
HAL Id: hal-01101340
https://hal.science/hal-01101340v2

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proof of the Instrumented Semantics for Orc
Matthieu Perrin, Claude Jard, Achour Mostefaoui

To cite this version:
Matthieu Perrin, Claude Jard, Achour Mostefaoui. Proof of the Instrumented Semantics for Orc.
[Research Report] LINA-University of Nantes. 2015. �hal-01101340v2�

https://hal.science/hal-01101340v2
https://hal.archives-ouvertes.fr

Proof of the Instrumented Semantics for Orc

Matthieu Perrin
LINA, University of Nantes

matthieu.perrin@univ-nantes.fr

Claude Jard
LINA, University of Nantes

claude.jard@univ-nantes.fr

Achour Mostéfaoui
LINA, University of Nantes

achour.mostefaoui@univ-nantes.fr

Abstract

This report shows how the operational semantics of a language like ORC can be instrumented so
that the execution of a program produces information on the causal dependencies between events. The
concurrent semantics we obtain is based on labeled asymetric event structures. This report contains
the complete demonstration of correctness of this approach.

Key words: Preemption, Conflict, Concurrency, Orc, Semantics, Causality, Asymmetric event
structure

1 Introduction

The standard form for describing the semantics of a computer language is the structural operational
semantics (SOS) [3]. SOS specifications take the form of a set of inference rules that define the valid
transitions of a composite piece of syntax in terms of the transitions of its components. Rewriting
transforms terms by executing a rule (it may be a non-deterministic transition in case of multiple
alternatives). The successive transitions represent the program behavior. This may produce a sequence
of values, that can be brought by the labelling of rules. In this vision, the behaviors are therefore
defined sequentially, even for languages describing parallel behaviors.

This vision is consequently limited for modern languages comprising parallelism. Indeed, in these
languages, the concepts of concurrency, causality and conflict are important to explicit (for example,
to answer questions on root causes analysis, debugging&replay, race detection, QoS assessment, etc.).
This is the role of a concurrent semantics. In such semantics, behaviors are seen as partial orders
(encoding the causality between the events produced by a given program), optionally augmented by
the notion of conflict identifying non-deterministic choices that have been made (e.g. event structures
[6]).

The method used in this article is to extend the standard SOS semantics to rewrite extended expres-
sions, in which additional information has been added to compute causal and weakly-causal depen-
dencies. This information is also made visible by extending the labelling of transitions. Concurrency
is just the complement of the weakly-causal relation, and conflict is defined by cycles in this relation.

Capturing causality and concurrency by instrumenting the semantics rules is a difficult job. This
is mainly because these relationships are global and are difficult to locate on the syntactic forms. The
solution is to keep information about the causal past in a context associated with each rule being careful
to build the necessary links between different contexts during the execution of rules. The aim is that
such instrumented semantics reproduces the standard behavior of the program while calculating the
additional information needed to find concurrency, causality and conflict between events produced by
the execution.

The proposed approach is illustrated on the Orc language [2]. Orc is a novel language, formally
defined and specially adapted to program across the Web in a highly parallel and distributed context.
A first attempt of concurrent semantics based on event structures has already been published [4], but
using an ad-hoc connection of Petri net diagrams. A similar approach was used in [1] to compare Orc
with the Join calculus. Here, the approach appears to us more simple and elegant. It is especially
dynamic in the sense that it can produce online information, interesting feature in practice for many
above-mentioned applications. To our knowledge, the only attempt to use an instrumentation to track

1

causality online in a multithreaded program is [5] for the C language, but the instrumentation is made
by a program transformation, which excludes the possibility to explore further than causality.

Our contribution in this article consists in two new semantics for the Orc language. The first one is
an instrumentation of the standard semantics that preserves the behavior of Orc while tracking causal
and weakly-causal relations between the events. The second semantics, the concurrent semantics, is
an extension of the instrumented semantics that generates all possible events for an Orc expression,
so every execution represents all possible sequential executions of the program. These two semantics
are complementary, as the first one is lighter and respects the standard notion of execution, while the
second one provides more information.

The reminder of the article is organized as follows. We start with a presentation of the Orc language
in Section 2. In Section 3, we introduce the labelled asymmetric event structures, used to represent
concurrent executions. Section 4 and 5 detail our two contributions: respectively the instrumented
and the concurrent semantics. The proof of there properties are are given in Section 6. Finally, section
7 discusses how to combine the two semantics and concludes the paper.

2 The Orc Programming Language

2.1 Wide-area computing

The Orc language was initially designed to orchestrate web sites. Its underlying philosophy is that
modularity is essential to the construction of large modern programs. Such programs may be com-
posed out of several components, possibly written in a variety of languages, that cannot work together
without a conductor that orchestrates their executions. In Orc, these components, called sites, can be
any kind of externally defined service as well as encapsulations of Orc expressions. Unlike functions
in functional programming languages, Orc sites cannot return a result. Instead, they publish zero, one
or more values. Sites can be higher-ordered, so values can be sites themselves. This allows the use of
complex shared data types; each instance of which is viewed as a different site. A standard library of
sites is defined to handle many aspects of everyday programming such as complex data types features,
clocks and timers to define some synchrony in programs. How the sites interact is the heart of the Orc
language. To this end, it provides the developers with a series of control structures. Some of them, like
the conditional structure, are very classical, while others, designed to express concurrency, are more
original. These are formally defined in a mathematical abstract programming language: the Orc core
calculus, from which the full language is defined as syntactic sugar.

2.2 Core calculus

As the higher-level constructions of the language are defined from the Orc core calculus, we only
consider this well-defined calculus in the remaining of this paper. The expressions of the calculus,
grouped in the set Orcs, is defined as follows:

f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g‖f >x> g
‖f <x< g‖f ; g‖D#f‖⊥

D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x
w ∈ Response ::= NT (v)‖T (v)‖Neg
n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω

The expressions of the calculus that correspond to real Orc programs, in the set Orc, are those that
do not contain ?k and ⊥ expressions. Here are the rules of the standard semantics :

(PUBLISH)

v
!v
−→ stop

v closed

(DEFDECLARE)
[D/y]f

l
−→ f ′

D#f
l
−→ f ′

D is def y(x) = g

(STOP)
stop

ω
−→ ⊥

2

(INTCALL)

D(p)
?D
−−→ [D/y][p/x]g

D is def y(x) = g

(STOPCALL)
stop(p)

ω
−→ ⊥

(EXTCALL)

V (v)
?Vk(v)−−−−→?k

k fresh

(EXTSTOP)
V (stop)

ω
−→ ⊥

(OTHERN)
f

n
−→ f ′

f ; g
n
−→ f ′; g

(OTHERV)
f

!v
−→ f ′

f ; g
!v
−→ f ′

(OTHERSTOP)
f

ω
−→ ⊥

f ; g
h(ω)
−−−→ g

(NTRES)
?k receives NT (v)

?k
!v
−→?k

(TRES)
?k receives T (v)

?k
!v
−→ stop

(NEGRES)
?k receives Neg

?k
ω
−→ ⊥

(SEQN)
f

n
−→ f ′

f >x> g
n
−→ f ′ >x> g

(SEQV)
f

!v
−→ f ′

f >x> g
h(!v)
−−−→ (f ′ >x> g)|[v/x]g

(SEQSTOP)
f

ω
−→ ⊥

f >x> g
ω
−→ ⊥

(PARLEFT)
f

l
−→ f ′

f |g
l
−→ f ′|g

l 6= ω

(PARRIGHT)
g

l
−→ g′

f |g
l
−→ f |g′

l 6= ω

(PARSTOP)
f

ω
−→ ⊥ g

ω
−→ ⊥

f |g
ω
−→ ⊥

(PRUNEN)
g

n
−→ g′

f <x< g
n
−→ f <x< g′

(PRUNELEFT)
f

l
−→ f ′

f <x< g
l
−→ f ′ <x< g

l 6= ω

(PRUNEV)
g

!v
−→ g′

f <x< g
h(!v)
−−−→ [v/x]f

(PRUNESTOP)
g

ω
−→ ⊥

f <x< g
h(ω)
−−−→ [stop/x]f

The only values considered in the Orc core calculus are sites. They can be external, which is denoted
V in the syntax, or internally defined (D). For the sake of clarity, we consider in this work that the
sites are curryfied. An internal site can be defined as def y(x) = f#g where f is the body of the

3

site and g is the remaining of the program in which y can be used as any site. Site definitions are
recursive, which allows the same expressivity as any functional language. Both kinds of sites can
be called with their argument using the classical functional notation. However, their behaviors are
different, as we can see on the operational semantics. The main difference is that calls to external sites
are strict, i.e. their arguments have to be bounded before the site can be called, while an internal site
can be called immediately, and its arguments are evaluated lazily. When an external site is called, it
sends its responses to a placeholder ?k. A response can be either a non-terminating value NT (v) if
further responses are expected, or a terminating value T (v) if this is the last publication of the site or
Neg if the site terminates without publishing any value.

Besides sites, four combinators are provided by core calculus. The parallel composition expresses
pure concurrency. In f |g, f and g are run in parallel, their events are interleaved and the expression
stops when both f and g have terminated. As suggested by its name, the sequential operator expresses
sequentiality. In the expression f >x> g, the variable x can be used in g. Here, f is started first,
and then a new instance of g[v/x], where x is bounded to v, is launched as a consequence of each
publication of v. The third operator, called pruning, expresses preemption. In f <x< g, the variable x
can be used in f . Both f and g are started at once, but f is paused when it needs to evaluate x. When
g publishes a value, it is bounded to x in f and g is stopped. The other events that could have been
produced by g are preempted by the publication. For example, if g is supposed to publish two values
a and b, only one will be selected and published in each execution. We say that these two events are
in conflict. The last operator is called otherwise. In f ; g, f is first started alone and g is started if and
only if f stops without publishing any value.

Finally, the stop symbol can be used by the programmer exactly like a site or a variable to de-
note a terminated program. stop still produces an event ω to notify its parent expression that it has
terminated. It then evolves into ⊥, the inert final expression. Just like ?k, ⊥ cannot be used directly.

2.3 Illustration

We will now illustrate the Orc core calculus on an example. Let us consider a program f0 defined as

f0 = y + z <y< ((2|3) >x> x) <z< 1.

The left hand side causally depends on y and z, its execution is thus delayed. Two conflictual values
are possible for y. In this example, both 2 and 3 can be published concurrently in the left hand side
of the sequential operator, but when a value is published for the second time, it is bounded to y and
the remainder of the execution is preempted. Finally, the value of z is defined by the publication of
a constant value, the execution of which is concurrent to the computation of y. The following is a
possible execution.

f0
h(2)
−−−→ y + z <y< ((stop|3) >x> x|2) <z< 1
h(1)
−−−→ y + 1 <y< ((stop|3) >x> x|2)
h(3)
−−−→ y + 1 <y< ((stop|stop) >x> x|3|2)
h(3)
−−−→ 3 + 1

?+(3,1)
−−−−−→?k

!4
−→ stop

ω
−→ ⊥

Many executions are possible for the standard semantics. A few of them are given below.















































h(!1).h(!3).h(!3).? + (3, 1).!4.ω,
h(!3).h(!1).h(!3).? + (3, 1).!4.ω,
h(!3).h(!3).h(!1).? + (3, 1).!4.ω,

h(!2).h(!1).h(!3).h(!3).? + (3, 1).!4.ω,
h(!1).h(!2).h(!3).h(!2).? + (2, 1).!3.ω,

h(!2).h(!1).h(!3).h(ω).h(!3).? + (3, 1).!4.ω,
h(!2).h(!1).h(!3).h(ω),

. . .















































⊂ Jf0K

It is possible to do some observation on these executions. For example, all the executions that contain
the event !4 also contain one event h(!1) and two instances of h(!3), that appear before the publication
!4. This hides a relation of causality between these events. Moreover, no execution contains both the
events ? + (2, 1) and ? + (3, 1), which denotes conflict.

However, it is very difficult to use these observations in practice for two reasons. First, the number
of executions is too large, and even infinite very often, to test even simple properties. Secondly, we
lost all the information of how to identify events from different executions. We cannot say that the two
instances of h(!3) are in the same order in the two first executions, so we can say nothing about there

4

causal dependencies. This is why it is necessary to aggregate the information of many executions into
a unique object.

3 Labelled Asymmetric Event Structure

The explosion of the number of possible executions is due to their representation as sequences of
events: parallel executions are interleaved, creating an exponential number of possibilities. A natu-
ral objects to represent concurrent events in a compact way are labelled asymmetric event structures
(LAES).

Definition 1 (Labelled asymmetric event structure). A labelled asymmetric event structure (LAES) is
a tuple (E,L,≤,ր,Λ).

• E is a set of events,

• L is a set of labels,

• ≤, causality is a partial order on E,

• ր, weak causality is a binary relation on E,

• Λ : E 7→ L is the labelling function,

• each e ∈ E has a finite causal history [e] = {e′ ∈ E|e′ ≤ e},

• for all events e < e′ ∈ E, e ր e′, where < is the irreflexive restriction of ≤,

• for all e ∈ E, ր ∩[e]2 is acyclic.

A LAES can encode many relations between events in concurrent systems. Let (E,L,≤,ր,Λ) be
an asymmetric event structure and e, e′ ∈ E two events. We say that:

• e is a cause of e′, if e happens before e′ in all executions;

• e is a weak cause of e′, if there is no execution in which e happens after e′;

• e and e′ are concurrent, denoted e||e′, if they can occur in either order. Formally, e||e′ if neither
e ր e′ nor e′ ր e.

• e is preempted by e′, denoted e e′, if e′ can occur independently from e, but after that, e cannot
occur anymore. Formally, e e′ if e ր e′ and e 6≤ e′,

We also define an induced conflict relation #a as the smallest set of finite parts of E such that: for
E′ ⊂ E and e0, e1, ..., en ∈ E,

• if e0 ր e1 ր · · · ր en ր e0 then {e0, e1, · · · , en} ∈ #a

• if E′ ∪ {e0} ∈ #a and e0 ≤ e1 then E′ ∪ {e1} ∈ #a.

Informally, two events are conflictual if they cannot occur together in the same execution.
A LAES can be seen as a structure that encodes concisely several sequential executions; each of

them being a linearization of the LAES.

Definition 2 (Linearization). Let E = (E,L,≤,ր,Λ) be a LAES. A finite linearization of E is a word
w = Λ(e0) . . .Λ(en) where the different ei ∈ E are distinct and such that:

• it is left-closed for causality:

∀e ∈ E,∀e′ ∈ {e0, . . . , en}, e ≤ e′ ⇒ e ∈ {e0, . . . , en},

• the weak causality is respected:

∀ei, ej ∈ {e0, . . . , en}, ei ր ej ⇒ i < j

We denote Lin(E) as the set of all finite linearizations of E .

The last definition allows to compare two LAESs. There is an injection between two LAESs if one
contains at least the information of the other one. In that case, there is an inclusion between the set of
linearizations. Two LAESs are isomorphic if they encode the same information.

Definition 3 (Injection). Let E1 = (E1, L1,≤1,ր1,Λ1) and E2 = (E2, L2,≤2,ր2,Λ2) be two LAESs. An
injection from E1 to E2 is an injective function f : E1 7→ E2 such that:

• ∀e ∈ E1,Λ1(e) = Λ2(f(e)),

• ∀e ≤1 e′ ∈ E1, f(e) ≤2 f(e′),

• ∀e ր1 e′ ∈ E1, f(e) ր2 f(e′).

• ∀e2 ≤2 f(e) ∈ E2,∃e1 ∈ E1, e2 = f(e1).

We write E1 < E2 if there is an injection from E1 to E2 and we say that E1 and E2 are isomorphic, denoted
E1 ≡ E2, if E1 < E2 and E2 < E1.

5

4 Instrumented Semantics

4.1 Method

The principle of an operational semantics is to produce the set of events that may occur during an ex-
ecution and to publish them as transition labels. Total ordering of events is not relevant for concurrent
programs. Our approach does not affect the successive enforcement of the rules, but adds additional
information in the labels that allows to track the partial order.

Actually, a label in the instrumented semantics is a tuple e = (ek, el, ec, ea), where ek is an identifier
taken in a countable set K, that is unique for the execution, el is a label similar to those of the standard
semantics and ec and ea contain the finite sets of the identifiers of the causes and the week causes of
the event, respectively.

In order to record the information concerning the past of an expression, we enrich the language
with a new syntactic construction: 〈f, c, a〉L means that c and a are the causes of the Orc instrumented
expression f . Thus, if f has c and a as causes and if it can evolve into f ′, this transition should also have
c and a as causes. The index L expresses the kind of events that can activate the rule: !v matches any
publication, l stands for any label and ω means that c and a are only the causes of the termination of
the program. This new construction is formally defined by two new rules in the semantics: CAUSEYES

and CAUSENO.
We also consider that the external sites track themselves causality, as an internally-defined func-

tion would do. It makes sense as some sites (e.g. +) handle their calls independently, while others
(e.g. shared registers, management library) induce more complex causality patterns between the calls.
Hence, the responses we get include this additional information. The verification of these responses is
not the subject here, and we suppose them correct by hypothesis.

The instrumented semantics is defined on the set Orci of expressions of this extended syntax:

f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g
‖f >x> g‖f <x< g‖f ; g
‖D#f‖⊥‖〈f, K,K〉L

D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x‖〈p,K,K〉L
w ∈ Response ::= NT (v,K,K)‖T (v,K,K)

‖Neg(K,K)
n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω

4.2 Rules

The rules of the instrumented semantics are given Thereafter.

(PUBLISH)

v
k,!v,∅,∅
−−−−−→i 〈stop, {k}, ∅〉l

v closed
k fresh

(STOP)

stop
k,ω,∅,∅
−−−−→i ⊥

k fresh

(DEFDECLARE)
[D/y]f

k,l,c,a
−−−−→i f

′

D#f
k,l,c,a
−−−−→i f

′
D is def y(x) = g

(STOPCALL)
P

k,ω,c,a
−−−−→i ⊥

P (p)
k,ω,c,a
−−−−→i ⊥

(INTCALL)
P

k,!D,c,a
−−−−−→i P

′

P (p)
k,?D,c,a
−−−−−→i 〈[D/y][p/x]g, c ∪ {k}, a〉l

D is def y(x) = g

(EXTCALL)
P

k,!V,c,a
−−−−−→i P

′ p
k′,!v,c′,a′

−−−−−−→i p
′

P (p)
k,?Vk(v),c∪c′,a∪a′

−−−−−−−−−−−−→i 〈?k, c ∪ c′ ∪ {k}, a ∪ a′〉l

(EXTSTOP)
P

k,!V,c,a
−−−−−→i P

′ p
k′,ω,c′,a′

−−−−−−→i p
′

P (p)
k,ω,c∪c′,a∪a′

−−−−−−−−−→i ⊥

6

(OTHERN)
f

k,n,c,a
−−−−→i f

′

f ; g
k,n,c,a
−−−−→i f

′; g

(RESNT)
?k receives NT (v, c, a)

?k
j,!v,c,a∪c
−−−−−−→i?k

j fresh

(OTHERV)
f

k,!v,c,a
−−−−−→i f

′

f ; g
k,!v,c,a
−−−−−→i f

′

(REST)
?k receives T (v, c, a)

?k
j,!v,c,a∪c
−−−−−−→i 〈stop, c ∪ {j}, a〉ω

j fresh

(OTHERSTOP)
f

k,ω,c,a
−−−−→i ⊥

f ; g
k,h(ω),c,a
−−−−−−→i 〈g, c ∪ {k}, a〉l

(RESNEG)
?k receives Neg(c, a)

?k
j,ω,c,a∪c
−−−−−−→i ⊥

j fresh

(SEQN)
f

k,n,c,a
−−−−→i f

′

f >x> g
k,n,c,a
−−−−→i f

′ >x> g

(PARLEFT)
f

k,l,c,a
−−−−→i f

′

f |g
k,l,c,a
−−−−→i f

′|g
l 6= ω

(SEQV)
f

k,!v,c,a
−−−−−→i f

′

f >x> g
k,h(!v),c,a
−−−−−−−→i (f

′ >x> g)|〈[v/x]g, c ∪ {k}, a〉l

(PARRIGHT)
g

k,l,c,a
−−−−→i g

′

f |g
k,l,c,a
−−−−→i f |g

′
l 6= ω

(SEQSTOP)
f

k,ω,c,a
−−−−→i ⊥

f >x> g
k,ω,c,a
−−−−→i ⊥

(PARSTOP)
f

k,ω,c,a
−−−−→i f

′ g
k′,ω,c′,a′

−−−−−−→i g
′

f |g
k,ω,c∪c′,a∪a′

−−−−−−−−−→i ⊥

(PRUNEN)
g

k,n,c,a
−−−−→i g

′

f <x< g
k,n,c,a
−−−−→i f <x< 〈g′, ∅, {k}〉!v

(PRUNELEFT)
f

k,l,c,a
−−−−→i f

′

f <x< g
k,l,c,a
−−−−→i f

′ <x< g
l 6= ω

(PRUNEV)
g

k,!v,c,a
−−−−−→i g

′

f <x< g
k,h(!v),c,a
−−−−−−−→i 〈[〈v, c ∪ {k}, a〉l/x]f, c ∪ {k}, a〉ω

(PRUNESTOP)
g

k,ω,c,a
−−−−→i ⊥

f <x< g
k,h(ω),c,a
−−−−−−→i 〈[〈stop, c ∪ {k}, a〉l/x]f, c ∪ {k}, a〉ω

(CAUSEYES)
f

k,l,c,a
−−−−→i f

′

〈f, c′, a′〉L
k,l,c∪c′,a∪a′∪c′

−−−−−−−−−−→i 〈f
′, c′, a′〉L

l ∈ L

(CAUSENO)
f

k,l,c,a
−−−−→i f

′

〈f, c′, a′〉L
k,l,c,a
−−−−→i 〈f

′, c′, a′〉L
l 6∈ L

Let us comment the more relevant ones.
Let us consider the rule SEQV. When a value is published, a new instance of the right hand side

expression is created. All the events produced by this new expression need the former publication to
have occured before them, i.e. they are consequences of this publication. This is why the new expression
is instrumented.

7

Even if PRUNEV is syntactically very similar to SEQV, the fact that both hand sides of the pruning
operator are run in parallel makes them very different in terms of causality. In the expression (1|x) <
x< 2, the second publication of 2 is a consequence of the first one, but not the publication of 1. This is
why the instrumentation covers the occurrences of the newly bounded variable. However, this is not
sufficient. Let us consider the program (stop <x< 2); 3. The publication of 3 must wait the end of
the left hand side (i.e the publication of 2). However, this publication is useless, in the sense that no
variable x can be bounded to its value. To handle this case, we add an instrumentation to the whole
expression that is only triggered when the expression stops. Note that this instrumentation would
not have been needed if another rule allowed to terminate the expression just by knowing that stop
would never produce a value. This means that the instrumentation of a rule does not only depend on
this rule, but also on the other rules of the semantics.

Finally, the rule PRUNEN is also interesting as it generates weak causality. Indeed, in the program
x <s< (1 + 1|3), the left hand side can call site + and then publish 3, or publish 3 directly, but can
never publish 3 and then call site +, because a publication preempts any other event. Of course, it
could also wait for the answer of the site and then publish 2, which would preempt the publication of
3. This preemption relation is operated by an instrumentation that contains k as weak causes and that
is triggered only in case of publication.

4.3 Concurrent executions

Like all operational semantics, this set of rules defines a transition system →i and a sequential se-
mantics J·Ki. In order to capture concurrency, we want to express an execution as a LAES, hence the
following definition of concurrent executions.

Definition 4 (Concurrent execution). Let σ = σ1 . . . σn ∈ Jf0Ki. We define the concurrent execution of σ
as the tuple

σ = ({σ1
k, . . . , σ

n
k }, {σ

1
l , . . . , σ

n
l },≤,ր,Λ)

where for all i, j ∈ {1, . . . , n}:

• σi
k ≤ σj

k if σi
k ∈ σj

c or i = j,

• σi
k ր σj

k if σi
k ∈ σj

a,

• Λ(σi
k) = σi

l .

4.4 Correctness

In this section, we prove the main result: the behavior of a program is preserved by the instrumented
semantics. It is established through two properties. The first one justifies the name of the instrumented
semantics and the second one proves that the instrumentation is correct, i.e. that it does not define
incorrect behaviors.

Property 1 (Instrumentation). Let

(JfKi) |l = {σ|l = σ[1]l...σ[n]l|σ ∈ JfKi}

be the set of projections of the executions by the instrumented semantics on their labels. We have:

∀f ∈ O, (JfKi) |l = JfK.

In other words, it is always possible to instrument a standard execution to get a concurrent exe-
cution, and conversely we can get a standard execution from an instrumented execution by a simple
projection.

Theorem 1 (Correctness). The behaviors that can be observed from an execution in the instrumented semantics
are correct with respect to the standard semantics:

∀f ∈ Orc,∀σi ∈ JfKi, Lin(σi) ⊂ JfK.

4.5 Illustration

To illustrate the behavior of the instrumented semantics, we reuse the example f0 = y + z < y <
((2|3) >x> x) <z< 1. The instrumented version of the execution presented in section 2.3 is labelled

8

by the sequence:
(k1, h(2), ∅, ∅). (k2, h(1), ∅, ∅). (k3, h(3), ∅, ∅).

(k4, h(3), {k3}, {k1, k3}).
(k5, ? + (3, 1), {k2, k3, k4}, {k2, k3, k4}).
(k6, !4, {k2, k3, k4, k5}, {k2, k3, k4, k5}).

(k7, ω, {k2, k3, k4, k5, k6}, {k2, k3, k4, k5, k6}).

We represent the LAES of this execution thereafter. The events of the execution are depicted by
their labels, that are not unique (two events are denoted h(!3)). The solid arrows (→) represent direct
causality, i.e. the smallest relation that has ≤ as transitive and reflexive closure. The twisty arrows ()
denote passive direct preemption. By definition, a is preempted by b if they resp. have a′ and b′ as
causes and those are related by a twisty arrow.

h(!3) h(!3) h(!2)

? + (3, 1)h(!1) !4 ω

We observe that the events labelled h(!3) and h(!2), that correspond to the computation of y, are
concurrent with the event labelled h(!1), and the first publication of 3 is concurrent with the publica-
tion of 2, which corresponds to our analysis. Moreover, the second event h(!3) preempts the occurrence
of h(!2), which explains why h(!3).h(!1).h(!3).h(!2).? + (3, 1).!4.ω is invalid.

There is no conflict in this execution. This is due to the fact that the instrumented semantics is
based on the same set of executions as the standard semantics, in which there cannot be conflictual
events.

5 Concurrent Semantics

5.1 Method

By introducing concurrency and preemption between events that were arbitrarily ordered by the stan-
dard semantics, the instrumented semantics heavily reduces the number of different executions. How-
ever, there may remain as many others (because of preemption) which are difficult to link in a reason-
ing. For this reason, the instrumented semantics is not well suited for studying race conditions for
example.

Our strategy to add information about conflicts is to keep firing transitions even if they are pre-
empted by a previous event. Thereby, it becomes possible to observe conflictual events in the same
execution. The difficulty is to adapt the rest of the program so that it can also generate recur-
sively the consequences of these conflictual events. Let us illustrate this problem on the program
(1 >x> x + y) <y< 2|3. In the concurrent semantics, the publication of 2 and 3 will both occur
even though they are conflictual. The variable y will then be bounded to 2 values. Note that it is not
possible to duplicate the whole expression at the left hand side of the pruning operator because the
publication of 1 is a single event concurrent to the computation of y.

To circumvent this difficulty, we propose a new way to bound variables. Instead of replacing the
free occurrences of a x by p in f , [p//x]f adds p in a bag maintained by the free occurrences of x in
f . Specifically, [p//x]x = x{p} and [p//x]xP = xP∪{p}. If p can evolve into p′, xP∪{p} can evolve into
xP∪{p′}.

In the standard semantics, an expression terminates when it is preempted in the pruning operator
or when it produces an ω event. In the concurrent semantics, preempted expressions are not stopped
and an expression may produce several conflictual ω events. It is then difficult — and not necessary
— to know when an expression terminates and inactive sub-expressions cannot be removed.

It is yet still necessary to generate ω events, for example to know when the right hand side of the
otherwise operator should be started. Let us consider again the program (stop <x< 1|2|3)|(stop <y<
4|5|6). In the standard semantics, the program terminates by a unique ω event when two publications
are caught and ignored. In the concurrent semantics, each side of the main parallel operator produces
three conflictual ω events. The global expression must produce nine conflictual ω events due to the
distributivity of their causes. We introduce a new distributivity structure, that is a pair (KL,KR) of
sets of pairs (e, L) where e is an event and L the set of the events that must be distributed on e. We
introduce the notation e ⊲ (KL,KR) meaning that the event e happened on the left hand side. It is
distributed on all of the events that have already happened on the right hand side and it gets an entry

9

on the left hand side to the future events. A similar notation exists for the symmetric case. More
formally:

e⊗ ∅ = ∅
e⊗ ({(e′, L)} ∪K′) = {(e′, L ∪ {e})} ∪ (e⊗K′)

e ⊲ (KL,KR) = ({(e, ∅)} ∪KL, e⊗KR)
(KL,KR) ⊳ e = (e⊗KL, {(e, ∅)} ∪KR)

A distributivity structure is used with the parallel operator as well as the pruning operator to man-
age the stopping of expressions. This is done in three steps. Both sides generate ω events when they
are ready; these are stored into the distributivity structure before the whole expression can generate
an ω event. The two first events have a new empty label ε that is just ignored as an event.

There is no possible conflict in x < x< 1, so we want to produce the same execution as in the
instrumented semantics. In particular, the right hand side of the pruning operator never produces an
ω event. More generally, the consequences of a publication in the left hand side of a pruning operator
can be ignored. We introduce the syntax f \ k to say that the consequences of k must be ignored in the
execution of f .

Until now, we have only presented how to generate the events of all the possible executions pro-
duced by the standard semantics in a single execution. These events are instrumented in a way similar
to the instrumented semantics. The only new difficulty is that the weak causes of an event e can now
happen after e. We added a field eb in the transition labels and in the 〈f, c, a, b〉L structure to represent
weak consequences.

The concurrent semantics is defined on the set Orcic of expressions of this extended syntax:

f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g‖f |(KL,KR)g
‖f >x> g‖f <x< g
‖f <x, (KL,KR)< g‖f ; g‖f ;K g
‖D#f‖⊥‖〈f, K,K,K〉L‖f \ k

D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x‖xP ‖〈p,K,K,K〉L
w ∈ Response ::= NT (v,K,K,K)‖T (v,K,K,K)

‖Neg(K,K,K)
n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω‖ε

5.2 Rules

The rules of the instrumented semantics are presented thereafter.

(PUBLISH)

v
k,!v,∅,∅,∅
−−−−−−→ic 〈stop, {k}, ∅, ∅〉l

v closed
k fresh

(STOP)

stop
k,ω,∅,∅,∅
−−−−−−→ic ⊥

k fresh

(DEFDECLARE)
[D/y]f

k,l,c,a,b
−−−−−→ic f ′

D#f
k,l,c,a,b
−−−−−→ic f ′

D is def y(x) = g

(VAR)
p

k,l,c,a,b
−−−−−→ic p′

xP∪{p}
k,l,c,a,b
−−−−−→ic xP∪{p′}

(CALLSTART)
P

k,!v,c,a,b
−−−−−−→ic P ′

P (p)
k,ε,∅,∅,∅
−−−−−→ic (P ′(p) \ k)|〈v(p), c, a, b〉l

P 6= v

(CALLN)
P

k,l,c,a,b
−−−−−→ic P ′

P (p)
k,l,c,a,b
−−−−−→ic P ′(p)

l is n, ω or ε

(INTCALL)

D(p)
k,?D,∅,∅,∅
−−−−−−−→ic 〈[D/y][p/x]g, {k}, ∅, ∅〉l

D is def y(x) = g

(EXTE)
p

k,ε,c,a,b
−−−−−→ic p′

V (p)
k,ε,c,a,b
−−−−−→ic V (p′)

10

(EXTCALL)
p

k,!v,c,a,b
−−−−−−→ic p′

V (p)
k,?Vk(v),c,a,b
−−−−−−−−−→ic (V (p′) \ k)|〈?k, c ∪ {k}, a, b〉l

(EXTSTOP)
p

k,ω,c,a,b
−−−−−→ic p′

V (p)
k,ω,c,a,b
−−−−−→ic V (p′) \ k

(NTRES)
?k receives NT (v, c, a, b)

?k
j,!v,c,a,b
−−−−−→ic?k

j fresh

(OTHERSTART)
f ;∅ g

k,l,c,a,b
−−−−−→ic f ′

f ; g
k,l,c,a,b
−−−−−→ic f ′

(TRES)
?k receives T (v, c, a, b)

?k
j,!v,c,a,b
−−−−−→ic?k|〈stop, c ∪ {j}, a, b〉l

j fresh

(OTHERN)
f

k,n,c,a,b
−−−−−→ic f ′

f ;K g
k,n,c,a,b
−−−−−→ic f ′;K g

(NEGRES)
?k receives Neg(c, a, b)

?k
j,ω,c,a,b
−−−−−→ic?k

j fresh

(OTHERV)
f

k,!v,c,a,b
−−−−−−→ic f ′

f ;K g
k,!v,c,a,b
−−−−−−→ic f ′;K∪{k} g

(OTHERSTOP)
f

k,ω,c,a,b
−−−−−→ic f ′

f ;K g
k,h(ω),c,a,b
−−−−−−−→ic f ′;K g|〈g, c ∪ {k}, a, b〉l

c ∩K = ∅

(OTHERHALT)
f

k,ω,c,a,b
−−−−−→ic f ′

f ;K g
k,h(ω),c,a,b
−−−−−−−→ic f ′;K g

c ∩K

6= ∅

(SEQN)
f

k,l,c,a,b
−−−−−→ic f ′

f >x> g
k,l,c,a,b
−−−−−→ic f ′ >x> g

l is n or ω

(PARSTART)
f |(∅,∅)g

k,l,c,a,b
−−−−−→ic f ′

f |g
k,l,c,a,b
−−−−−→ic f ′

(SEQV)
f

k,!v,c,a,b
−−−−−−→ic f ′

f >x> g
k,h(!v),c,a,b
−−−−−−−−→ic (f ′ >x> g)|〈[v/x]g, c ∪ {k}, a, b〉l

(PARLEFTSTOP)
f

k,ω,c,a,b
−−−−−→ic f ′

f |Kg
k,ε,∅,∅,∅
−−−−−→ic f ′|(c,a,b)⊲Kg

(PRUNESTART)
f <x, (∅, ∅)< g

k,l,c,a,b
−−−−−→ic f ′

f <x< g
k,l,c,a,b
−−−−−→ic f ′

(PARRIGHTSTOP)
g

k,ω,c,a,b
−−−−−→ic g′

f |Kg
k,ε,∅,∅,∅
−−−−−→ic f ′|K⊳(c,a,b)g

(PRUNELEFT)
f

k,l,c,a,b
−−−−−→ic f ′

f <x,K< g
k,l,c,a,b
−−−−−→ic f ′ <x,K< g

l 6= ω

(PARLEFT)
f

k,l,c,a,b
−−−−−→ic f ′

f |Kg
k,l,c,a,b
−−−−−→ic f ′|Kg

l 6= ω

(PRUNELEFTSTOP)
f

k,ω,c,a,b
−−−−−→ic f ′

f <x,K< g
k,ε,∅,∅,∅
−−−−−→ic f ′ <x, (c, a, b) ⊲ K< g

(PARMID)
K

k,ω,c,a,b
−−−−−→ic K′

f |Kg
k,ω,c,a,b
−−−−−→ic f |K′g

11

(PRUNEMID)
K

k,l,c,a,b
−−−−−→ic K′

f <x,K< g
k,l,c,a,b
−−−−−→ic f <x,K′< g

(PARRIGHT)
g

k,l,c,a,b
−−−−−→ic g′

f |Kg
k,l,c,a,b
−−−−−→ic f |Kg′

l 6= ω

(PRUNESTOP)
g

k,ω,c,a,b
−−−−−→ic g′

f <x,K< g
k,h(ω),c,a,b
−−−−−−−→ic [〈stop, c ∪ {k}, a, b〉l//x]f <x,K ⊳ (c, a, b)< g′

(PRUNEN)
g

k,n,c,a,b
−−−−−→ic g′

f <x,K< g
k,n,c,a,b
−−−−−→ic f <x,K< 〈g′, ∅, {k}, ∅〉!v

(PRUNEE)
g

k,ε,c,a,b
−−−−−→ic g′

f <x,K< g
k,ε,c,a,b
−−−−−→ic f <x,K< g′

(PRUNEV)
g

k,!v,c,a,b
−−−−−−→ic g′

f <x,K< g
k,h(!v),c,a,b
−−−−−−−−→ic [〈v, c ∪ {k}, a, b〉l//x]f <x,K ⊳ (c, a, b)< 〈g′ \ k, ∅, {k}, {k}〉!v

(DISTLEFT)

({(e, {e′} ∪ L)} ∪KL,KR)
k,ω,ec∪e′c,ea∪e′a,eb∪e′b−−−−−−−−−−−−−−−→ic ({(e, L)} ∪KL,KR)

k fresh
ec ∩ e′

b
= ∅

e′c ∩ eb = ∅

(DISTRIGHT)

(KL, {(e, {e
′} ∪ L)} ∪KR)

k,ω,ec∪e′c,ea∪e′a,eb∪e′b−−−−−−−−−−−−−−−→ic (KL, {(e, L)} ∪KR)

k fresh
ec ∩ e′

b
= ∅

e′c ∩ eb = ∅

(CAUSEYES)
f

k,l,c,a,b
−−−−−→ic f ′

〈f, c′, a′, b′〉L
k,l,c∪c′,a∪a′∪c′,b∪b′

−−−−−−−−−−−−−−→ic 〈f ′, c′, a′, b′〉L

l ∈ L

c ∩ b′ = ∅
c′ ∩ b = ∅

(CAUSENO)
f

k,l,c,a,b
−−−−−→ic f ′

〈f, c′, a′, b′〉L
k,l,c,a,b
−−−−−→ic 〈f ′, c′, a′, b′〉L

l 6∈ L

(HIDE)
f

k,l,c,a,b
−−−−−→ic f ′

f \ k′ k,l,c,a,b∪{k}
−−−−−−−−→ic f ′ \ k′

k′ 6∈ c

The first remark is the far bigger number of rules compared to the other semantics. For example, it
requires twice as much rules to define the parallel and pruning operators. For the parallel operator, for
example, only two rules have their counterparts in the standard semantics. The rule PARSTART is in-
troduced only for adding an empty distributivity structure. The rules PARLEFTSTOP, PARRIGHTSTOP

and PARMID illustrate the problem explained above. The program stop|(∅,∅)Stop needs three steps
to generate an ω event. The first two, generated by PARLEFTSTOP and PARRIGHTSTOP are labelled
by ε and put in the distributivity structure. Then rule PARMID is used to generate ω with the correct
causes.

The same approach is used for the pruning operator, explaining the high number of rules. Let us
now consider the rule PRUNEV. The right hand side is no longer destroyed when it publishes a value.
Instead, a stop event is added into the distributivity structure to allow the future publications of ω, and
the right hand side expression is instrumented in two ways. First, the consequences of the publication
are ignored, and the future publications are considered as both weak causes and consequences of this
event, to enforce a cycle in the weak causality relation, i.e. a conflict.

Surprisingly, the definition of the sequential operator is simpler in the concurrent semantics. This
is due to the fusion of the rules SEQN and SEQSTOP, since nothing needs to be destroyed anymore
when an ω event is observed.

5.3 Concurrent executions

The rules presented in Figure ?? define the transition system →ic and the sequential semantics J·Kic.
To define our concurrent semantics, we also need to consider the infinite executions. The set of all the
— finite and infinite — executions starting from f0 is denoted Jf0K

∞
ic .

Definition 5 (Concurrent execution). Let σ ∈ Jf0K
∞
ic . We define the concurrent execution of σ as the tuple

σ = ({σ[i]k|i ≤ |σ|σ[i]l 6= ε}, {σ[i]l|i ≤ |σ|} \ {ε},≤,ր,Λ)

where for all i, j:

12

• σi
k ≤ σj

k if σi
k ∈ σj

c or i = j,

• σi
k ր σj

k if σi
k ∈ σj

a or σi
b ∩ (σj

c ∪ {σj
k}) 6= ∅

• Λ(σi
k) = σi

l .

In this semantics, we expect the LAES obtained from an execution to be complete. To this purpose,
we need to consider the executions that contain all the possible events. However, there is no guaranty
on the choices made by the system if several events can be fired concurrently. For example, if two Orc
programs are run in parallel, it is possible for a scheduler to ignore one of them and to only execute the
other. We remove the starvation cases by introducing a fairness property. Intuitively, the concurrent
semantics is confluent, in the sense that if two transitions are possible from an expression, they can
be drawn in any order, which gives two similar expressions. The fairness property means that if a
transition is enabled at one time, it will be eventually fired.

Definition 6 (Fair execution). A fair execution is a (possibly infinite) execution σ ∈ Jf0K
∞
ic such that, for any

prefix γ of σ, γ ∈ Jf0Kic, and for any event e such that γ.e ∈ Jf0Kic, there is an injection from γ.e to σ that
preserves γ.

The set of all fair executions starting from f0 is denoted Jf0K
ω
ic.

5.4 Justification

In the remainder of this section, we limit our analysis to fair executions. Even though the technique is
classic to avoid degenerate cases such as those mentioned above, we have to justify that it is not too
restrictive. Property 2 claims that all finite executions can be completed into a fair execution. In other
words, it is still possible to chose the event one wants to fire at any time as the other events will still
be enabled afterwards. As a direct consequence, still the empty execution belongs to Jf0Kic, every Orc
program has at least one fair execution. Another consequence is that maximal finite executions, if they
do exist, are fair.

Property 2 (Fair completion). For all γ ∈ Jf0Kic, there is a (possibly infinite) word of events σ such that
γ.σ ∈ Jf0K

ω
ic.

The goal of a concurrent semantics is to define a unique object that contains all the information on
the execution of a distributed program. As we have seen above, it is possible to generate a lot of fair
executions by completing different finite executions. Property 3 claims that all these fair executions
actually define the same object: the concurrent semantics of an Orc program.

Property 3 (fairness equivalence). Two fair executions define equivalent LAESs: ∀f ∈ Orc, ∀σ, τ ∈
JfKωic, σ ≡ τ .

The proof of the correctness of this concurrent semantics consists of two points (1) the semantics is
sound, as it does not introduce new behaviors like the instrumented semantics, and (2) the lineariza-
tions represent sequential executions of the standard semantics. It is also complete; all the behaviors
are encoded in the linearizations of the concurrent semantics.

Theorem 2 (Correctness). Fair executions are sound and complete: ∀f ∈ Orc, ∀σ ∈ JfKωic, Lin(σ) = JfK.

5.5 Illustration

Any fair execution of the concurrent semantics of the program f0 = y + z <y< ((2|3) >x> x) <z< 1
now gives the same LAES:

h(!2)

h(!2)

? + (2, 1)!3

ω

ω

h(!1)

h(!3)

h(!3)

? + (3, 1) !4

ω

The first observation is that we can obtain the LAES of the instrumented semantics (Figure 4.5) by
simply removing the second h(!2) and all its consequences as well as the first ω. This is an example of
LAES injection.

13

Let us now observe the first instance of h(!2). It is a cause of the second one and is preempted
by the second instance of h(!3), so both are in relation of weak causality. By symmetry, the second
instance of h(!3) is also a weak cause of those of h(!2). It follows a cycle in the weak causality relation,
hence a conflict.

6 Proof

In this section, we prove the theorems stated above. Theorem 1 appears to be a consequence of The-
orem 2, in which we use the properties concerning the instrumented semantics. This section is orga-
nized as follows: first, we define few lemmas about the links that the two semantics have with each
other and how the events can be reordered in different executions. Then, the asserted properties and
theorems are recalled and proved.

Lemma 1. ∀f ∈ Orc, ∀σ ∈ JfK,∃σi ∈ JfKi, σi|l = σ.

Proof. This lemma is shown by induction on the length of the execution. What we actually prove is a
bit more general, as the intermediate expressions contain more information in the instrumented than
in the standard semantics.

Let fi ∈ Orci be an instrumented program. We define its projection πi
s(fi) on Orcs as as the same

expression in which the angle brackets are removed, i.e.

πi
s(〈f, c, a〉L) = πi

s(f)
πi
s(def y(x) = f) = def y(x) = πi

s(f)
πi
s(p) = p

πi
s(p(q)) = πi

s(p)(πi
s(q))

πi
s(?k) = ?k

πi
s(f |g) = πi

s(f)|π
i
s(g)

πi
s(f >x> g) = πi

s(f) >x> πi
s(g)

πi
s(f <x< g) = πi

s(f) <x< πi
s(g)

πi
s(f ; g) = πi

s(f); π
i
s(g)

πi
s(D#f) = πi

s(D)#πi
s(f)

πi
s(⊥) = ⊥.

Let f0 ∈ Orc. For all n ∈ N, P (n) designates the following property: For all execution f0
l1

−→

f1...
ln

−→ fn of the standard semantics, there is an execution F0
σ[1]
−−→i F1...

σ[n]
−−→i Fn such that for all i,

σ[i]l = li and πi
s(Fi) = fi.

P (0) is true because πi
s(f0) = f0. Suppose P (n) and we prove P (n+ 1). The induction hypothesis

can be applied on the first n steps, and we have Fn such that πi
s(Fn) = fn

ln+1
−−−→ fn+1. To exhibit the

last step, we also have to be more general, by proving that for all step f
l
−→ f ′ and all F with πi

s(F) = f ,

there is a step F
k,l,c,a
−−−−→i F

′ with πi
s(F

′) = f ′. This is shown by induction on the derivation tree of the
transition.

There is a finite m ∈ N such that F = 〈〈...〈G, cml , cmω 〉Lm ...〉L2 , c1l , c
1
ω〉L1 where G is not of the

form 〈G′, cl, cω〉L. Moreover, πi
s(G) = πi

s(F) = f
l
−→ f ′. We now considere the step πi

s(g)
l
−→ f ′.

The rule in the root of the tree can be anything different from CAUSALYES and CAUSALNO. It can

have zero, one or two premises of the form h
l′

−→ h′. Moreover, there is a rule with the same name

in the instrumented semantics, with the same number of premises, of the form H
k,l′,c,a
−−−−→ H ′, with

πi
s(H) = h. By induction, the premise can be satisfied with πi

s(H
′) = h′, and we can apply the

rule, which gives G
k,l,c′,a′

−−−−−→ G′ with JG′K = f ′. Finally, we can apply m times the rule CAUSALYES

or CAUSALNO depending on l, and get F
k,l,c′′,a′′

−−−−−−→ F ′ = 〈〈...〈G, cml , cmω 〉Lm ...〉L2 , c1l , c
1
ω〉L1 , with

JF ′K = JG′K = f ′.
This proves P (n+ 1), so P (n) for all n.

Lemma 2. ∀f ∈ Orc, ∀σi ∈ JfKi,∃σic ∈ JfKic, σi < σic. Moreover, for all i, σic[i]b = ∅ and σic|l = σi|l

Proof. The proof for this lemma is very similar to the previous one. It consist of an induction on the
length of the execution where each intermediate expression has some property, namely the projection
of the expressions of the concurrent semantics are those of the instrumented semantics (πic

i (F) =

14

f) and the expressions of the concurrent semantics are non-conflictual, which means that they were
obtained from an execution where no conflict was observed.

Here is the full definition of πic
i :

πic
i (stop) = stop

πic
i (V) = V

πic
i (def y(x) = f) = def y(x) = πic

i (f)
πic
i (〈p, c, a, b〉L) = 〈πic

i (p), c, a〉L
πic
i (x) = x

πic
i (xp) = πic

i (p)
πic
i (xp1,p2,...) = ⊥

πic
i (〈f, c, a, b〉L) = 〈πic

i (f), c, a〉L
πic
i (f \ k) = ⊥

πic
i (p(p′)) =

{

πic
i (p)(πic

i (p′)) if πic
i (p) 6= ⊥ 6= πic

i (p′)
⊥ otherwise

πic
i (?k) = ?k
πic
i (⊥) = ⊥

πic
i (D#f) = πic

i (D)#πic
i (f)

πic
i (f |g) =

{

πic
i (f)|πic

i (g) if πic
i (p) 6= ⊥ 6= πic

i (p′)
⊥ otherwise

πic
i (f |K0g) = πic

i (f |g)
πic
i (f |e⊲K0g) = 〈stop, ec, ea〉ω|π

ic
i (g) if πic

i (g) 6= ⊥
πic
i (f |K0⊳eg) = πic

i (f)|〈stop, ec, ea〉ω if πic
i (f) 6= ⊥

πic
i (f |e⊲K0⊳e

′g) = 〈stop, ec ∪ e′c, ea ∪ e′a〉ω
πic
i (f |Kg) = ⊥ otherwise

πic
i (f >x> g) =

{

πic
i (f) >x> g if πic

i (f) 6= ⊥
⊥ otherwise

πic
i (f <x< g) =

{

πic
i (f) <x< πic

i (g) if πic
i (p) 6= ⊥ 6= πic

i (p′)
⊥ otherwise

πic
i (f <x,K0< g) = πic

i (f <x< g)
πic
i (f <x, e ⊲ K0< g) = 〈stop, ec, ea〉ω <x< πic

i (g) if πic
i (f) 6= ⊥

πic
i (f <x,K0 ⊳ e< g) = πic

i (f) <x< 〈stop, ec, ea〉ω if πic
i (g) 6= ⊥

πic
i (f <x, e ⊲ K0 ⊳ e

′< g) = 〈stop, ec ∪ e′c, ea ∪ e′a〉ω
πic
i (f <x,K< g) = ⊥ otherwise

πic
i (f ; g) = πic

i (f);πic
i (g)

πic
i (f ;∅ g) =

{

πic
i (g) if πic

i (f) = ⊥
πic
i (f);πic

i (g) otherwise
πic
i (f ;K g) = πic

i (f)

We now give the full definition of non-conflictuality. A parameter p is non-conflictual if it is of the
form

• def y(x) = f , where f is non-conflictual

• 〈p, c, a, b〉L where p is non-conflictual

• V , stop, x

• x{p} where p is non-conflictual

A program F is non-conflictual if it is of the form

• ?k, ⊥,

• p, P (p) where p and P are non-conflictual

• f \ k, 〈f, c, a, ∅〉L where f is non-conflictual

• f |g, f |K0g, f >x> g, f <x< g, f <x,K0< g, f ; g, f ;K g, def y(x) = f#g, where f and g are
non-conflictual

• f |K3g, f <x,K3< g where πic
i (f) = πic

i (g) = ⊥

• f |K⊳
1
g, where f is non-conflictual and πic

i (g) = ⊥

The last definition is a notation: we denote F
k,l,c,a,∅
−−−−−→

n

ic F ′ if there are F1, ..., Fn and identifiers

k1, ..., kn such that F
k1,ǫ,∅,∅,∅−−−−−−→i F1...

kn,ǫ,∅,∅,∅
−−−−−−→i Fn

k,l,c,a,∅
−−−−−→ic F ′. We write F

k,l,c,a,∅
−−−−−→

⋆

ic F ′ if this is
true for some n.

15

Let f0 be an Orc program and σi ∈ Jf0Ki. Let f1, ..., fn such that f0
σi[1]−−−→i f1...fn−1

σi[n]
−−−→i fn.

We prove that there are F0, ..., Fn such that for all i, Fi is non-conflictual and πic
i (Fi) ≡ fi, and

f0 = F0
σi[1]−−−→

⋆

ic F1...Fn−1
σi[n]
−−−→

⋆

ic Fn by induction on n.
If n = 0, we just have to take F0 = f0, that is trivially non-conflictual and f0 = πic

i (f0).
We suppose the property true for all σi of length n, and suppose σi is of length n + 1. By in-
duction, we know that there is Fn non-conflictual such that πic

i (Fn) ≡ fn. As they are equiva-

lent, πic
i (Fn)

σi[n+1]
−−−−−→i g ≡ fn+1. We must now prove that there is Fn+1 non-conflictual such that

πic
i (Fn+1) ≡ gfn+1 and Fn

σi[n+1]k,σi[n+1]l,σi[n+1]c,σi[n+1]a,∅
−−−−−−−−−−−−−−−−−−−−−−−−−→

⋆

ic Fn+1. To this extend, we prove the

property P: for all f , f ′, (k, l, c, a) such that f
k,l,c,a
−−−−→i f

′, for all non-conflictual F such that πic
i (F) = f ,

there is a non-conflictual F ′ such that πic
i (F ′) ≡ f ′ and F

k,l,c,a,∅
−−−−−→

n

ic F ′.
We prove P by induction on the derivation tree of the step, i.e. we prove this for the axioms, and

supposing P for the premises of the other rules (induction hypothesis H1), we prove it for these rules.
We can remark that the base cases are exactely those in which no hypothesis is made, so we do not
separate this cases.

Let f
k,l,c,a
−−−−→i f ′, that was generated by rule R and F non-conflictual such that πic

i (F) = f . The
proof is made by induction on the syntax of F . Similarly, we have the induction hypothesis H2: if G is

a non-conflictual sub-expression of F and πic
i (G)

k′,l′,c′,a′

−−−−−−→i g′, then there is G′ non-conflictual with

πic
i (G′) ≡ g′ such that G

k′,l′,c′,a′,∅
−−−−−−−→

m

i G′.
Here are listed the possible cases for F :

stop (idem for v) : f = stop, so R is STOP, the transition is stop
k,ω,∅,∅
−−−−→i ⊥, and we can apply rule

STOP on F , so stop
k,ω,∅,∅,∅
−−−−−−→ic ⊥ where F ′ = ⊥ is non-conflictual and πic

i (⊥) = ⊥ = f ′.

xp: f = πic
i (p), so we have πic

i (p)
k,l,c,a
−−−−→i p′ and by H1, p

k,l,c,a,∅
−−−−−→

n

ic P ′ with πic
i (P ′) ≡ p′. It is

possible to apply rule VAR n+ 1 times, so xp
k,l,c,a
−−−−→

n

ic xP ′ .

P (p): f = πic
i (P)(πic

i (P)), R can be one of these rules:

STOPCALL: by H1, P
k,ω,c,a,∅
−−−−−−→

n

ic P ′, so we can apply rule CALLN n+ 1 times in the concurrent
semantics.

INTCALL (idem for EXTCALL and EXTSTOP): F = P (p′). If P = D, we can apply rule

INTCALL in the instrumented semantics. Otherwise, by H1, P
k,!D,c,a,∅
−−−−−−→ic P ′, so

we can apply rule CALLN n times, then rule CALLSTART once and rule INTCALL as
a premise of CAUSEYES, PARRIGHT or PARRIGHTSTOP and PARSTART, which gives

F
k,?D,c,a,∅
−−−−−−→

n+1

ic F ′ = (P ′(p) \ k′)|(∅,KR)〈〈[D/y][p/x]g, {k}, ∅, ∅〉l, c, a, ∅〉l, with πic
i (F ′) =

〈〈[D/y][p/x]g, {k}, ∅〉l, c, a〉l ≡ 〈[D/y][p/x]g, c ∪ {k}, a〉l = f ′.

?k : f =?k, so R can only be one of NTRES, TRES or NEGRES, and we can apply the same rule in the
concurrent semantics.

〈G, c, a, ∅〉L: g is non-conflictual and πic
i (F) = 〈πic

i (G), c, a〉L. Using H1, we have G
k,ω,c′,a′,∅
−−−−−−−→

n

ic and
we can apply rules CAUSEYES or CAUSENO n+ 1 times depending on l and L.

G|(∅,∅)H : as F is non-conflictual, G and H are different from ⊥, and R was one of:

PARLEFT (idem for PARRIGHT): πic
i (G)

k,l,c,a
−−−−→ g′. By H1, we have G

k,l,c,a,∅
−−−−−→

n

ic G′, so we can

apply rule PARLEFT n+ 1 times, which gives G|(∅,∅)H
k,l,c,a,∅
−−−−−→

n

i G′|(∅,∅)H .

PARSTOP: πic
i (G)

k,ω,c,a
−−−−→ ⊥ and πic

i (H)
k,ω,c′,a′

−−−−−→ ⊥. By H1, we have G
k,ω,c,a,∅
−−−−−−→

m

ic G′

and H
k,ω,c′,a′,∅
−−−−−−−→

n

ic H ′. We can apply rule PARLEFT m times, rule PARLEFTSTOP

once, rule PARRIGHT n times, rule PARRIGHTSTOP once and rule PARMID once, to get

F
k,ω,c∪c′,a∪a′,∅
−−−−−−−−−−→

m+n+2

ic F ′ = G′|({((a,c,∅),∅)},{((a′,c′,∅),∅)})H
′, with πic

i (F ′) ≡ ⊥.

G|(KL,KR)H : The other cases are either conflictual, or πic
i (F) = ⊥.

G <x, (∅, ∅)< H : as F is non-conflictual, G and H are different from ⊥, and R is one of:

PRUNELEFT: πic
i (G)

k,l,c,a
−−−−→ g′. By H1, G

k,l,c,a,∅
−−−−−→

n

ic G′, so we can apply rule PRUNELEFT n+ 1

times, which gives G <x, (∅, ∅)< H
k,l,c,a,∅
−−−−−→

n

i G′ <x, (∅, ∅)< H .

16

PRUNEN: πic
i (H)

k,n,c,a
−−−−→i h′. By H1, H

k,n,c,a,∅
−−−−−−→

n

ic H ′, so we can apply PRUNEE n times and

PRUNEN once, so F
k,l,c,a,∅
−−−−−→

n

ic G <x, (∅, ∅)< 〈H ′, ∅, {k}, ∅〉.

PRUNEV: πic
i (H)

k,!v,c,a
−−−−−→i h′. By H1, H

k,!v,c,a,∅
−−−−−−→

n

ic H ′, so we can apply PRUNEE n

times and PRUNEV once, which gives F
k,l,c,a,∅
−−−−−→

n

i F ′ = [x|〈v, c ∪ {k}, a, b〉l/x]G <
x, (∅, {((c, a, b), ∅)})< 〈H ′, ∅, {k}, {k}〉!v . F ′ is non-conflictual and πic

i (F ′) = πic
i ([x|〈v, c ∪

{k}, a, b〉l/x]G) = [v/x]πic
i (G) ≡ f ′.

PRUNESTOP: πic
i (H)

k,ω,c,a
−−−−→i ⊥. By H1, we have H

k,ω,c,a,∅
−−−−−−→

n

ic H ′, so we can apply

PRUNEE n times and PRUNESTOP once, which gives F
k,h(ω),c,a,∅
−−−−−−−−→

n

i F ′ = [x|〈stop, c ∪
{k}, a, b〉l/x]G <x, (∅, {((c, a, b), ∅)})< H ′ with πic

i (H ′) ≡ ⊥. F ′ is non-conflictual and
πic
i (F ′) = πic

i ([x|〈stop, c ∪ {k}, a, b〉l/x]G) = [stop/x]πic
i (G) ≡ f ′.

G <x, (KL,KR)< H : the only other cases that is not conflictual, where πic
i (F) 6= ⊥ is πic

i (H) = ⊥,

KR = {(c, a, b), ∅}. We have πic
i (F) = πic

i (G), so by H2, G
k,l,c,a,∅
−−−−−→

n

ic G′. We can use rule

PRUNELEFT n+ 1 times, which gives G <x, (KL,KR)< H
k,l,c,a,∅
−−−−−→

n

i G′ <x, (KL,KR)< H .

G;∅ H : G and H are non-conflictual, and R is one of:

OTHERN: We have πic
i (G)

k,n,c,a
−−−−→i π

ic
i (G′) with G′ non-conflictual. We can apply OTHERN, so

F
k,n,c,a,∅
−−−−−−→i G

′;∅ H = F ′.

OTHERV: We have πic
i (G)

k,!v,c,a
−−−−−→i π

ic
i (G′) with G′ non-conflictual. We can apply OTHERV, so

F
k,!v,c,a,∅
−−−−−−→i G

′;{k} H = F ′, with F ′ non-conflictual and πic
i (F ′) = πic

i (G′) ≡ f ′.

OTHERSTOP: We have πic
i (G)

k,ω,c,a
−−−−→i πic

i (G′) = ⊥ with G′ non-conflictual. We can apply

OTHERSTOP, so F
k,!v,c,a,∅
−−−−−−→i G′;∅ H |〈H, c ∪ {k}, a, b〉l = F ′, with F ′ non-conflictual and

πic
i (F ′) = 〈πic

i (H), c ∪ {k}, a〉l ≡ f ′.

G;K H : πic
i (G) = f

k,l,c,a
−−−−→ f ′ = πic

i (G′). We can apply one of the rules depending on l. If l = ω,
there was a publication, that is a cause of ω, so c ∩ K 6= ∅. We can build F ′ as an application of
OTHERN, OTHERV or OTHERHALT, and in all these cases, πic

i (F ′) = πic
i (G′) is non-conflictual.

G|H , resp G <x< H , resp G;H : the previous reasonings gives us the properties for G|(∅,∅)H , G <
x, (∅, ∅)< H and G;∅ H . If we also apply rule PARSTART, resp PRUNESTART, resp OTHERSTART

on the first step, we have the property for G|H , G <x< H and G;H .

G >x> H : as a step is possible, πic
i (G) 6= ⊥ and f = πic

i (G) >x> H . R can be the following rules:

SEQN: by H1, G
k,l,c,a,∅
−−−−−→

n

i G′, so we can apply SEQN n + 1 times, which gives G > x >

H
k,l,c,a,∅
−−−−−→

n

i G′ >x> H .

SEQV: by H1, G
k,!v,c,a,∅
−−−−−−→

n

i G′, so we can apply SEQN n times and SEQV once, which gives

G >x> H
k,!v,c,a,∅
−−−−−−→

n

i G′ >x> H |〈[v/x]g, c ∪ {k}, a, ∅〉l and πic
i (G′ >x> H |〈[v/x]g, c ∪

{k}, a, ∅〉l) = πic
i (G′) >x> H |〈[v/x]g, c ∪ {k}, a〉l ≡ f ′.

SEQSTOP: by H1, G
k,ω,c,a,∅
−−−−−−→

n

i G′, with πic
i (G′) = ⊥, so we can apply SEQN n+1 times, which

gives G >x> H
k,ω,c,a,∅
−−−−−−→

n

ic G′ >x> H . As πic
i (G′) = ⊥, πic

i (G′ >x> H) ≡ ⊥ = f ′.

def y(x) = G#H : we have f is def y(x) = πic
i (G)#πic

i (H), so R is DEFDECLARE. By H1,

[D/y]H
k,l,c,a,∅
−−−−−→

n

ic H ′. We can apply DEFDECLARE, so D#H
k,l,c,a,∅
−−−−−→

n

ic H ′.

Let us denotate the execution we just built by σic. We have σic ∈ Jf0Kic and σi = σic.

Lemma 3. Let f ∈ Orc and σ ∈ JfKic such that for all i, σ[i]b = ∅. Let σ|l the word constituted of the labels
of σ different from ε. We have σ|l ∈ JfK.

Proof. This proof is very similar to the previous ones, and we have similar notions of projection πic
s

17

and non-conflictuality. We define the projection πic
s (f) as :

πic
s (stop) = stop

πic
s (V) = V

πic
s (def y(x) = f) = def y(x) = πic

s (f)
πic
s (〈p, c, a, b〉L) = πic

s (p)
πic
s (x) = x

πic
s (xp) = πic

s (p)
πic
s (xp1,p2,...) = ⊥

πic
s (〈f, c, a, b〉L) = πic

s (f)
πic
s (f \ k) = ⊥

πic
s (p(p′)) =

{

πic
s (p)(πic

s (p′)) if πic
s (p) 6= ⊥ 6= πic

s (p′)
⊥ otherwise

πic
s (⊥) = ⊥

πic
s (D#f) = πic

s (D)#πic
s (f)

πic
s (f |g) =

{

πic
s (f)|πic

s (g) if πic
s (p) 6= ⊥ 6= πic

s (p′)
⊥ otherwise

πic
s (f |K0g) = πic

s (f |g)
πic
s (f |e⊲K0g) = 〈stop, ec, ea〉ω|π

ic
s (g) if πic

s (g) 6= ⊥
πic
s (f |K0⊳eg) = πic

s (f)|〈stop, ec, ea〉ω if πic
s (f) 6= ⊥

πic
s (f |e⊲K0⊳e

′g) = 〈stop, ec ∪ e′c, ea ∪ e′a〉ω
πic
s (f |Kg) = ⊥ otherwise

πic
s (f >x> g) =

{

πic
s (f) >x> g if πic

s (f) 6= ⊥
⊥ otherwise

πic
s (f <x< g) =

{

πic
s (f) <x< πic

s (g) if πic
s (p) 6= ⊥ 6= πic

s (p′)
⊥ otherwise

πic
s (f <x,K0< g) = πic

s (f <x< g)
πic
s (f <x, e ⊲ K0< g) = 〈stop, ec, ea〉ω <x< πic

s (g) if πic
s (f) 6= ⊥

πic
s (f <x,K0 ⊳ e< g) = πic

s (f) <x< 〈stop, ec, ea〉ω if πic
s (g) 6= ⊥

πic
s (f <x, e ⊲ K0 ⊳ e

′< g) = 〈stop, ec ∪ e′c, ea ∪ e′a〉ω
πic
s (f <x,K< g) = ⊥ otherwise

πic
s (f ; g) = πic

s (f);πic
s (g)

πic
s (f ;∅ g) =

{

πic
s (g) if πic

s (f) = ⊥
πic
s (f);πic

s (g) otherwise
πic
s (f ;K g) = πic

s (f)

πic
s (?k) is not defined and the proof will not be done for NTRES, TRES and NEGRES, which are correct

by hypothesis.
We now give the full definition of non-conflictuality. The non-conflictual parameters are of the

form:

• def y(x) = f , where f is non-conflictual

• 〈p, c, a, b〉L where p is non-conflictual

• V , stop, x

• x{p} where p is non-conflictual

A program F is non-conflictual if it is of the form:

• ?k, ⊥,

• p, P (p) where p and P are non-conflictual

• f \ k, 〈f, c, a, ∅〉L where f is non-conflictual

• f |g, f |K0g, f >x> g, f <x< g, f <x,K0< g, f ; g, f ;K g, def y(x) = f#g, where f and g are
non-conflictual

• f |K3g, f <x,K3< g where πic
i (f) = πic

i (g) = ⊥

• f |K⊳
1
g, where f is non-conflictual and πic

i (g) = ⊥

We will now show by induction on n that for all execution f = f0
σ[1]
−−→ic f1...

σ[n]
−−→ic fn such that

for all i, σ[i]b = ∅, fi is non-conflictual and piics (fi) = piics (fi−1) if σ[i]l = ε and piics (fi−1)
σ[i]l−−−→ piics (fi)

otherwise (denoted piics (fi−1)
σ[i]l==⇒ piics (fi)).

18

It is true for n = 0 as f ∈ Orc. Suppose the property holds for a given n. This is a corollary of the

following property: for all F
e
−→ic F ′ such that eb = ∅ and F is non-conflictual, piics (F)

el=⇒ piics (F ′).
This is done by induction on the derivation tree of the step. The rule that generated it can be:

PUBLISH (idem for STOP, INTCALL) : we have v
k,!v,∅,∅,∅
−−−−−−→ic 〈stop, {k}, ∅, ∅〉 and v

!v
−→ stop with

〈stop, {k}, ∅, ∅〉 non-conflictual.

DEFDECLARE : suppose D#f
k,l,c,a,∅
−−−−−→ic f ′ where D#f is non-conflictual. [D/y]f is non-

conflictual and [D/y]f
k,l,c,a,∅
−−−−−→ic f ′. By induction, f ′ is non-conflictual and πic

s ([D/y]f) =

[πic
s (D)/y]πic

s (f)
l
−→ πic

s (f ′), so we can apply rule DEFDECLARE, and πic
s (D#f) =

πic
s (D)#πic

s (f)
l
−→ πic

s (f ′).

VAR : F is not conflictual, so F = x{p} and πic
s (F) = πic

s (p). By induction, πic
s (p)

l
−→ πic

s (p′). More-
over, p′ is non-conflictual so x{p′} is non-conflictual.

CALLSTART : we have P
k,!v,c,a,∅
−−−−−−→ic P ′, and P is non-conflictual, so P = x〈...〈v,c′,a′,∅〉L...〉L′

. We

have that g = (P ′(p) \ k)|〈v(p), c, a, b〉l is non-conflictual and πic
s (P (p)) = πic

s (g) = v(πic
s (p)).

CALLSTOP: we have P
k,ω,c,a,∅
−−−−−−→ic P ′, and P is non-conflictual, so P is either stop or

x〈...〈stop,c′,a′,∅〉L...〉L′
and πic

s (P (p)) = stop(πic
s (p)). Moreover, P ′ is stop or x〈...〈⊥,c′,a′,∅〉L...〉L′

so P ′(p) is non-conflictual. We can apply axiom STOPCALL, and πic
s (P (p))

ω
−→ ⊥ = πic

s (P ′(p)).

CALLE: by induction, P ′ is not conflictual and πic
s (P ′) = πic

s (P), so P ′(p) is not conflictual and
πic
s (P ′(p)) = πic

s (P (p)).

EXTE: by induction, p′ is not conflictual and πic
s (p′) = πic

s (p), so V (p′) is not conflictual and
πic
s (V (p′)) = πic

s (V (p)).

EXTCALL (same reasoning for EXTSTOP): we have πic
s (p) = v and by induction, p′ is non-conflictual

and πic
s (p′) = stop. g = (V (p′) \ k)|〈?k, c ∪ {k}, a, b〉l is non-conflictual and EXTCALL can be

applied on πic
s (V (p)) = V (v), so πic

s (V (p))
?Vk(v)−−−−→?k = πic

s (g).

OTHERSTART: πic
s (f ;∅ g) = πic

s (f ; g), so the result is true by induction.

OTHERN : f is non-conflictual and πic
s (f) 6= ⊥. By induction, we have πic

s (f)
n
−→ πic

s (f ′) and f ′

non-conflictual. If K = ∅, it is the point, otherwise, we can apply OTHERN, so πic
s (f ;K g) =

πic
s (f);πic

s (g)
n
−→ πic

s (f ′);πic
s (g) = πic

s (f ′;K g).

OTHERV : f is non-conflictual and πic
s (f) 6= ⊥. By induction, we have πic

s (f)
!v
−→ πic

s (f ′) and f ′

non-conflictual. If K = ∅, it is the point, otherwise, we can apply OTHERV, so πic
s (f ;K g) =

πic
s (f);πic

s (g)
!v
−→ πic

s (f ′) = πic
s (f ′;K∪{k} g).

OTHERSTOP : f is non-conflictual and πic
s (f) 6= ⊥. By induction, πic

s (f)
ω
−→ ⊥ = πic

s (f ′) and f ′ is

non-conflictual. If K ∩ c = ∅, we can apply rule OTHERSTOP, so πic
s (f ;∅ g) = πic

s (f); πic
s (g)

h(ω)
−−−→

πic
s (g) = πic

s ((f ′; g \ k)|〈g, c ∪ {k}, a, b〉l). Otherwise, πic
s (f ;K g) = πic

s (f), so the result is true.

OTHERHALT : K 6= ∅, so πic
s (f ;K g) = πic

s (f), and the result is true by induction.

SEQN : f >x> g is non-conflictual, so is f . By induction, we have πic
s (f)

l
−→ πic

s (f ′) and f ′ non-

conflictual. If l = n, we can apply rule SEQN, so πic
s (f >x> g) = πic

s (f) >x> g
l
−→ πic

s (f ′) >x>
g = πic

s (f ′ >x> g) and f ′ >x> g non-conflictual. Otherwise, l = ω, and πic
s (f ′) = ⊥. We can

apply rule SEQSTOP, and πic
s (f >x> g) = πic

s (f) >x> g
ω
−→ ⊥ = πic

s (f ′ >x> g).

SEQV : f >x> g is non-conflictual, so is f . By induction, we have πic
s (f)

!v
−→ πic

s (f ′) and f ′ non-

conflictual. We can apply rule SEQV, so πic
s (f > x> g) = πic

s (f) >x> g
v
−→ πic

s (f ′) >x>
g|[v/x]g = πic

s (f ′ >x> g|〈[v/x]g, c ∪ {k}, a, b〉l).

PARSTART: πic
s (f |(∅,∅)g) = πic

s (f |g), so the result is true by induction.

PARLEFTSTOP (same reasoning for PARRIGHTSTOP) : f is non-conflictual, so by induction,

πic
s (f)

ω
−→ πic

s (f ′) and we have πic
s (f) ≡ stop and πic

s (f ′) = ⊥. f ′|(c,a,b)⊲Kg is non-conflictual,
and πic

s (f ′|(c,a,b)⊲Kg) = stop|πic
s (g) ≡ πic

s (f)|πic
s (g) = πic

s (f |g).

PARLEFT (same reasoning for PARRIGHT) : f is non-conflictual, so by induction, πic
s (f)

l
−→ πic

s (f ′).

Moreover, KL = ∅. If πic
s (g) = ⊥, we have directly πic

s (f |Kg) = πic
s (f)

l
−→ πic

s (f ′) = πic
s (f ′|Kg).

Otherwise, we can apply rule PARLEFT, and πic
s (f |Kg) =

l
−→ πic

s (f ′|Kg).

19

PARMID : as K
k,ω,c,a,b
−−−−−→ic K′, πic

s (f |Kg) = stop, and as f |Kg is non-conflictual, K′ is inert, so
πic
s (f |K′g) = ⊥. We can apply rule STOP, which gives πic

s (f |Kg) = stop
ω
−→ ⊥ = πic

s (f |K′g).

PRUNESTART : πic
s (f <x, (∅, ∅)< g) = πic

s (f <x< g), so the result is true by induction.

PRUNELEFT : f is non-conflictual, so by induction, πic
s (f)

l
−→ πic

s (f ′). Moreover, KL = ∅. If KR 6= ∅,

we have directly πic
s (f <x,K< g) = πic

s (f)
l
−→ πic

s (f ′) = πic
s (f ′ <x,K< g). Otherwise, we can

apply rule PRUNELEFT, and πic
s (f <x,K< g) =

l
−→ πic

s (f ′ <x,K< g).

PRUNELEFTSTOP : f is non-conflictual, so by induction, πic
s (f)

ω
−→ πic

s (f ′) and we have πic
s (f) ≡

stop and πic
s (f ′) = ⊥. f ′ <x, (c, a, b) ⊲ K< g is non-conflictual, and πic

s (f ′ <x, (c, a, b) ⊲ K<
g) = stop <x< πic

s (g) ≡ πic
s (f) <x< πic

s (g) = πic
s (f <x,K< g).

PRUNEMID : as K
k,ω,c,a,b
−−−−−→ic K′, πic

s (f <x,K< g) = stop, and as f |Kg is non-conflictual, K′ is
inert, so πic

s (f <x,K′ < g) = ⊥. We can apply rule STOP, which gives πic
s (f <x,K < g) =

stop
ω
−→ ⊥ = πic

s (f <x,K′< g).

PRUNESTOP : g is non-conflictual, so by induction, πic
s (g)

ω
−→ πic

s (g′) and we have πic
s (g) ≡ stop and

πic
s (g′) = ⊥. h = [x|〈stop, c ∪ {k}, a, b〉l/x]f <x,K ⊳ (c, a, b)< g′ is non-conflictual, and by rule

PRUNESTOP, we have πic
s (f <x,K< g) ≡ πic

s (f) <x< stop
h(ω)
−−−→ [stop/x]πic

s (f) = πic
s (h).

PRUNEN : g is non-conflictual, so by induction, πic
s (g)

n
−→ πic

s (g′). Moreover, KR = ∅. Otherwise, we

can apply rule PRUNEN, and πic
s (f <x,K< g) =

l
−→ πic

s (f <x,K< g′).

PRUNEV : g is non-conflictual, so by induction, πic
s (g)

!v
−→ πic

s (g′) with πic
s (g) 6= ⊥. Let h = [x|〈v, c ∪

{k}, a, b〉l/x]f <x,K ⊳ (c, a, b)< 〈g′, ∅, {k}, {k}〉!v . By rule PRUNEV, we have πic
s (f <x,K <

g) = πic
s (f) <x< πic

s (g)
h(!v)
−−−→ [v/x]πic

s (f) = πic
s (h).

DISTLEFT, DISTRIGHT : the left hand side of the rule does not match a valid program

CAUSEYES, CAUSENO : 〈f, c, a, b〉l is non-conflictual, so is f . By induction, πic
s (〈f, c, a, b〉l) =

πic
s (f)

l
−→ πic

s (f ′) = πic
s (〈f ′, c, a, b〉l) and πic

s (〈f ′, c, a, b〉l) is non-conflictual.

HIDE : σ[n+ 1]b 6= ∅.

Finally, we were able to create an execution labelled by σ|l dependless of the size of σ, so σ|l ∈
Jf0K.

Property 1 (Instrumentation). ∀f ∈ O, (JfKi) |l = JfK

Proof. Let σi ∈ JfKi. By lemmas 2 and 3, there is σic ∈ JfKic such that σi|l = σic|l ∈ JfK. Then
(JfKi) |l ⊂ JfK

Let σ ∈ JfK. By lemma 1, there is σi ∈ JfKi such that σi|l = σ. Then JfK ⊂ (JfKi) |l.

Lemma 4. Let γabδ ∈ Jf0K
ω
ic such that a 6≤ b.

There are a′, b′ with a′
k = ak and b′k = bk such that the identity on k defines an injection from γabδ to

γb′a′δ.

Proof. Let us consider two consecutive causally-independant steps f
k1,l1,c1,a1,b1−−−−−−−−−→ic f ′

1

k′

1,l
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ic

f ′′
1 . We prove that there are programs f ′′

2 and f ′
2 and sets of identifiers a2, b2, a

′
2, b

′
2 such that

f
k′

1,l
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ic f ′
2

k1,l1,c1,a2,b2−−−−−−−−−→ic f ′′
2 and f ′′

2 is equivalent to f ′′
1 in which a1, b1, a

′
1, b

′
1 have been

replaced respectively by a2, b2, a
′
2, b

′
2, with:

a2, b2, a
′
2, b

′
2 =















a1, b1, a
′
1, b

′
1 if k 6∈ a′ ∪ b′

a1, b1 ∪ {k′}, a′
1 \ {k}, b

′
1 if k ∈ a′ \ b′

a1 ∪ {k′}, b1, a
′
1, b

′
1 \ {k} if k ∈ b′ \ a′

a1 ∪ {k′}, b1 ∪ {k′}, a′
1 \ {k}, b

′
1 \ {k} if k ∈ b′ ∪ a′

This is shown by induction on the derivation tree of the first step, and there is no other choice
than the complete enumeration of the possible pairs of following steps. The items of first level are the
possibilities for the rule of the first step, and those of second level are the possibilities for the second
step.

PUBLISH, STOP, INTCALL : there is no causaly-independant possible second step.

20

DEFDECLARE f = D#g
k1,l1,c1,a1,b1−−−−−−−−−→ic f ′

1

k′

1,l
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ic f ′′
1 . We have [D/y]g

k1,l1,c1,a1,b1−−−−−−−−−→ic

f ′
1

k′

1,l
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ic f ′′
1 . By induction, [D/y]g

k′

1,l
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ic f ′
2

k1,l1,c1,a2,b2−−−−−−−−−→ic f ′′
2 , and we can

apply DEFDECLARE on the first step.

VAR the second rule is also VAR, so we can apply VAR twice on the premises given by induction.

CALLSTART (idem CALLSTOP) f = P (p)

CALLSTART by induction, p
k′

1,v
′

1,c
′p
1 ,a

′p
2 ,b

′p
2−−−−−−−−−−−→ g′2

k1,v1,c
p
1 ,a

p
2 ,b

p
2−−−−−−−−−→ g′′2 , and we can apply CALLSTART

for the first step and rules PARLEFT, HIDE and CALLSTOP for the second step which gives
f ′′
2 = ((P ′

2(p) \ k1)|〈v1(p), c
p
1 ∪ {k1}, a

p
2, b2〉l \ k′

1)|〈v
′
1(p), c

′p
1 ∪ {k′

1}, a
′p
2, b

′
2〉l ≡ f ′′

1 because
〈v1(p), c

p
1 ∪ {k1}, a

p
2, b2〉l \ k

′
1 ≡ 〈v1(p), c

p
1 ∪ {k1}, a

p
2, b2〉l.

CALLSTOP by induction, p
k′

1,v
′

1,c
′p
1 ,a

′p
2 ,b

′p
2−−−−−−−−−−−→ g′2

k1,v1,c
p
1 ,a

p
2 ,b

p
2−−−−−−−−−→ g′′2 , and we can apply CALLSTOP

the first step and CALLSTART for the second step which gives f ′′
2 = (P ′

2(p) \k
′
1)|〈v

′
1(p), c

′p
1 ∪

{k′
1}, a

′p
2, b

′
2〉l ≡ f ′′

1 .

EXTCALL, EXTE, EXTSTOP f = V (p) these case are similar to CALLSTART and CALLSTOP where
EXTCALL has the same role as CALLSTART.

NTRES, TRES, NEGRES : we trust the external sites on this point.

OTHERSTART By induction, g∅h
k′

1,l
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ic f ′
2

k1,l1,c1,a2,b2−−−−−−−−−→ic f ′′
2 , and we can apply OTHER-

START on the first step.

OTHERN (idem OTHERV, OTHERHALT, OTHERSTOP) f = g;h
k1,n1,c1,a1,b1−−−−−−−−−→ f ′

1 = g′1; h

OTHERN (idem OTHERV, OTHERHALT) f ′
1

k′

1,n
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ f ′
1 = g′′1 ;h. By induction,

g
k′

1,n
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ g′2
k1,n1,c1,a2,b2−−−−−−−−−→ g′′2 , and we can apply the same rules.

OTHERSTOP f ′
1

k′

1,!v
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ f ′
1 = g′′1 >x> h. By induction, g

k′

1,v
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ g′2
k1,n1,c1,a2,b2−−−−−−−−−→

f ′
1 = g′′2 , and we can apply OTHERSTOP first with f ′

2 = (g′2;h)|〈h, c ∪ {k}, a, b〉l where we
can apply PARLEFT or PARLEFTSTOP and the same rule as for the first step.

SEQN (idem SEQV) f = g >x>,h
k1,n1,c1,a1,b1−−−−−−−−−→ f ′

1 = g′1 >x> h

SEQN f ′
1

k′

1,n
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ f ′
1 = g′′1 >x> h. By induction, g

k′

1,n
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ g′2
k1,n1,c1,a2,b2−−−−−−−−−→ g′′2 , and

we can apply SEQN twice.

SEQV f ′
1

k′

1,!v
′

1,c
′

1,a
′

1,b
′

1−−−−−−−−−→ f ′
1 = g′′1 >x> h. By induction, g

k′

1,v
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ g′2
k1,n1,c1,a2,b2−−−−−−−−−→ g′′2 , and

we can apply SEQV first with f ′
2 = (g′ >x> h)|〈[v′1/x]h, c

′
1 ∪ {k′

1}, a
′
1, b

′
1〉l where we can

apply PARLEFT or PARLEFTSTOP and SEQN.

PARSTART By induction, g|(∅,∅)h
k′

1,l
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ic f ′
2

k1,l1,c1,a2,b2−−−−−−−−−→ic f ′′
2 , and we can apply PARSTART

on the first step.

PARLEFT (idem for PARRIGHT, PARLEFTSTOP, PARRIGHTSTOP, PARMID) f = g|Kh
k,c,a,b
−−−−→ f ′

1 =
g′|Kh

PARRIGHT (idem PARMID, PARRIGHTSTOP) We can apply PARRIGHT on the premise of the
second step to build the first step and then PARLEFT on the premise of the first step.

PARLEFT (idem PARLEFTSTOP) We can applyinduction on the left hand side and apply PAR-
LEFT twice.

PRUNESTART By induction, g <x, (∅, ∅)< h
k′

1,l
′

1,c
′

1,a
′

2,b
′

2−−−−−−−−−→ic f ′
2

k1,l1,c1,a2,b2−−−−−−−−−→ic f ′′
2 , and we can apply

PRUNESTART on the first step.

PRUNELEFT (idem for PRUNELEFTSTOP) f = g <x,K<, h
k,c,a,b
−−−−→ f ′

1 = g′ <x,K< h

PRUNELEFT (idem for PRUNELEFTSTOP) We can apply the induction on the premises and
PRUNELEFT twice.

PRUNEN (idem for PRUNEMID, PRUNEE) We have g′ <x,K< h
k′,c′,a′,b′

−−−−−−→ f ′′
1 = g′ <x,K<

〈h′, ∅, {k′}, ∅〉!v . The same rules can be applied in reverse order, which gives f = g <x,K<

, h
k′,c′,a′,b′

−−−−−−→ f ′
2 = g <x,K< 〈h′, ∅, {k′}, ∅〉!v

k,c,a,b
−−−−→ f ′′

2 = f ′′
1 .

21

PRUNEV (idem for PRUNESTOP) the premise of the second step is indepentant of the premise
of the first step, so it can be applied, and we have f ′

2 = [〈!v′1, c
′
1 ∪ {k′

1}, a
′
2, b

′
2〉l//x]g <

x,K ⊳ (c′1, a
′
2, b

′
2)< 〈h′ \ k′

1, ∅, {k
′
1}, {k

′
1}〉!v . We also know that g

k1,c1,a1,b1−−−−−−−→ g′. All the
transitions that are possible from g are also possible from [〈!v′1, c

′
1 ∪ {k′

1}, a
′
2, b

′
2〉l//x]g, so

we can apply PRUNELEFT on it for the second step.

PRUNEMID f = g <x,K<, h
k,c,a,b
−−−−→ f ′

1 = g <x,K′< h

PRUNEMID we can apply the induction on the premises and apply PRUNEMID twice.

anything else the steps are totally independant.

DISTLEFT, DISTRIGHT : the two steps concern different elements, so they can occure in any order.

HIDE (idem for CAUSEYES, CAUSENO) HIDE : We can apply the induction for the premise and ap-
ply the same rules.

The full lemma is just a corollary.

Lemma 5. Let γ ∈ JfKic and two events e1 and e2 such that γ.e1, γ.e2 ∈ JfKic.

There is an event e′2 such that γ.e1.e
′
2 ∈ JfKic and γ.e2 < γ.e1.e′2.

Proof. This lemma is a kind of converse of the previous one. What we realy prove is that for any f ∈

Orcic and any transitions f
k1,c1,a1,b1−−−−−−−→ic f ′

1 and f
k2,c2,a2,b2−−−−−−−→ic f ′

2, there is a transition f ′
1

k2,c2,a
′

2,b
′

2−−−−−−−→ic

f ′ with a′
2 ∈ {a2, a2 ∪ {k1}} and b′2 ∈ {b2, b2 ∪ {k1}}.

We introduce a few notations:

• if T is the derivation tree of a transition, p(T) is the premise if it has a unique one, p1(T) and
p2(T) are respectively the left hand side and right hand side premises if they exist.

• if the derivation trees of the steps k1, c1, a1, b1 and k2, c2, a2, b2 are denoted T1 and T2, the deriva-
tion tree of k2, c2, a

′
2, b

′
2 is denoted τ (T, T ′).

• If R is a rule with one premise and T is a transition, R(T) is a transition such that p(R(t)) = T
and whom root is generated by rule R. τ (T, T ′) = R(T ′′) means that there is a transition τ (T, T ′)
that the root is generated by R, has f ′

1 as left hand side and T ′′ as premise. Similarly, we write
R(T, T ′) if R has two premises.

Just like above, we prove the result by induction on the derivation tree of (k1, c1, a1, b1). We should
differentiate the base cases and the induction cases. However, by sake of clarity, we give a unique list
of possibilities. The first-level items are for rules that can generate (k1, c1, a1, b1) and the second-level
items are the remaining possibilities for the other steps. Of course, we never use the induction hypoth-

esis on case bases. Let T and T ′ be the transitions of the steps f
k1,c1,a1,b1−−−−−−−→ic f ′

1 and f
k2,c2,a2,b2−−−−−−−→ic f ′

2.
The rules at the root of T and T ′ are respectively denoted R and R′. Here are the possibilities for R:

PUBLISH, STOP, INTCALL: these cases are impossible as there is only one possible step, so T ′ does
not exist.

DEFDECLARE: f = D#g, so R′ = DEFDECLARE. p(T) and p(T ′) are possible from [D/y]f , so
by induction, τ (p(T), p(T ′)) can be fired after p(T). As the premise and the conclusion of
DEFDECLARE have the same right hand side, τ (p(T), p(T ′)) can be fired after T , so τ (T, T ′) =
τ (p(T), p(T ′)).

VAR: f = xP∪p, so R′ = VAR, and the left hand side of p(T ′) is p′. There are two possibilities:

p = p′: by induction, τ (p(T), p(T ′)) can be fired after p(T), so τ (p(T), p(T ′)) =
VAR(τ (p(T), p(T ′))).

p 6= p′: the premises are independant, and τ (p(T), p(T ′)) = VAR(p(T ′)).

CALLSTART: f = P (p), where P 6= v. The possibilities for R′ are:

CALLSTART, CALLE: τ (T, T ′) = PARLEFT(HIDE(R′(τ (p(T), p(T ′))))).

CALLSTOP: τ (T, T ′) = PARLEFTSTOP(HIDE(R′(τ (p(T), p(T ′))))).

CALLSTOP, CALLE: f = P (p), and P 6= v. The possibilities for R′ are CALLSTART, CALLE and
CALLSTOP. In the cases τ (T, T ′) = R′(τ (p(T), p(T ′))) works.

EXTERIGHT: f = V (p). The possibilities for R′ are EXTERIGHT, EXTCALL and EXTSTOP, and
τ (T, T ′) = R′(τ (p(T), p(T ′))) always works.

EXTSTOP: f = V (p). The possibilities for R′ are EXTERIGHT, EXTCALL and EXTSTOP, and
τ (T, T ′) = HIDE(R′(τ (p(T), p(T ′)))) always works, as k2 6∈ c1.

22

EXTCALL: f = V (p). The possibilities for R′:

EXTERIGHT, EXTCALL: τ (T, T ′) = PARLEFT(HIDE(R′(τ (p(T), p(T ′)))))

EXTSTOP: τ (T, T ′) = PARLEFTSTOP(HIDE(R′(τ (p(T), p(T ′)))))

RESNT, REST, RESNEG: this management is left to the external sites

OTHERSTART: R′ = OTHERSTART, and τ (T, T ′) = τ (p(T), p(T ′))

OTHERN, OTHERV, OTHERHALT: f = g;K h, and τ (T, T ′) = R′(τ (p(T), p(T ′))).

OTHERSTOP: f = g;K h, and τ (T, T ′) = PARLEFT(R′(τ (p(T), p(T ′)))).

PARSTART: R′ = PARSTART, and τ (T, T ′) = τ (p(T), p(T ′))

PARLEFTSTOP (idem for PARRIGHTSTOP): the possibilities for R′ are:

PARLEFTSTOP (idem for PARLEFT): τ (T, T ′) = PARLEFTSTOP(τ (p(T), p(T ′))).

PARRIGHTSTOP (idem for PARRIGHT): τ (T, T ′) = PARRIGHTSTOP(p(T ′)).

PARMID: τ (T, T ′) = PARMID(p(T ′)). This application is still possible as K′ contains more
information than K.

PARLEFT (idem for PARRIGHT): the possibilities for R′ are:

PARLEFTSTOP (idem for PARLEFT): τ (T, T ′) = PARLEFTSTOP(τ (p(T), p(T ′))).

PARRIGHTSTOP (idem for PARRIGHT): τ (T, T ′) = PARRIGHTSTOP(p(T ′)).

PARMID: τ (T, T ′) = PARMID(p(T ′)).

PARMID: the possibilities for R′ are:

PARMID: τ (T, T ′) = PARMID(p(T ′)). This application is still possible because T 6= T ′.

Anything else: τ (T, T ′) = R′(p(T ′)).

SEQN: f = g >x> h, and τ (T, T ′) = R′(τ (p(T), p(T ′))).

SEQV: f = g >x> h, and τ (T, T ′) = PARLEFT(R′(τ (p(T), p(T ′)))).

PRUNESTART: R′ = PRUNESTART, and τ (T, T ′) = τ (p(T), p(T ′)).

PRUNELEFT, PRUNELEFTSTOP: the possibilities for R′ are:

PRUNELEFT, PRUNELEFTSTOP: τ (T, T ′) = R′(τ (p(T), p(T ′))).

Anything else: τ (T, T ′) = R′(p(T ′)).

PRUNEMID: the possibilities for R′ are:

PRUNEMID: τ (T, T ′) = PRUNEMID(p(T ′)). This application is still possible because T 6= T ′.

Anything else: τ (T, T ′) = R′(p(T ′)).

PRUNESTOP: the possibilities for R′ are:

PRUNELEFT, PRUNELEFTSTOP: f = g <x,K< h and p(T ′) is a valid step from g. The only
difference between g and g′ = [〈stop, c1∪{k1}, a1, b1〉//x]g is the set of values associated to
the variable x. If VAR appears in p(T ′) with x in its left hand side, it can also be applied on
the completed version of x, so a transition T ′′ with the same structure as p(T ′) can be build
with g′ at the left hand side instead of g. τ (T, T ′) = R′(T ′′) works.

PRUNEMID: τ (T, T ′) = R′(p(T ′)).

Anything else: τ (T, T ′) = R′(τ (p(T), p(T ′))).

PRUNEE: the possibilities for R′ are:

PRUNELEFT, PRUNELEFTSTOP, PRUNEMID: τ (T, T ′) = R′(p(T ′)).

Anything else: τ (T, T ′) = R′(τ (p(T), p(T ′))).

PRUNEN: the possibilities for R′ are:

PRUNELEFT, PRUNELEFTSTOP, PRUNEMID: τ (T, T ′) = R′(p(T ′)).

PRUNEV: τ (T, T ′) = PRUNEV(CAUSEYES(τ (p(T), p(T ′)))).

Anything else: τ (T, T ′) = R′(CAUSENO(τ (p(T), p(T ′)))).

PRUNEV: the possibilities for R′ are:

PRUNELEFT, PRUNELEFTSTOP: τ (T, T ′) = R′(T ′′), where T ′′ is defined exactly like for
PRUNESTOP.

PRUNEMID: τ (T, T ′) = R′(p(T ′)).

23

PRUNEV: τ (T, T ′) = PRUNEV(CAUSEYES(HIDE(τ (p(T), p(T ′))))). HIDE is possible because
k2 6∈ c1.

Anything else: τ (T, T ′) = R′(CAUSENO(HIDE(τ (p(T), p(T ′))))).

DISTLEFT, DISTRIGHT: f = K, so R′ is also DISTLEFT or DISTRIGHT. These rules just remove
different elements in the structure, so they can be applied in any order.

CAUSEYES, CAUSENO: R′ is CAUSEYES or CAUSENO and τ (T, T ′) = R′(τ (p(T), p(T ′))).

HIDE: f = g \ k′′, so R′ = HIDE and τ (T, T ′) = R′(τ (p(T), p(T ′))).

Property 2 (Fair completion). For all γ ∈ JfKic, there is a (possibly infinite) word of events σ such that
γ.σ ∈ JfKωic.

Proof. The idea of this proof is to use a first-in-first-out list of possible steps in which we push the
transitions as soon as they become available. Once γ has been executed, we fire the steps in the order
where they are poped from the list. As the list remains finite, every event will eventually be fired.

We build a sequence (τn, fn, Ln)n∈N such that, for all n:

• τn ∈ JfKic. Informally, it is the prefixe of size n of the fair execution we are building. We expect,
for all n ≥ 1, τn−1 = τn[1...n] and τ|γ| = γ;

• fn ∈ Orcic. It is the expression obtained after τn, i.e. for all n, f = f0
τ1[1]−−−→ f1...

τn[n]
−−−→ fn.

• Ln is an ordered list of transitions (i.e. there derivation trees) that contains exactly the set of
transitions that are valid in the instrumented semantics and that have fn as the left-hand side of
the conclusion.

The sequence is built by induction on n. We initialize as follows: τ0 is the empty execution, f0 = f
and L0 contains all the transitions starting from f . Suppose we have built (τn, fn, Ln) for a given n.
We chose a transition T in Ln as:

• if n < |γ|, we have f = f0
γ[1]
−−→ f1...

γ[n]
−−→ fn and there is g such that fn

γ[n+1]
−−−−→ g. As all the

transitions available from fn, fn
γ[n+1]
−−−−→ g is contained into Ln, and it defines T .

• if Ln is not empty, we take the first transition for T

• otherwise, τn is fair. We will consider this case later.

The conclusion of T is fn
e
−→ g. We define fn+1 = g and τn+1 = e. Ln+1 is built as follows:

• L′
n is Ln in which T was removed.

• L′′
n is a list of the same size as L′

n. For all i, we have τn.T ∈ JfKic and τn.L
′
n[i] ∈ JfKic. By lemma

5, there is an event T ′ such that γ.T.T ′ ∈ JfKic and γ.L′
n[i] < γ.T.T ′. We pose L′′

n[i] = T ′.

• L′′′
n can be any ordered list that contains all the transitions that can be fired from fn+1 and are

absent from L′′
n.

• Ln+1 is the concatenation of L′′
n and L′′′

n .

This defines the sequence by induction.
There are two cases:

• if there is n ≥ |γ| such that Ln is empty, we pose τ = τn;

• otherwise, for all n ∈ N, we pose τ [n] = τn[n].

In both cases, γ is a prefix of τ , and τ is fair, since for all n and all transition T that can be fired after
τn, τ [1...n] = τn ∈ JfK and T is in Ln at a finite position p, so it will be fired after at most |σ| − n+ p
steps.

Property 3 (Equivalence of fair executions). Two fair executions define equivalent LAES:

∀f ∈ Orc, ∀σ, τ ∈ JfKωic, σ ≡ τ.

Proof. Let σ, τ ∈ Jf0K
ω
ic. We prove the following property (P (n)) by induction on n: for all n, there

is γn ∈ Jf0K
ω
ic such that idk : k 7→ k defines an isomorphism in both directions between γn and τ

(i.e. γn ≡ τ) and idni : σ[i]k 7→ γn[i]k defines an injection from σ[1...n] to γn. Moreover, if n > 0,
γn−1[1...n − 1] = γn[1...n − 1].

P (0) is true with γ0 = τ . We suppose now P (n) for a given n, and we prove P (n+ 1).

24

The only restriction on the identifiers is that they must be unique in the execution. In particular,
there is no link between the choice of the rules and of the identifier in a transition. Let δn be the same
execution as γn, but where the identifiers appear in the same order as in σ. Let us compare δn[1...n]
and σ[1...n]. Let i ∈ {1, ..., n}. By construction of γn, we have δn[i]k = σ[i]k . Moreover, since idni is
an injection from σ[1...n] to γn, we have δn[i]l = σ[i]l and as the fields c, a and b are contained into
{δn[1]k, ..., δ

n[i− 1]k}, (δn[i]c, δ
n[i]a, δ

n[i]b) = (σ[i]c, σ[i]a, σ[i]b). Thus, δn[1...n] = σ[1...n].

Moreover, δn is fair, so σ[1...n + 1] < δn, where f is the injection. Let p such that δ[p]k = f(σ[n +
1]k). As σ[1...n] ∈ Jf0Kic, for all n < i < p, δn[i]k 6≤ δn[p]k, so γn[i]k 6≤ γn[p]k. We can apply lemma 4
p− n− 1 times on γn at positions p − 1, p − 2, ..., n+ 1 to move γn[p]k at position n+ 1 in γn+1, idk

is an isomorphism between γn+1 and τ and idn+1
i is an injection from σ[1...n+ 1] to γn+1. Moreover,

γn[1...n] = γn+1[1...n], which is P (n+ 1).
This proves P (n) for all n.
For all n, we define f(σ[n]k) = γn[n]k . Let n < p. By unicity of the identifier in a sequence,

we have f(σ[n]k) = γn[n]k = γp[n]k 6= γp[p]k = f(σ[p]k), so f is injective. Moreover, for all n, we
have Λσ(σ[n]k) = Λγn (γn[n]k) = Λτ (τ [n]k); for all i and j, if σ[i]k ≤σ σ[j]k , γmax(i,j)[i]k ≤γmax(i,j)

γmax(i,j)[j]k , so τ [i]k ≤τ τ [j]k ; similarly, if σ[i]k րσ σ[j]k , γmax(i,j)[i]k րγmax(i,j) γmax(i,j)[j]k , so
τ [i]k րτ τ [j]k .

Finally, f defines an injection from σ to τ and σ < τ . By symmetry, τ < σ, and τ ≡ σ.

Theorem 2 (Correctness). The fair executions are sound and complete:

∀f ∈ Orc, ∀σ ∈ JfKωic, Lin(σ) = JfK.

Proof. Let f ∈ Orc and σ ∈ JfKωic.
Let σo ∈ Jf0Ko. By lemma 1, there is σi ∈ Jf0Ki such that σo ∈ Lin(σi). By lemma 2 and property 2,

there is σic ∈ Jf0K
ω
ic such that σi < σic. We have σo ∈ Lin(σic). Moreover by property 3, σ ≡ σic so

σo ∈ Lin(σic). This proves that JfKo ⊂ Lin(σ).
We now prove the converse. Let w = Λ(k0)...Λ(kn) ∈ Lin(σ). We define L as the set of finite

executions according to the concurrent semantics that contain w in there linearizations:

L = {γ ∈ JfKic|γ < σ ∧ w ∈ Lin(γ)}.

Let γ ∈ L and f be the injection from γ to σ. We define:

D(γ) = |{i < i′|∃j > j′, f(γ[i]k) = kj ∧ f(γ[i′]k) = kj′}|
+
∑

i|6∃j,f(γ[i]k)=kj |{i
′|∃j, f(γ[i′]k) = kj}|

+|γ| − n.

As w is finite, there is a finite prefixe γ of σ that contains all the events of identifiers k0, ..., kn. We have
σ0 ∈ L, so L 6= ∅, and we can consider δ ∈ L for which D(δ) is minimal, and we suppose (ad absurdum)
that D(δ) > 0. f is the injection from δ to σ and m = |δ|.

1. Suppose that for all j, f(δ[m]k) 6= kj . δ[1, ..., m− 1] ∈ L and D(δ[1, ..., m− 1]) = D(δ)− 1 which
is in contradiction with the fact that D(δ) is minimal.

2. Otherwise, if m 6= n, there is i such that δ[i]k has no antecedant by f . Let i0 be the biggest such
i. i0 6= m so δ[i0 + 1]k is defined and has an antecedant kj by f .

As w is a linearization, the causal history of kj is contained into {k1, ..., kn}, so δ[i0]k 6≤ δ[i0+1]k.

We can apply lemma 4, which gives δ′ ∈ Jf0Kic with δ′ ≡ δ. We have δ′ ∈ L and D(δ′) = D(δ)−1,
which is impossible by definition of δ.

3. Otherwise, m = n and f is bijective, so U = {i < i′|∃j > j′, f(γ[i]k) = kj ∧ f(γ[i′]k) = kj′} 6= ∅
Let (i, i′) ∈ U such that i′ − i is minimal. Suppose i′ − i > 1. There is i′′ such that i < i′′ < i.

As f is bijective, there is j′′ such that f(γ[i′′]k) = kj′′ and either (i, i′′) ∈ U or (i′′, i′) ∈ U , which
is impossible as i′ − i is minimal. So i′ = i+ 1, and there are j > j′ such that f(γ[i]k) = kj and

f(σ[i+ 1]k) = kj′ .

As w is a linearization, we have ¬(kj ր kj′), so kj 6≤ kj′ , and by injection, σ[i]k 6≤ σ[i+ 1]k . We

can apply lemma 4, which gives σ′ ∈ Jf0Kic with σ′ ≡ σ. We have σ′ ∈ L and D(σ′) = D(σ)− 1,
which is impossible by definition of σ.

All three cases are impossible, so D(δ) = 0. We have m = n and for all i ≤ n, f(δi) = ki. As

w ∈ Lin(δ), we can conclude by lemma 3 that w ∈ Jf0K.
This proves, Lin(σ) ⊂ JfKo.

25

Theorem 1 (Correctness). The behaviors that can be observed from an execution in the instrumented
semantics are correct with respect to the standard semantics:

∀f ∈ O,∀σi ∈ JfKi, Lin(σi) ⊂ JfK

Proof. Let σi ∈ Jf0Ki. By lemma 2, and property 2, there is a fair execution σic ∈ Jf0Kic such that
σi < σic. Let w ∈ Lin(σi). We have w ∈ Lin(σic), so by theorem 2, w ∈ Jf0K.

7 Discussion and Conclusion

This paper addresses the problem of the formal definition of an operational semantics for a distributed
programming language. We based our work on a case study: the Orc language, as it is expressive
enough to easily generate many situations found in distributed systems, such as causality, concurrency,
preemption and conflict, and remains simple enough to be tractable in a formal work as this one. Our
contribution consists of two new semantics for the Orc language. An instrumentation of the standard
semantics that extracts as much information as possible from a unique execution and a full concurrent
semantics that sums up all the possible behaviors of a program.

Debugging is a direct application of our work, as it requires root causes analysis, replay and even
race detection. From the user point of view, a debugger should give the possibility to execute a pro-
gram, (which is the role of the instrumented semantics), but should also give the possibility to explore
more than one possibility in conflictual choices (here, the concurrent semantics becomes necessary).
Lemma 2 gives an early response. As the semantics are compatible, it is possible to let the instrumented
semantics drive the execution of the concurrent semantics, and to introduce conflicts only when the
programmers want to point them out explicitly.

Beyond the Orc language, we think that this work presents a general approach that can be used for
other non-deterministic languages with concurrency operators.

Causality often operates through values and variables. It might be possible to use this remark
to track causality by a program transformation. This could be useful to improve the efficiency of an
implementation.

References

[1] Roberto Bruni, Hernán Melgratti, and Emilio Tuosto. Translating Orc features into Petri nets and the
Join calculus. Springer, 2006.

[2] David Kitchin, Adrian Quark, William Cook, and Jayadev Misra. The orc programming language.
In Formal techniques for Distributed Systems, pages 1–25. Springer, 2009.

[3] Gordon D Plotkin. The origins of structural operational semantics. The Journal of Logic and Algebraic
Programming, 60:3–15, 2004.

[4] Sidney Rosario, David Kitchin, Albert Benveniste, William Cook, Stefan Haar, and Claude Jard.
Event structure semantics of orc. Springer, 2008.

[5] Grigore Roşu and Koushik Sen. An instrumentation technique for online analysis of multithreaded
programs. Concurrency and Computation: Practice and Experience, 19(3):311–325, 2007.

[6] Glynn Winskel. Event structures. Springer, 1987.

26

