E2. For (E2, 7→2) ∈ W , we pose

L(E2, 7→2) =
∑

e∈E2\E1

|{e′ ∈ E2, e 7→2 e′}|+ |{(e, e′) ∈ E2
1 |e 7→1 e′ ∧ e′ 7→2 e}|.

Let ei 7→0 ej denote the fact that i ≤ j. The first part of the proof of property 1 actually claims that
(E, 7→0) is conform to E. It is also feasible by construction, and it contains E1, so W is not empty, and
minw∈W L(w) ≥ 0.

Let (E2, 7→2) ∈ W be a linearization such that L(E2, 7→2) = minw∈W L(w). Suppose (for contra-
diction) that L(E2, 7→2) > 0.

Case 1. Suppose e = max 7→2
E2 6∈ E1. Let us considere E3 = E2 \ {e} and 7→3= 7→2 ∩E2

3 . As
(E2, 7→2) is conform to E, E3 is left-closed for causality and 7→3, that coincides with 7→2 on E3, is
compatible with the weak-causality, so (E3, 7→3) is conform to E. As e′ 6∈ E1, E1 ⊂ E3.

(E2, 7→2) is feasible, so there is a sequential execution f0
πa
E2

(e12)

−−−−−→ F1...Fn−2

πa
E2

(en−1

2
)

−−−−−−−→

Fn−1

πa
E2

(e)

−−−−→ Fn is the instrumented semantics. As (E2, 7→2) is conform, e is also maximal for weak

causality, and πa
E3

(ei) = πa
E2

(ei) for all i, so f0
πa
E3

(e12)

−−−−−→ F1...Fn−2

πa
E3

(en−1

2
)

−−−−−−−→ Fn−1 is a sequential
execution, and (E3, 7→3) is feasible.

(E3, 7→3) ∈ W , but L(E3, 7→3) = L(E2, 7→2)− 1− |E3 \E1| < L(E2, 7→2), which is absurd.

Case 2. Suppose there is e ∈ E2 \ E1 that has a successor e′ according to 7→2, with e||e′.
Let E3 = E2 and 7→3= 7→2 \{(e, e′)} ∪ {(e′, e)}. (E3, 7→3) is still conform to E and E1 ⊂ E3. As

(E2, 7→2) is feasible, there is a sequence f0
πa
E2

(e12)

−−−−−→ ...
πa
E2

(ek2 )

−−−−−→ F
πa
E2

(e)

−−−−→ F ′
πa
E2

(e′)

−−−−−→ F ′′
πa
E2

(ek+3

2
)

−−−−−−−→

...
πa
E2

(en2 )

−−−−−→ F ′′′ in the concurrent semantics. By lemma 4, there is G,G′ such that G′ ≡ F ′′ and

f0
πa
E2

(e12)

−−−−−→ ...
πa
E2

(ek2 )

−−−−−→ F
πa
E2

(e′)

−−−−−→ G
πa
E2

(e)

−−−−→ G′
πa
E2

(ek+3
2

)

−−−−−−−→ ...
πa
E2

(en2 )

−−−−−→ F ′′′ also defines a valid
sequential execution, and πa

E2
= πa

E3
so (E3, 7→3) is feasible.

However, L(E3, 7→3) = L(E2, 7→2)− 1 < L(E2, 7→2), which is absurd.
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Case 3. Suppose E1 6= E2 and cases 1 and 2 do not apply. Take e ∈ E2 ⊂ E1 that is maximal for
≤ and e′ its successor for 7→2. We have e ր e′ as case 2 does not apply and e 6≤ e′ as e is maximal for
causality. So e e′.

Let us considere E3 = E2 \ {e} and 7→3= 7→2 ∩E2
3 . As (E2, 7→2) is conform to E and e is maximal,

E3 is left-closed for causality and 7→3, that coincides with 7→2 on E3, is compatible with the weak-
causality, so (E3, 7→3) is conform to E. Moreover, E1 ⊂ E3.

As (E2, 7→2) is feasible, there is a sequence f0
πa
E2

(e12)

−−−−−→ ...
πa
E2

(ek2 )

−−−−−→ F
πa
E2

(e)

−−−−→ F ′
πa
E2

(e′)

−−−−−→

F ′′
πa
E2

(ek+3

2
)

−−−−−−−→ ...
πa
E2

(en2 )

−−−−−→ F ′′′ in the concurrent semantics. By lemma ?? (certes, mais ce lemme est

faux), if e′′ = (e′k, e
′
l, e

′
c, e

′
a \ {ek}), f0

πa
E2

(e12)

−−−−−→ ...
πa
E2

(ek2 )

−−−−−→ F
πa
E2

(e′′)

−−−−−→ F ′′
πa
E2

(ek+3
2

)

−−−−−−−→ ...
πa
E2

(en2 )

−−−−−→ F ′′′

also defines a valid sequential execution. Moreover, for ei2 6∈ {e, e′}, πa
E3

(ei2) = πa
E2

(ei2), and
πa
E3

(e′) = πa
E2

(e′′), so (E3, 7→3) is feasible. and (E3, 7→3) ∈ W .
However, L(E3, 7→3) = L(E2, 7→2)− 1 < L(E2, 7→2), which is absurd.

Case 4. Otherwise, E1 = E2 and U = {(e, e′) ∈ E2
2 |e 7→2 e′ ∧ e′ 7→1 e}, the set of events that are

unordered, is not empty. For (e, e′) ∈ U , let between(e, e′) = {e′′ ∈ E2, e 7→2 e′′ 7→2 e′} and suppose
(e, e′) minimizes |between(e, e′)|. If there is e′′ ∈ between(e, e′), then either e′′ 7→1 e′ or e 7→1 e′′, so
|between(e, e′)| is not minimal. Then between(e, e′) = ∅. As (E1, 7→1) and (E2, 7→2) are both conform
to E, e||e′.

Let E3 = E2 and 7→3= 7→2 \{(e, e′)}∪{(e′, e)}. This case is similar to case 2, where we saw that we
could exchange to consecutive concurrent events. We have (E3, 7→3) ∈ W and L(E3, 7→3) = L(E2, 7→2

)− 1 < L(E2, 7→2), which is absurd.

Conclusion. All this cases are impossible, so L(E2, 7→2) = 0 If there is e ∈ E2 \ E1, then e 7→2 e
and

∑
e∈E2\E1

|{e′ ∈ E2, e 7→2 e′}| > 0, which is impossible, so E1 = E2. Moreover, 7→1= 7→2 as

|{(e, e′) ∈ E2
1 |e 7→1 e′ ∧ e′ 7→2 e}| = 0. Finally, (E2, 7→2) = (E1, 7→1), so (E1, 7→1) ∈ W and (E1, 7→1)

is feasible.
Finally, (E1, 7→1) is feasible if and only if it is conform to E.

13


